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In animal sciences, the number of published meta-analyses is increasing at a rate of 15% per year. This current review focuses on
the good practices and the potential pitfalls in the conduct of meta-analyses in animal sciences, nutrition in particular. Once the
study objectives have been defined, several key phases must be considered when doing a meta-analysis. First, as a principle of
traceability, criteria used to select or discard publications should be clearly stated in a way that one could reproduce the final
selection of data. Then, the coding phase, aiming to isolate specific experimental factors for an accurate graphical and statistical
interpretation of the database, is discussed. Following this step, the study of the levels of independence of factors and of the
degree of data balance of the meta-design represents an essential phase to ensure the validity of statistical processing. The
consideration of the study effect as fixed or random must next be considered. It appears based on several examples that this
choice does not generally have any influence on the conclusions of a meta-analysis when the number of experiments is sufficient.
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Implications

Prevalence of meta-analyses in the literature demonstrates
their ability to analyze large sets of heterogeneous data.
This text aims at highlighting not only the strength but also
the potential pitfalls of meta-analyses in Animal Science.
The most delicate steps that deserve attention are (1) the com-
pleteness of the collection of candidate publications, (2) the
coding of selected data to reflect original experimental design
and isolate specific experimental factors, (3) the study of the
meta-design, (4) the justification for the type of effect consid-
ered for study (fixed v. random), and from a statistical stand-
point, the effect of studies, and (5) the post-analytic study that
most often allows the analysis to be re-run at one of the
previous stages by improving the quality of the procedure.

Introduction

To achieve better supported quantitative conclusions about a
research question, researchers came up with the idea of
grouping published studies together. Although a wonderful
idea, the question of heterogeneity across experiments arose.
This concern appeared a long time ago in the medical
field (Pearson, 1904) and then in that of agricultural field

experiments (Yates and Cochran, 1938). The term meta-
analysis came more recently from medical studies (Glass,
1976). As showed in Figure 1, based on the exploration of
the Web of Science, there has been an exponential increase
in the number of publications that have applied meta-
analyses in Animal Science with a progress of 15% per year.
This trend, which follows with a lag of 10 to 15 years the area
of medical sciences (Sutton and Higgins, 2008), is likely to
continue for several more years. This rapid evolution is mainly
due to the growing accumulation of experimental data per
topic of interest (increasing numbers of publications/topic
and of measured data/publication etc.).

In Animal Science, meta-analysis has proven to be an
efficient way to renew already published data by creating
new empirical models, allowing progress in both understand-
ing and prediction aspects. The progress is allowed by (1) the
reduction of biases and imprecision and (2) by enlarging
a priori the domain of validity of the model.

The publication of St-Pierre (2001) was a key step in the
consideration, design and development of meta-analyses in
physiology and animal nutrition. Indeed, it was the first
publication, in a scientific journal, addressing the main ‘ins
and outs’ of meta-analysis and proposing a series of reflex-
ions and conceptualizations relative to this issue. It highlights
the importance of splitting inter- and intra-experiment† E-mail: daniel.sauvant@agroparistech.fr
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variation. Logically, this work has been cited extensively in
the field of Animal Science, so a landmark publication for
this tool. Subsequently, Sauvant et al. (2008) focused on
questions of good practices to be applied in meta-analysis
within Animal Science: on graphical interpretation, on the
choice between random and fixed effects of experiment,
and on the question of interfering factors (IFs) and on that
of the meta-design (see below).

The publications of St-Pierre (2001) and Sauvant et al.
(2008) are now, respectively, 19 and 12 years old. Since these
writings, many meta-analyses have been done and published
(Figure 1). Beyond these publications, meta-analyses have
also proven their usefulness for updating feed unit systems.

For example, the recent book ‘Feeding System for Ruminants’
(INRA, 2018) was constructed on hundreds of meta-analyses
that proposed more than 500 empirical equations calculated
from more than 25 databases.

Based on these years of experience, this paper will
focus on further developing the definition of good practices
and the limits of meta-analysis. Sauvant et al. (2008)
proposed a heuristic cyclical generic approach with
successive steps to conduct the meta-analyses that can
be updated thanks to different publications on the subject
and serves as a basis for the plan (Figure 2). This approach is
rather similar to that proposed in Agronomy by Philibert
et al. (2012).
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Figure 1 (colour online) Evolution of the numbers of publications (y axis) when crossing the keywords ‘Meta-analysis x Animal’ in the Web of Science.
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Figure 2 (colour online) Graphical representation of the meta-analytic process, updated from Sauvant et al. (2008): (Pub= publication, exp= experiment,
fact = factor, Int= interferent).
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Specificities of meta-analyses in Animal Science

As indicated by St-Pierre (2001) and Sauvant et al. (2008),
meta-analyses in Animal Science are generally quite different
in terms of methods and objectives from meta-analyses
conducted in the medical domain. However, few meta-
analyses have also been applied in Animal Science following
a similar approach (Phillips, 2005; Hillebrand, 2009;
Bougouin et al., 2014; Srednicka-Tober et al., 2016).

In medicine, meta-analyses are mainly performed to have
a more precise estimate of the effect of treatment or risk
factor for disease (Haidich, 2010). In Animal Science,
meta-analyses are mainly interested in the relations between
quantitative variables to predict the average response of a
dependent variable (Y ), within-experiment, to one, or more,
independent variables or covariables (X(s)) such as Y= f (X ).
To illustrate this type of objective, the variance (σ2) of two
variables Y and X is represented with circles as a Venn
diagram in Figure 3, and the overlap between the two circles
represent the covariance (σY.σX ) (https://en.wikipedia.org/
wiki/Venn_diagram). In this Figure, the two main sources
of variation are distinguished for both Y and X, with the
within-experiment (or intra-) variance represented below
the horizontal line and the between-experiment (or inter-
or across) variance above that line. This dissociation between
the two sources of variance is of high importance as it allows
to obtain correlation or regression coefficients specific to
intra- or inter-experiment variance. Sometimes, these inter-
and intra-relationships may be inversely related which can
lead to difficulty in the interpretation. In such variance–
covariance analysis, a benefit is that from intra-experiment
covariance, one seeks to extract a generic empirical response
Y= f (X ) with, for example, X being a causal feeding practice
which has been studied in a set of experiments. Under these
conditions, what is called the experiment heterogeneity or
effect corresponds to the variation of Y between studies
not considered by the covariables X (cf. area ‘inter σ 2Y’ in
Figure 3). The fact that the covariable is systematically

calculated intra-experiment in Animal Science also consti-
tutes a difference with the medical field where a covariable
is sometimes used to explain the heterogeneity across studies
(i.e. meta-regression of Borenstein et al., 2009). Reasons for
this difference will be considered further.

First steps in meta-analyses

Selecting the publications
One of the hallmarks of meta-analyses compared to conven-
tional literature reviews is its comprehensiveness on a subject
with an exhaustive collection and consideration of candidate
publications based on a set of keywords that are closely
consistent with the objectives of the work. It must start with
the most generic keywords that are refined gradually to
obtain a list of eligible publications. Through that phase,
the reduction of the number of candidate publications may
be important. For instance, d’Alexis et al. (2014) conducted
a meta-analysis on mixed grazing on 9 publications after
starting from an initial set of 8044 references, reduced to
117 eligible candidates with ‘mixed grazing’ as a first filter.
Publication filtering is the data quality step that is based on
critical assessment of each of them, focusing on elements
that could harm or not allow the analysis of the data based
on the expertise of the analyst. This visualization step by
introducing the data from a publication into a larger data
set is the ultimate quality screening. One important aspect
during this selection step is to explicitly mention the reasons
for the exclusion at each steps of the selection process to
obtain a PRISMA flow diagram (Moher et al., 2009). This
is a good practice and allows the reader to understand
why some candidate articles have not been included to
ensure traceability and reproducibility of the analysis.

Data structure challenges
The result of pooling publications is a table of data where
rows represent treatments, while the columns consist of

σ²Y Inter/ across
Exp. σ²

σ²X

Intra/ within
Exp. σ²

Inter Exp.
response
Y=f(X)

Intra Exp.
response
Y=f( )

Dependent
variable Y

Independant
Variable(s) X

Generic response

Covaria ons
across contexts

σY*σX
Residual σr²Y
Intra Exp.

Inter σ²Y Inter σ²X

X

Figure 3 (colour online) Venn diagram of meta-analytic splitting components of variance (σ2) intra- and inter-experiment (horizontal axis) and between
dependent variable Y and independent variable(s) X (Exp = experiment).
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the measured variables and characteristics. One of the
features of this data set is numerous missing data. This
seriously limit the possibility of using multi-variate statistics
such as principal component analysis. Therefore, analyses of
Y= f (X ) must be performed by successive steps on small
subsets of independent variables, frequently one by one to
minimize the loss of information. Moreover, in some
situations, the prediction of Ymust be based on several cova-
riables to avoid the omitted-variable bias due to the fact that
a significant independent covariable is not taken into account
in the model. However, when more variables are included in
the model, the number of observations is reduced and
could become insufficient. Drawbacks of missing data are
more important when complicated or expensive measures
are concerned and it can limit the interest to perform
meta-analysis. As an example, in a recent meta-analysis
focused on grazing behavior of ruminants (Boval and
Sauvant, 2019), a database of 109 publications (npub),
263 experiments (nexp) and 905 treatment means (n) was
gathered. The most measured behavioral item was the bite
mass (npub= 65, nexp= 167 and n= 580), measured in
64% of the treatments. But, to study bite depth, the
corresponding numbers were only npub= 21, nexp= 74
and n= 225. Moreover, for testing the influences of factors
such as sward height (SH) or herbage bulk density (HBD), the
numbers of experiments and treatments available decreased
even more (nexp= 53 or 22, and n= 126 or 69, respectively)
limiting the interest of the meta-analysis.

From a table of data to a database by encoding
Once all the publication’s data have been entered, we have a
table of data that cannot be exploited as such. It is necessary
to transform it into an organized database suited for a
meta-analysis process. It includes a preliminary step of
coding the data that is essential to ultimately generate
new reliable and generalizable knowledge with the meta-
analytic tool. Unfortunately, this phase is insufficiently
depicted in most publications. Such coding will also be
involved in either graphical and/or statistical procedures
(Figure 2). This coding can only be successful if the person
doing the meta-analysis has true expertise on the subject
and aware of coding methods. To summarize, the scientific
value and even the ‘art’ of meta-analyses directly depend
on the quality of this coding.

A first step, whatever the objective, is to code all the
publications and all the experiments (or studies) carried
out in each publication. As such, this ‘experiment’ code is
complete, but it contains ambiguities in the sense that it
mixes experiments that may have various objectives.
Therefore, for an in-depth analysis, it is necessary to code
each experimental objective in a separate column. As an
example, in the publication of Letourneau-Montminy et al.
(2012) looking at phosphorus utilization by pigs, different
codes were given depending on whether the authors had
measured growth performance, digestibility or retention or
even 2 of them or the 3. Numerous columns will be gradually

added for each of these codes that correspond to a factor of
variation which can be specifically studied in the meta-
analysis. Otherwise, according to the objective of the work,
it can be necessary to create new codes. For instance, if the
objective is to study the interaction between two factors
A and B, it is necessary to create, beyond coding of A and B,
a new code able to consider all data candidate to study the
interaction A × B. This coding step traces a quick
and interesting portrait of what has been studied and
vice versa what has not been studied. This is also an impor-
tant step to assess the degree of validity of the empirical
models proposed at the end of a meta-analytic process, study
the meta-design (see below) and to model responses to vari-
ous factors after having checked their mutual orthogonality
(see below) (Sauvant et al., 2008).

The meta-design

Classically, experimental conception involves careful thinking
to check the independence of the studied factors (Figure 3). In
meta-analysis, the structure of the data corresponds to a
design which is a priori neither orthogonal (independent)
nor balanced. This can lead to important statistical estima-
tion problems. The major trap concerns collinearity between
independent variables, which may bias the interpretation of
results, if not carefully considered. One cannot estimate
separately the effects of two variables that are highly
confounded with each other. Therefore, a critical study of
the meta-design is a key step in meta-analyses (Figure 2;
Sauvant et al., 2008), so only new considerations and exam-
ples will be presented here. To characterize the meta-design,
several steps must take place before and after the statistical
analyses.

Relations between qualitative factors and independent
variables X
First, it must be checked that the experimental factors and
covariables (X ) are independent before interpreting them.
Misuses linked with this aspect were already discussed by
Sauvant et al. (2008) (cf. area ‘inter σ 2X’, Figure 3), but other
examples are considered further.

It is particularly important to make sure that variation of
continuous X is similar between categories. As an example,
Letourneau-Montminy et al. (2018) studied the effect of CP
supply on daily water consumption in broilers of two age
category (0 to 21 days and 22 to 42 days). However, the
number of observations in each age was unbalanced so
the range of variation in CP was different between the
two age categories. This means that there is a risk that
the effect of age and protein be confounded, so the two
variables must not be studied together. If one will include
age as a class variable in the model, the effect may be highly
significant, but any conclusion based on such model would
be misleading.
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Relations between the quantitative independent
variables X
When there is only one covariable, major aspects to be
considered (histogram, study effect, leverage effects etc.)
were already listed by Sauvant et al. (2008). The complexity
increases even more when two or more independent
variables are considered together, especially if their inter-
actions are also studied (see below). In such cases, plotting
independent variables against each other and quantifying
their correlation are needed to assess the degree of multi-
collinearity, a situation that may occur when two or more
predictor variables in a regression model are redundant.
This is quite common in animal nutrition especially
with monogastric receiving complete diets because of feed
formulation practice that involves many ratios (e.g. amino
acid profile, Ca and P, dietary electrolyte balance).

In this case, it is important to carefully study the orthog-
onality between the candidate variables and to estimate the
intra-correlation between them. For example, Daniel et al.
(2016) pooled experiments on dairy cows dealing with either
net energy or metabolisable protein supplies to model their
productive responses and to test eventual interactions
between both nutrients. In this work, the intra-experiment
correlation coefficient between daily net energy supply
and daily metabolisable protein supply was significant
(R2 = 0.42) due to simultaneous variation of feed intake
within experiment, so the coefficient of the milk response
attributed to protein and that attributed to energy cannot
be interpreted independently. However, when the number
of experiments on a specific subject is large, it is possible
to reduce this correlation by selecting only the experiments
with low correlation between the two factors of interest. As
an example, by selecting on the same data set experiments
with low variation in intake, the correlation between net
energy and metabolizable protein supplies was reduced to
a non-significant correlation of 0.13 (Daniel et al., 2017b).
Another way to try to reduce the effect of collinearity among
variables is to center the values of treatments on the mean of
each experiment as it was suggested by Martineau
et al. (2016).

Interactions between the effects of factors or covariables X
Studying the interactions across factors or covariables is an
important challenge in meta-analysis. When a database
contains only experiments designed according to a factorial
arrangement of treatments (2 × 2 or 2 × 3 etc.), as stated
earlier, a specific coding column can be made to study the
interaction and the interpretation can be based either by
ANOVA or by two covariables representing measures on both
factors. For instance, such an approach has been applied to
study the interactions between chemical and physical fiber in
cattle (Sauvant and Yang 2011), and the interactions
between P, Ca and microbial phytase in broilers and pigs
(Letourneau-Montminy et al., 2010, 2012). Unfortunately,
this type of situation is rare because within a topic, the
number of useable factorial experiments is generally insuffi-
cient. More generally, the purpose is to study an interaction

between factors from a database where no, or only few,
experiments follow a factorial arrangement of the treat-
ments. Often, but not systematically, the code of the publi-
cations can be used to study an interaction. For instance,
Boval and Sauvant (2019) studied the marginal influences
of SH and HBD on bite mass through two types of indepen-
dent experiments focused on either SH (nexp= 51, n= 296)
or HBD (nexp= 15, n= 45) impacts. To model the interac-
tion, a set of 30 publications (n= 339), including not only
these two types of experiments but also some other experi-
ments with both data, were selected.

Interest and risk of replacing the experiment effect
by a covariable
If the inter-experiment variance is largely explained by a
covariable, it corresponds a priori to a situation comparable
to that of meta-regressions in medicine (Borenstein et al.,
2009). For example, we have carried out a meta-analysis
of 169 experiments (420 treatments) focused on dairy
cows milk yield (MY = 30.5 ± 7.0 kg/day) responses
to DM concentrate supply (DMIco = 9.7 ± 0.16 kg/day).
Variation inter-experiment is important (SD = 8.8 kg of
MY; Figure 4) and is largely explained by the phenotypic
potential of MY (MYpot) of each experiment which is a
common MY value of the treatments within a given experi-
ment (Daniel et al., 2017a). In this example, the inter-
experimental sum of square (SS) on MY is very high
(R2 = Inter-exp SS/total SS = 0.95) and MYpot is also highly
influencing MY (inter-experiment R2 = 0.93); based on
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Figure 4 (colour online) Responses of dairy cows milk yield (MY) to
concentrate supply.
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these correlations, they have a priori a similar interest to
capture inter-experiment variance.

In such a situation, the analyst has a priori the choice
between considering an experiment effect or replacing it with
a covariable equal to the production potential of each experi-
ment. However, in this case to interpret the coefficients of
regression, it is important to ensure that the inter-experiment
covariable is not related to the independent variables (DMIco
and DMIco2). Several statistical models were fitted on this
data set (Table 1). When the effects of experiments (fixed
(1a) or random (1b)) were replaced by the potential MY of
each experiment (model (2)), the intercept became non-
significant, which is logical, and the coefficients of DMIco
and DMIco2 were largely different from the corresponding
values of fixed (1a) and random (1b) effects assumptions.
It must be reminded that the coefficients of DMIco and
DMIco2 present a practical significance in terms of animal
response and diet formulation (Faverdin et al., 2018).
Moreover, the coefficient of DMIco2 became non-significant,
and based on the RMSE, the precision of the model (2) was
less. These large modifications in the values of the two
coefficients of regression are mainly because there is a
significant positive inter-experiment relationship between
the potential MY and average level of concentrate supply
(R2= 0.40). This inter-experiment relationship is logical in
the sense that experiments that used cows with a high
phenotypic potential are also using more concentrate to
meet their energy requirements. Finally, when model (2) is
compared to model (1a), the adjusted values of treatments
are globally similar (R2= 0.98 and a regression not different
from Y= X ) with a significant remaining influence of
the experiments not tackled by the covariable MYpot.
Moreover, residuals are less correlated between models
(1a) and (2) (R2= 0.47) with a significant influence of the
experiments in this relationship, indicating that the covari-
able MYpot takes only partly into account the inter-
experiment effect. Therefore, it is important to carefully
check the data to avoid the consequences of a correlation
between a covariable candidate for representing the exper-
imental heterogeneity and the intra-experiment covariables.
Another way to solve this type of issue would be to create
sub-groups of MY. Such an approach has been performed
by Huhtanen and Nousiainen (2012) with the creation of
seven sub-groups having partial overlap to increase the

number of observations. By this way, it was possible to
check the eventual interaction between dietary response
and MY.

Another important aspect concerns the formalism of the
independent variables X. Indeed, these variables can be
expressed as such (cf. models (1) and (2) of Table 1), or with
values of practical interest. For example, we also adjusted the
data with a fixed effect, as model (1a), but according to two
other formalisms of DMIco: model (3) by centering X on the
mean value within each experiment allows to focus on the
intra-experiment relation between X and Y limiting multi-
collinearity (Figure 4), and model (4) by calculating the
difference between DMIco and its adjusted value correspond-
ing to the energy balance= 0, a meaningful nutritional pivot
(Daniel et al., 2017a; Faverdin et al., 2018). Intercepts and
coefficients of regressions are different from those of model
(1a) (Table 1), and these differences can be explained. For
instance, the marginal response of MY to concentrate is high
(0.83 g/g DMIco) when DMIco is close to 0, but much less
(0.53 g/g DMIco) when energy balance= 0. Moreover,
between models (3) and (4), the adjusted (or predicted)
values of treatments are similar (R2> 0.999, close to
Y= X ) and the residues are highly correlated across treat-
ments (R2 = 0.91). The adjusted values and the residuals
of models (3) and (4) are closely related to the corresponding
criteria of model (1a) (R2 > 0.998 and R2 > 0.84) and model
(1b) (R2 > 0.998 and R2 > 0.89).

These results show the importance of having a close
consistency between the future practical use of a model
and the formalism of independent variables. In this way,
models issued from published meta-analysis cannot be
used without a careful consideration of their process of
construction.

Exploring a database from different angle: Y as a function
of X v. X as a function of Y
In some situations, the question arises whether it could be
possible for the same database to be valued for different
purposes according to various meta-designs, that is, for
studying both intra- and inter-experiment variation if it
makes sense. For example, calorimetric experiments with
lactating ruminants have provided measurements for
metabolizable energy (ME) and net energy (NE=ME −
Heat Production = kl × ME, kl being efficiency of use of

Table 1 Results of intra-experiment fitting milk yield (MY, kg/day) response of dairy cows to concentrate supply (DMIco, g/day) and potential milk
yield (MYpot)

Model number Type of effect Intercept (±SE)

Slope (±SE) associated with

RMSEMYpot DMIco DMIco2

1a Fixed 24.18 (±0.420) 0.827 (±0.086) −0.016 (±0.004) 1.10
1b Random 23.90 (±0.618) 0.870 (±0.086) −0.017 (±0.004) 1.10
2 MYpot as covariable 0.899 (±0.011) 0.296 (±0.070) −0.001 ns (±0.003) 1.60
3 Fixed 30.6 (±0.085) 0.499 (±0.022) −0.023 (±0.010) 1.12
4 Fixed 30.02 (±0.077) 0.526 (±0.022) −0.018 (±0.004) 1.06

ns = not significant.
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ME to milk NE). From these measurements, authors have
proposed empirical models that estimate NE from ME and
others have proposed empirical models that estimate ME
fromNE. However, these studies have beenmostly performed
by mixing all the available treatments without any distinction
of heterogeneity factors (publication, experiment etc.). As a
result, there is a certain confusion in the interpretation of
the published results. This is inconvenient since the animal
maintenance requirement and the efficiency of ME to NE,
derived from these equations and applied in the feeding unit
systems, appear sensitive to the type of statistical approach
and treatment. Thus, it was suggested by Salah et al. (2014,
2015) and Sauvant et al. (2018) to apply from a same
database two different approaches specific to the objective.
If the aim is to estimate animal responses to ME supply
(e.g. Figure 5b), then the equations should be adjusted for
the effect of experiment in order to focus on the within-
experiment variation, assumed to be mainly driven by the
‘push effect’ of the differences in the level of ME induced
by the design. However, when the objective is to estimate
animal requirement, within-experiment variance controlled
by scientist is, in most cases, of limited value. This is because
within an experiment, animal factors, such as BW, are made
homogenous by the investigators, so that differences
between treatments are only attributable to the experimental

factors being studied (i.e. effect of different levels of ME). In
contrast, a large variability may be expected in animals’
factors between experiments. If this ‘pull effect’ variation
is sufficiently large, it is a priori of great value to derive
equations that can predict animal requirements (Figure 5a).
For instance, from 87 calorimetry experiments (n= 239) on
lactating cows (n= 187) and goats (n= 52), 3 modelling
approaches and 4 models were compared:

(1) An inter-experiment General Linear Model (GLM, St-Pierre, 2001)
procedure (Figure 5a):

ME=BW0:75 ¼ SpeciesþMEm=BW0:75þ 1=klð ÞðNEL � RÞ=BW0:75

calculated across experiments (1 point = average of 1 experi-
ment, MEm is the ME maintenance requirement, NEL is milk
energy and R is the body retention/mobilization of energy)
within species as fixed factor without (Table 2, model 1a) or with
(Table 1, model 1b) weighing each experiment as suggested by
St-Pierre (2001). Species was tested on the inter-experiment–
intra-species variance considered as random (nested structure).
This model could be considered as a meta-regression in the
sense of medical science.

(2) An intra-experiment GLM procedure by a variance–covariance
analysis with data adjusted for the fixed effect of experiment
(1 point= 1 treatment) nested by species.

Figure 5 (colour online) (a) Inter-experiment relationship between ME intake and the sum of net energy partitioned into milk and to/from the body
(with 1 point = average of all of the treatment of one experiment); (b) intra-experiment relationship between the sum of net energy partitioned into milk
and to/from the body with ME intake (with 1 point= 1 treatment). Both relationships were obtained using the same database consisting of lactating cows and
goats. ME=metabolizable energy, NE= net energy, MBW =metabolic BW.

Table 2 Comparative estimations of maintenance requirements and efficiency of metabolizable energy (ME) into net energy (NE) of milk and body
reserves in ruminants (kl)

Model number Type of model
Maintenance for cows and

goats (±SE)1 (kcal ME/BW0.75)
Efficiency of

ME to NE, kl= NE/ME (±SE)
RMSE

(kcal ME/BW0.75)

1a Inter-experiment (nexp= 85) 162.5 and 125.7 (±7.61) 0.705 (= 1/1.419 ± 0.057) 26.0
1b Inter-experiment (weighted by n1/2/σ) 166.6 and 130.6 (±6.80) 0.782 (= 1/1.371 ± 0.048) 21.5
2 Intra-experiment (fixed) 149.9 and 116.3 (±5.0) 0.660 (±0.016) 6.9
3 Intra-experiment (random) 147.0 and 114.2 (±7.6) 0.654 (±0.014) 6.9

1Means (±SE).
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ðNEL � RÞ=BW0:75 ¼ aþ kl MEð Þ=BW0:75

(3) A Mixed model procedure (covariance matrix VC) similar to model
(2) except for the effect of experiment considered in this case
random instead of fixed.

Table 2 summarizes the estimated maintenance (MEm/BW0.75)
and efficiency from ME to NE (kl) obtained from the four
different models tested with data from lactating cows and
goats. From these data, it is evident that the choice of the
model influences these estimations: for models (1a) and
(1b), differences between experiments are the outcome of
physiological stages and homeorhetic regulations, while for
models (2) and (3), it is a situation of adaptive response of
animal to a nutritional challenge. The estimation of mainte-
nance requirements and ME efficiency is higher with models
(1a and 1b) compared to models (2 and 3). Moreover, the best
precision assessed with RMSE is logically achieved for the
models which adjust for the effect of experiments (2 and
3). Otherwise, if data from dry cows and dry goats are added
to this lactating data set (as a mean to include data from
animals fed to a level closer to maintenance), then the same
models give different estimations (unpublished data). The
diversity of these results highlights the importance to justify
the approach chosen for estimating these key parameters of
energy unit systems.

Specificity of dynamic data
Most of the publications using meta-analysis have so far
mainly concerned static data (i.e. one observation (individual
or group of animal) per treatment). Nevertheless, it is quite
possible to apply them to dynamic/time series data where
several observations may be available such as with repeated
measures. It was for instance the case of published kinetics
such as lactation curves (Martin and Sauvant, 2002) or
postprandial changes in rumen pH (Dragomir et al., 2008).
A difficulty related to this type of approach is that the differ-
ent kinetics taken into consideration are not consistent
because of the different time measurements and intervals
from one publication to another. It is therefore necessary
to make a preliminary adjustment of the data in order to
be able to conduct the analysis. Such example can be found
in Dragomir et al. (2008) in which a third-degree polynomial
was fitted on the data, or in Martin and Sauvant (2002)
using successive segments of the model of Grossman and
Koops (1988).

The assumptions of experimental heterogeneity

Definitions and basic concepts
Global considerations. The debate between the choice of
considering heterogeneity across experiments as a random
or fixed effect is not new. Many papers have addressed this
issue, particularly in the medical field where this choice can
lead to opposite important decisions, such as authorizing or
not a drug to be marketed (Thompson, 1994; Petitti, 2001;
Higgins et al., 2003; Borenstein et al., 2007). This debate

reflects the fact that there is no objective (and unambiguous)
method universally accepted for choosing between fixed and
random effects models. In the following section, the objective
is to recall the major conceptual differences between both
assumptions and to illustrate some examples of practical
comparison to help the reader to take an informed decision.

Random effect. Under the assumption of a random effect the
heterogeneity between experiments is considered as the
result of a random sampling within a large population.
Experiments are therefore assumed to be independent,
and they do not have to share a priori a common objective.
The objective is essentially to control and model the variance
related to this experimental heterogeneity in order to achieve
a prediction of Y= f (X ) taking into account not only the
intra-experiment but also, at least partly, the inter-
experiment influence (St-Pierre, 2001; Figure 3). This
assumption with this choice is that the inter-experiment
heterogeneity should follow a known random distribution,
in preference a Gaussian one (i.e. normal). The ambition is
to be able to apply the results obtained to predict or infer
any new and future experiment from the entire population
(= the whole area of inference). In Animal Science, many
authors have conducted and published meta-analysis consid-
ering the effect of experiments as random. However, in most
cases, this choice has not been clearly justified and generally
only refers to St-Pierre (2001)’s publication, in which data
were randomly generated. One consequence of treating
the effect of experiments as random which includes a part
of the inter-experiment variance in the calculations is that
it increases a priori and logically the confidence interval
(CI) values of parameters as it has been systematically
observed in medical field (Borenstein et al., 2009).
Additionally, it also reduces the power of the test (Hedges
and Pigott, 2004; Valentine et al., 2010). This choice can
therefore reduce the value of the regression for prediction
purposes (see more details below) or lead to a negative
conclusion of a test of a drug in medicine area.

Fixed effect. Conceptually the choice of a fixed effect corre-
sponds to the situation of the ‘single common effect model’
frequently described in medicine (Borenstein et al., 2009). In
this case, the variation studied and tested is assumed to come
a priori essentially from a sampling variability between the
experiments sharing a common objective and a common
response Y= f (X ). It is then assumed that there is no impor-
tant interfering heterogeneity on this aspect or that this
heterogeneity can be controlled with an interaction between
covariables and experiments. For instance, the objective can
be to estimate the average impact of dietary protein supply
on a given type of animal performance by selecting only
experiments that were all designed to study this aspect.
A logical question following this principle is what level of
standardization between studies is required to conclude that
heterogeneity is not interfering? In the medical field, Higgins
et al. (2003) proposed to calculate, before choosing between
a random or fixed effect, an index of heterogeneity (I2 index)
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which is an index of inter-experiment dispersion for the
measured item. If the result is non-significant, then the
heterogeneity is considered as low and a fixed effect is
recommended. This method, however, is a topic of debate
in medical area (Borenstein et al., 2009), and it has been
rarely applied in Animal Science (Bougouin et al., 2014).
Another issue is the narrower CI interval with a fixed effect
since the inter-experiment variance is ignored. However,
one can also wonder if the CI obtained by this fixed effect
is not artificially narrow giving a false impression of better
precision.

Interpretation of the heterogeneity: difference between
random and fixed effects. The distinction between fixed
and random study effects in meta-analysis is similar to what
can be encountered in classic experimental designs. Indeed,
in a Latin square with n diets, n periods and n animals, the
animal effect can be considered random if the objective is
only to control its variance. In such case, the statistical test
is a priori more generalizable. In contrast, if understanding
differences between animals is the objective, for instance
for phenotyping purpose, a fixed effect must be preferred
and at this moment the CI is narrower. By analogy, in
meta-analysis, the study effect would also be considered
fixed if studying heterogeneity across experiments is part
of the objectives. The following sentence from Van
Houwelingen et al. (2002) highlights nicely the importance
of this aspect in meta-analysis: ‘In the case of substantial
heterogeneity between the studies, it is the researcher’s duty
to explore possible causes of heterogeneity’. Comparable
sentences were also published by other researchers
(Greenland, 1987; Berlin, 1995)

Association between random and fixed effects to treat
heterogeneity through a nested design. If within a large
set of experiments, major causes of inter-experiment hetero-
geneity are identified and sufficiently represented, it is sug-
gested to create subgroups of experiments based on common
major causes as defined above to apply fixed effect to rank
the subgroups. In this case, the inter-experiment–intra-group
variance is considered as random and used as residual to test
the fixed effect, through a nested model, and then it is con-
sidered as random for the F test. Thus, Bougouin et al. (2016)
tested influences of categorical variables of housing systems
on ammonia emissions, the experiment effect being consid-
ered as random. Otherwise, several levels of nested factors
can be tested; it is basically the case with the nested structure
publication < experiment intra-publication < study intra-
experiment, although rarely tested as such (Martineau et al.,
2016). The nested structure can also concern factors, for
example, in a meta-analysis studying interest of mixed
grazing, D’Alexis et al. (2014) proposed, after studying
the database, the following nested structure: climate (1 df)
< publications intra-climate (7 df) < replications within
publication (8 df) < types of associated animals (10 df)
< inter-experiment intra factors.

Examples of comparisons between random and fixed effects
To give an idea of differences induced by treating the study
effect as fixed or random, it seems to us easier to briefly
describe some examples.

Example 1: meta-analysis with numerous heterogeneous
experiments. There were two published comparisons
between the two types of effects with numerous experiments
(online documents from Loncke et al., 2015 and Daniel et al.,
2016). Additionally, Table 1 (models (1a) v. (1b)) and Table 2
(models (2) v. (3)) from the present manuscript also presented
two other comparisons between the two effects. From these
four examples treating numerous experiments (>30), it
appeared that (1) the intra-experiment regressions and the
adjusted values of the parameters were very similar; (2) the
residuals were closely related and slope between residuals
was not different from 1; and (3) intercept CI was systemati-
cally greater for random than fixed, whereas CI coefficients of
intra-experiment regression (i.e. slopes) were very similar.

Example 2: further study of the experiment effect in the data
set of St-Pierre (2001). St-Pierre (2001) did a comparison
between fixed and random effects on a simulated data set
of 20 experiments (n= 108 treatments) where effects of
experiments on intercept and slope were mutually correlated
by construction. To go a bit further in this interesting work, we
have reconsidered this data set by comparing four approaches:

(1) Average of separate individual fittings of the 20 experiments by
20 linear regressions (IND).

(2) GLM procedure (experiment as fixed effect) including interaction
between experiments and covariable X.

(3) Mixed model with experiment effect as random with the hypoth-
esis of ‘variance component’ (VC) structure of covariance matrix
including, as model (2) an interaction between experiments and
covariable as random effect.

(4) idem (id) thanmodel (3) butwith the ‘unstructured’ covariancematrix
(UN).

The major results concerning this comparison are (Table 3):

• A confirmation of conclusions of Example 1: adjusted or
predicted values of treatments are similar between models.
The mean intra-experiment slopes are similar between
models 2, 3 and 4, and residuals are positively correlated
(r2= 0.84, 0.90 and 0.98 between models 2 and 3, models
2 and 4, and models 3 and 4, respectively). Also, CIs were larger
for both mixed models (3 and 4): more than two times for the
intercepts but only 1.2 to 1.3 times for the slopes.

• Compared to models 1 and 2, random models provide a
narrower range of values for slopes across experiments
(Figure 6). A major difference between fixed and random is
found for experiments with two treatments, for which predicted
values are very different from the average of all slopes (model 1).

• For model 2 (i.e. fixed effect), intercept and slope are not
related, whereas there is a positive correlation for random
models (R2= 0.24 for model 3 and R2= 0.30 for model 4).
These last results are consistent with the way the database
was constructed assuming an R2 = 0.25 between slope and
intercept (St-Pierre, 2001).
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• Average values of residuals per experiment are equal to 0 in
model 2, whereas in models 3 and 4, average values are
0.0019 (±SE, 0.031) and 0.0013 (±0.030), respectively.
Moreover, independently of the mixed model considered, these
average residual values per experiment are largely explained by
the average values of Y and the number of treatments per
experiment (Figure 7a). This confirmed that part of the inter-
experiment variance of Y is found in the residual variance
for model with random study effect.

Example 3: experiment effects and post analytical study in a
practical situation. As the previous example using data from
St-Pierre (2001) was a theoretical one, we did a similar

approach with data from Figure 4, in which MY responses
to concentrate supply in dairy cows were studied. The com-
parison between models 1a (fixed) and 1b (random, VC) is
presented in Table 1, and major differences and similarities
with example 2 are:

• The mean slopes of individual experiments were highly
correlated (R2= 0.99) between random and fixed, and the
relation was not different from Y= X. This result contrasts
with comparison made in example 2 (see Figure 6). Potential
interaction between experiment and dependent variable X
may explain this discrepancy. Further comparative studies
are warranted to conclude on this aspect.

(1) open circles concern experiments with 2 treatments, large black circles 
experiment having 7, 8 or 9 treatments

Figure 6 (colour online) Comparisons of values of the intra-experiment slopes (b1) with the data set of St-Pierre (2001). For GLM, VC and UN, see Table 3.

Figure 7 (colour online) Influence of the mean value of the dependent variable on the averaged values of the residuals per experiment in a randommodel (VC)
for examples 2 (a) and 3 (b). Black circles are experiments with only two treatments, white circles are experiments with more than two treatments.
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• Average residuals between models (1a) and (1b) were equal,
and treatment residuals were highly correlated across treat-
ments (R2= 0.99 with slope not different from 1). However,
the differences between treatment residuals of random and
fixed effects were related to MY as illustrated in Figure 8.
Between-experiment, this relationship was positive but
within-experiment, the relationship was negative. This clearly
highlights differences in how experiments heterogeneity is
considered between random model and fixed model.

• Average residuals per experiment obtained with the GLM
model (Table 1, model 1a) were all 0, whereas with the mixed
model (Table 1, model 1b), average residuals per experiment
were different from 0 (0.004 ± 0.096). These averages were
correlated with average MY of experiments; moreover, this
relationship was highly influenced by the number of treatments
per experiment (Figure 7b) as observed with the data from
St-Pierre (Figure 7a).

As a partial conclusion, it appears that, for examples 2 and 3,
part of the inter-experiment variance of Y is left in the
residual variance of the random model. It should however
be noted that this variance represents only less than 10%
of the total residual variance of the model. Consequently,

the type of model (random or fixed) would lead to the
same conclusion with respect to which experiments may
be identified as outlier due to high studentized residual
values (Sauvant et al., 2008).

Example 4: case of a curvilinear response and an unbalanced
design. Loncke et al. (2015) has studied the flux of β-hydrox-
ybutyrate from the liver in ruminants as a function of energy
balance. The database used included 6 experiments with
dairy cows (n= 12), 9 with growing ruminants (n= 22)
and 8 with non-productive ruminants fed close to mainte-
nance (n= 20). The intra-experiment response was curvilin-
ear, and the size of the quadratic term was influenced by the
choice of treating the experiment effect as fixed or random
(Figure 9). The largest difference was found in the adjustment
for the dairy cow group, in which predicted values at low or
high energy balance were higher in the randommodel than in
the fixed model. One explanation of these differences
between fixed and random could be related to the unbal-
anced number of observations in each physiological status
(Figure 9).

Table 3 Comparison between the major parameters with the fixed and mixed models

Model 1 (IND) Model 2 (GLM) (±SE)1 Model 3 (Mixed type= VC) Model 4 (Mixed type= UN)

Intercept −0.469 −0.469 (±0.264) −0.588 (±0.606) −0.608 (±0.563)
Slope 1.0797 1.0797 (±0.047) 1.0995 (±0.061) 1.0974 (±0.056)
RMSE NA 0.50 0.49 0.50

1Means (±SE).

Figure 8 (colour online) Relationships in lactating cows between milk yield (MY) and difference between residuals of random and fixed models in kg MY/day.
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Interfering factors

The issue of IFs is also sometimes an object of debate
(Sauvant et al., 2008). Originally, the research for IF consisted
of investigating whether qualitative factors, or incomplete
variables (because of missing values), that are, for this
reason, not incorporated into the adjusted statistical model,
could explain a significant part of the variation in the data.
More precisely, when the best independent X variable(s),
considered as primary driver(s), has been found, it is advis-
able to evaluate if any secondary variables could influence
the response equation. The study of the IF can be carried
out at various levels: (1) on the Least square means
(LSMeans); (2) on slopes of the intra-experiment relation-
ships (within-study slopes) and (3) in the residual variance.

A systematic study of IF allows one to gain more knowl-
edge from the data. Some examples of this approach can be
found in the literature (Loncke et al. 2009, 2015 and 2020;
Agastin et al. 2014). In the meta-analysis of Loncke et al.
(2015), response equations to predict hepatic uptake/release
of ketogenic nutrients in response to their supply to the
liver were obtained using published data from the FLORA
database (FLuxes of nutrients across Organs and tissues in
Ruminant Animals; Vernet and Ortigues-Marty, 2006). In this
meta-analysis, the study of IF revealed that response equa-
tions were significantly affected by other nutrients or by diet
characteristics. For example, it was shown that the hepatic
release of glucose was related to the net portal appearance
of nitrogen (Loncke et al., 2020), but for a same level of nitro-
gen (LSMeans), the release of glucose increased logically
with the dietary starch concentration.

In general, it is necessary to consider all factors and
variables as potential IF and to test their influence on the

parameters (LSMeans, residuals and within-study slopes);
Loncke et al. (2009, 2015 and 2020) tested about 50 IFs
for each equation published. The major objective of the
analysis of potential IF aims to evaluate if the main indepen-
dent variables (i.e. the identified primary drivers) have con-
sistent effects across various scenarios (no IF) or if those
effects are function of specific conditions (presence of IF).
When an IF is identified, it is recommended to try to include
it in the model, as a covariable or cofactor, and to evaluate if
this inclusion enhances the model adjustment without over-
complicating themodel interpretation or the use of themodel
in practical situation. So, in order to be as exhaustive as pos-
sible in the study of potential IF, it is important to build a
complete data set. Indeed, some variables may seem secon-
dary at first but may be relevant for such test and thus it is
therefore highly advisable to enter all reported variables from
a selected publication into the database.

Evaluation of models obtained from meta-analysis

A priori the validation of a model obtained from a meta-
analysis has to be conducted on an exogenous data set that
did not contribute to the model adjustment as it has been
performed, for example, by Ellis et al. (2016) to predict
hepatic blood flow from intake level. This evaluation has
been frequently based on the study of the structure of the
residuals, of the Bayesian Information Criterion and on the
Concordance Correlation Coefficient. However, this is a
difficult approach since such comparison must be done on
a data set with very similar characteristics in terms of exper-
imental factors (number of factors, range), of meta-design
and of range of data studied (both dependent and indepen-
dent variables). Alternatively, cross-validation approaches

Figure 9 (colour online) Observed and adjusted net hepatic release of β-hydroxybutyrate relative to energy balance for dairy cows (continuous) growing cattle
(short dashes) and maintenance (long dashes). The thick lines represent the adjustment with the fixed model, and thin lines represent the adjustment with the
random model (from Loncke et al. 2015; reproduced with permission).
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can be performed. This consists of splitting the data set in
subgroups which are successively removed to re-run the
model. It seems that when the data set is large and the objec-
tives of experiments are homogeneous, such cross-validation
is satisfying (Huhtanen and Nousiainen, 2012). Another way
to simply proceed a cross-validation with large data sets is to
randomly select sub-parts of the database which can be
used to assess the robustness of the model on these subparts
(this is sometimes called k-fold cross validation). Thus, in the
work of Bougouin et al (2018), only one sub-data set
corresponding to 30% of the collected data was considered
for the evaluation procedure. Such approaches are however
questionable for data rarely measured for reasons of cost or
technical difficulties. In fact, if the recommended principle of
exhaustive data collection is applied to strengthen the
conclusions, there is a priori no other available data. In this
context of completeness, from our experience, it seems that
the evaluation of the validity of the model lies rather in the
careful study of the representativeness of the factors
collected and of the data used for the meta-analysis. In par-
ticular to what extent the factors and data used are represen-
tative of what is observed in the field in terms of plausible
and possible ranges? These aspects are frequently neglected
despite they are strong determinants of practical validity of a
meta-analytic work.

The necessity of having an evaluation phase and the way
of conducting it can be different in meta-analysis according
to the assumption of either random or fixed effect and if sev-
eral levels of organization are considered. For a fixed effect, if
specifications are well respected, the model can be consid-
ered as auto-evaluated for its field of data and level of organi-
zation. However, risks of strong biases exist when several
empirical models based on fixed effect and developed at a
level n on homogeneous and well-focused groups of experi-
ences are used to model the multiple responses of a system at
level nþ 1. Thus, in the recent INRA Feed Unit System for
Ruminants (INRA, 2018), specific coding of sub-bases of
experiments having the same objective allowed to model
fairly accurately the digestive influences in cattle of various
specific dietary factors such as protein, starch, cell wall, fatty
acids etc. (Sauvant and Nozière, 2016). However, such an
approach required to carefully check the consistency of these
empirical models issued from entirely different nutritional
contexts before integrating them into a common model of
digestion subsequently included into a Feed Unit System
(INRA, 2018). The consistency of these equations and their
collective evaluation was checked on a digestive mechanistic
model that was calibrated on structural equations of fluxes
derived from meta-analysis of the literature (Sauvant and
Nozière, 2012 and 2016).

The futures of meta-analysis

The future of meta-analyses in Animal Science will depend on
their ability to generate progress. Until now, only few links
have been established between meta-analyses and systemic
approach, while they could be particularly useful to help

understanding emerging properties of complex systems.
This complexity relies to the structure of the system and to
the relationships between its main elements and between
its various levels of organization. Meta-analyses can there-
fore be applied to understand the role of multiple scales in
the spatiotemporal organization of systems. They can help
to highlight the key relationships associating the different
elements and scale levels as well as the diversity of situations
and their main factors of variation.

One of the main challenges of meta-analysis concerns its
combination with mechanistic modeling. Proposals remained
rare in this area. For large mechanistic models, Sauvant and
Martin (2004) have suggested to apply meta-analyses at the
two different phases of construction and evaluation of the
model. At the underlying level, meta-analysis of a first
database allows one to obtain realistic values for the key
basic parameters and relationships used to build the mecha-
nistic model. At the most integrated level, meta-analysis of a
second database, obtained at a level where the considered
system is only a subsystem, allows one to assess the
global validity of the model. Other synergies have been pro-
posed between mechanistic modeling and meta-analytic
approaches. Thus, it is possible to build mechanistic models
applying a top-down approach by using intra-experiment
regressions issued from meta-analyses as ‘structural equa-
tions’ to adjust values of the underlying parameters related
to flows and compartments. Such approach has already
been used to construct a simple mechanistic model of fiber
digestion in the rumen. Another and more sophisticated
example of this approach was carried out by Bahloul
(2014) with a mechanistic model of metabolic fluxes in the
liver. The domain of validity of such models is directly related
to the representativity of data included in the meta-analysis
and thus used for the calibration of the structural equations
integrated into the mechanistic model. Recently, two inter-
esting reviews took the opportunity of the ‘big data wave’
to broaden the thinking around modeling applied to
Animal Science (Tedeschi, 2019; Ellis et al., 2020). In this
perspective, meta-analyses which can be seen as data-
driven model have their entire place when basic data are
heterogeneous.

Data collected in the domain of Livestock Farming System
are rather heterogeneous because they come from many
different sources and time frequencies (Gonzalez et al.,
2018). In this context, empirical models obtained from
meta-analyses could offer a possibility for real-time diagno-
sis. In addition, it is likely that meta-analysis will highlight
some key features that could help progress in technology
to evolve in the right direction. Genomics is another fast
growing field of research which may benefit from meta-
analytic approaches. So far, the information is generally
sufficiently homogeneous and standardized to be processed
by multivariate statistical analysis methods. It is possible that
the search for ever greater integration of data will require
specific processes of heterogeneous data fusion using
methods already applied in the context of meta-analysis
(Zhao et al., 2019).
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In a certain way, meta-analysis applied to Animal Science
is progressing at a rate equivalent to that of the medical field,
but with a lag of several years, which can be explained in
large part by a much higher investment in Health Science
research. This trends is now continuing, for instance the
new paradigm of the Bayesian approach applied to meta-
analysis has been developing for several years (Cummings,
2014; Kruschke and Liddell, 2018) with only few examples
in Animal Science so far (Moraes et al., 2018). This approach
largely renewed the concepts of model interpretation and
evaluation, and this era is just now beginning in Animal
Science.

Another practical consideration within Animal Science
that may increase interest in meta-analyses in the future:
some experimental techniques are considered as too invasive
for the animals and will most likely not be authorized to be
practiced any more (e.g. digestive cannulas). Consequently,
published data obtained with these techniques have a priori
an increased scientific value and the challenge will be to
interpret them with great completeness by meta-analysis.

In the longer term, one of the challenges of meta-analysis
will be related to the possibility of automating some of the
key steps using artificial intelligence methods. However,
hopefully humans will remain masters of the game thanks
to their intelligence and their imagination.

Conclusions

The large number of publications using meta-analysis shows
that it is a widely accepted and applied method in Animal
Science, especially in nutrition. The methods applied have
remained largely unchanged, but the required levels of
reporting and traceability have evolved, and this has resulted
in greater transparency, with hopefully a better repeatability
between analysts. These requirements relate to the choice of
the selected publications, as this defines the degree of rep-
resentativeness of the work with respect to the applications,
to the construction and the coding of the database, and to
the study of the meta-design. It also relates to the systematic
analysis of IFs in situations where many candidate indepen-
dent variables are available.

The debate about the choice between fixed and random
effects is evolving, and the selection of fixed/random should
flow from the carefully considered objective of the meta-
analysis. Our comparisons show that in most situations,
the adjusted values are the same and ultimate conclusions
are not influenced by this choice. In concrete terms, it is
mainly the partition of variance across the effects which
seems to be altered by the choice. One promising aspect
of the development of meta-analyses is related to their impli-
cations in other modern approaches such as systemic
and mechanistic modeling approaches. One of the future
challenge for meta-analyses will be to demonstrate their
usefulness in the development of precision livestock farming
as well as in the processing of large, and potentially hetero-
geneous, data sets. Otherwise, until now, meta-analysis has

mainly been applied to treatments that represent averages of
several individuals. It seems that, given growing interest in
phenotype studies, it would be desirable to evaluate the
advantages and limits of meta-analyses to interpret individ-
ual laboratory databases by grouping the results of various
experiments in which the measured characters are not
systematically the same.
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