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A Geometrical Construction with Physical Applications.

By W. PEDDIE.

The Diagram shows two complete, and one partially complete,
concentric circles. The radii of the largest and smallest are as four
to one respectively.

Consider the two circles B and C. Let the radius, OD, of the
smallest be unity, while that of the second is /u.. If ABXO be called i,
while ACjO is y, we at once have the relation sin i =/x sin y. Thus,
if i be an angle of incidence of light on a refracting surface of a medium
of respective index /x, then y is the corresponding angle of refraction;
and the angle B1OC1 is i — y.

If now we vary i and y while keeping C2ACi parallel to itself it
is easy to see that i — y increases at a greater and greater rate as i,
say, is steadily increased. For, when i is very small, BC is very
nearly constant. And BC increases at a greater and greater rate as
i increases steadily. So, in the triangle B^OC^ the lengths of the
two sides are constant while the base increases at a greater and
greater rate as the angle at 0 opens out through AB1C1 moving
upwards while preserving its direction. Therefore i — y increases at
a greater and greater rate as i increases steadily.

The angle i — y is the angle of deviation produced by the first
refraction—say ii — yx. If now the light passes out at a second sur-
face (as of a prism) the angle i-2 — y% is added to the first deviation.
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Let us make ix = i2, and therefore yx = y2. If w e now, keeping the
path of the incident ray fixed, increase i by turning the prism, we
necessarily decrease i2. So we have increased ix — yx and diminished
i2 — y2. But, by the above proposition, we have increased ix — yx more
than we have decreased i2 — y2. Therefore the total deviation is
increased. This is obviously true if we increased i2 and diminished
i1 from equality. Thus the symmetrical condition gives a state of
minimum deviation. In this way the stationary conditions of devia-
tion which occur in the production of halos and rainbows can be
simply explained.

The same construction, with the associated ellipse (principal radii
in ratio 4:1), can be used for a magnetic application as follows.

Let the faint dotted line represent the direction of a stable axis
of magnetisation in a ferromagnetic crystalline plate cut parallel to a
face plane of a cubic crystal. Let also the major diameter of the
ellipse and the line C2B2AB1C1 be in the direction of magnetisation of
the plate. If the angle between the faint dotted line and the major
axis be 9U the construction gives ABXO = 40X and AGXO = •$$ — 61,
where X0O is the angle between 0Cx and the faint dotted line. In
that case 0Cx = h gives the direction and magnitude of the external
magnetic field which gives rise to the magnetisation, and is just
sufficient to bring the molecular magnets to the state of instability
from which, with dissipation of magnetic energy, they flash round to
take up a new position of stable equilibrium under the same field
OCi. The unit in which h is measured is here the maximum value of
the component of the internal magnetic field transverse to the direct-
ion of magnetisation, i.e. parallel to AO.

If we use a smaller circle than that of radius 0C1; cutting B2BX at
a point C'i inside Cj, then 0C\ will represent the direction and magni-
tude of the external field which would maintain stable equilibrium.
The construction still holds if CXC2 be displaced parallel to itself if the
direction of the stable crystalline axis (faint dotted line) be altered
correspondingly. In fact, quite generally, if the point C\ lies within
the ellipse, the magnetic configuration so specified is one of stability.
If it lies on the ellipse the configuration is just at the limit for
stability; and if it lies outside the ellipse, the magnetic configuration
is unstable.
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