ON THE EXPONENTIAL DIOPHANTINE EQUATION $\left(m^{2}+1\right)^{x}+\left(c m^{2}-1\right)^{y}=(a m)^{z}$

TAKAFUMI MIYAZAKI and NOBUHIRO TERAI ${ }^{\boxtimes}$

(Received 2 September 2013; accepted 19 September 2013; first published online 26 March 2014)

Abstract

Let m, a, c be positive integers with $a \equiv 3,5(\bmod 8)$. We show that when $1+c=a^{2}$, the exponential Diophantine equation $\left(m^{2}+1\right)^{x}+\left(\mathrm{cm}^{2}-1\right)^{y}=(a m)^{2}$ has only the positive integer solution $(x, y, z)=(1,1,2)$ under the condition $m \equiv \pm 1(\bmod a)$, except for the case $(m, a, c)=(1,3,8)$, where there are only two solutions: $(x, y, z)=(1,1,2),(5,2,4)$. In particular, when $a=3$, the equation $\left(m^{2}+1\right)^{x}+\left(8 m^{2}-1\right)^{y}=(3 m)^{2}$ has only the positive integer solution $(x, y, z)=(1,1,2)$, except if $m=1$. The proof is based on elementary methods and Baker's method.

2010 Mathematics subject classification: primary 11D61.
Keywords and phrases: exponential Diophantine equation, integer solution, lower bound for linear forms in two logarithms.

1. Introduction

Let a, b, c be fixed relatively prime positive integers greater than one. The exponential Diophantine equation

$$
\begin{equation*}
a^{x}+b^{y}=c^{z} \tag{1.1}
\end{equation*}
$$

in positive integers x, y, z has been studied by a number of authors. In 1956, Sierpiński $[\mathrm{S}]$ considered the case of $(a, b, c)=(3,4,5)$, and showed that $(x, y, z)=$ $(2,2,2)$ is the only solution. Jeśmanowicz [J] conjectured that if a, b, c are Pythagorean numbers, that is, positive integers satisfying $a^{2}+b^{2}=c^{2}$, then (1.1) has only the solution $(x, y, z)=(2,2,2)$. As an analogue of Jeśmanowicz's conjecture, the second author proposed that if a, b, c, p, q, r are fixed positive integers satisfying $a^{p}+b^{q}=c^{r}$ with $a, b, c, p, q, r \geq 2$ and $\operatorname{gcd}(a, b)=1$, then, apart from a handful of exceptions, (1.1) has only the solution $(x, y, z)=(p, q, r)$. This conjecture has been proved to be true in many special cases (see [CD, Le, M1, M2, T1, T2]), but is still unsolved in general.

In the other direction, many of the recent works on (1.1) concern the case where two of a, b and c are congruent to ± 1 modulo a (relatively) large divisor of the other one.

[^0]For example, see [HT1, HT2, HY, MT, T3]. In this paper, we consider the exponential Diophantine equation

$$
\begin{equation*}
\left(m^{2}+1\right)^{x}+\left(c m^{2}-1\right)^{y}=(a m)^{z} \tag{1.2}
\end{equation*}
$$

with m a positive integer. Our main result is the following theorem.
Theorem 1.1. Let a be a positive integer with $a \equiv 3,5(\bmod 8)$. Let c be a positive integer with $1+c=a^{2}$. Suppose that $m \equiv \pm 1(\bmod a)$. Then (1.2) has only the positive integer solution $(x, y, z)=(1,1,2)$, except for the case $(m, a, c)=(1,3,8)$, where the equation $2^{x}+7^{y}=3^{z}$ has only the positive integer solution $(x, y, z)=$ $(1,1,2),(5,2,4)$.

In particular, for $a=3$, we can completely solve (1.2) without any assumption on m. The proof is based on applying a result on linear forms in p-adic logarithms due to Bugeaud $[\mathrm{Bu}]$ to (1.2) with $m \equiv 0(\bmod 3)$.

Corollary 1.2. Let m be a positive integer. Then the equation

$$
\left(m^{2}+1\right)^{x}+\left(8 m^{2}-1\right)^{y}=(3 m)^{z}
$$

has only the positive integer solution $(x, y, z)=(1,1,2)$, except for the case $m=1$, where the equation $2^{x}+7^{y}=3^{z}$ has only the positive integer solutions $(x, y, z)=$ $(1,1,2),(5,2,4)$.

2. Preliminaries

In order to obtain an upper bound for a solution of Pillai's equation $C^{z}-B^{y}=A$, we need a lower bound for linear forms in two logarithms. Now we introduce some notation. Let α_{1} and α_{2} be real algebraic numbers with $\left|\alpha_{1}\right| \geq 1$ and $\left|\alpha_{2}\right| \geq 1$. We consider the linear form

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1},
$$

where b_{1} and b_{2} are positive integers. As usual, the logarithmic height of an algebraic number α of degree n is defined as

$$
h(\alpha)=\frac{1}{n}\left(\log \left|a_{0}\right|+\sum_{j=1}^{n} \log \max \left\{1,\left|\alpha^{(j)}\right|\right\}\right),
$$

where a_{0} is the leading coefficient of the minimal polynomial of α (over \mathbb{Z}) and $\left(\alpha^{(j)}\right)_{1 \leq j \leq n}$ are the conjugates of α. Let A_{1} and A_{2} be real numbers greater than one with

$$
\log A_{i} \geq \max \left\{h\left(\alpha_{i}\right), \frac{\left|\log \alpha_{i}\right|}{D}, \frac{1}{D}\right\}
$$

for $i \in\{1,2\}$, where D is the degree of the number field $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)$ over \mathbb{Q}. Define

$$
b^{\prime}=\frac{b_{1}}{D \log A_{2}}+\frac{b_{2}}{D \log A_{1}}
$$

We choose to use a result due to Laurent [La, Corollary 2] with $m=10$ and $C_{2}=25.2$.

Proposition 2.1 (Laurent [La]). Let Λ be given as above, with $\alpha_{1}>1$ and $\alpha_{2}>1$. Suppose that α_{1} and α_{2} are multiplicatively independent. Then

$$
\log |\Lambda| \geq-25.2 D^{4}\left(\max \left\{\log b^{\prime}+0.38, \frac{10}{D}\right\}\right)^{2} \log A_{1} \log A_{2}
$$

Next, we shall quote a result on linear forms in p-adic logarithms due to Bugeaud [Bu]. Here we consider the case where $y_{1}=y_{2}=1$ in the notation of [Bu, page 375].

Let p be an odd prime. Let a_{1} and a_{2} be nonzero integers prime to p. Let g be the least positive integer such that

$$
\operatorname{ord}_{p}\left(a_{1}^{g}-1\right) \geq 1, \quad \operatorname{ord}_{p}\left(a_{2}^{g}-1\right) \geq 1
$$

where we denote the p-adic valuation by $\operatorname{ord}_{p}(\cdot)$. Assume that there exists a real number E such that

$$
\frac{1}{p-1}<E \leq \operatorname{ord}_{p}\left(a_{1}^{g}-1\right) .
$$

We consider the integer

$$
\Lambda=a_{1}^{b_{1}}-a_{2}^{b_{2}}
$$

where b_{1} and b_{2} are positive integers. We let A_{1} and A_{2} be real numbers greater than one with

$$
\log A_{i} \geq \max \left\{\log \left|a_{i}\right|, E \log p\right\} \quad i=1,2,
$$

and we put $b^{\prime}=b_{1} / \log A_{2}+b_{2} / \log A_{1}$.
Proposition 2.2 (Bugeaud [Bu]). With the above notation, if a_{1} and a_{2} are multiplicatively independent, then we have the upper estimate

$$
\operatorname{ord}_{p}(\Lambda) \leq \frac{36.1 g}{E^{3}(\log p)^{4}}\left(\max \left\{\log b^{\prime}+\log (E \log p)+0.4,6 E \log p, 5\right\}\right)^{2} \log A_{1} \log A_{2}
$$

3. Proof of Theorem 1.1

3.1. The case $\boldsymbol{m}=\mathbf{1}$. We first show that when $m=1$, (1.2) has only the positive integer solution $(x, y, z)=(1,1,2)$, except for the case $(a, c)=(3,8)$.
Lemma 3.1. Let a be a positive integer with $a \equiv 3,5(\bmod 8)$. The equation

$$
\begin{equation*}
2^{x}+\left(a^{2}-2\right)^{y}=a^{z} \tag{3.1}
\end{equation*}
$$

has only the positive integer solution $(x, y, z)=(1,1,2)$ except for the case $a=3$, where the equation $2^{x}+7^{y}=3^{z}$ has only the positive integer solutions $(x, y, z)=$ $(1,1,2),(5,2,4)$.

Remark 3.2. In 1958, Nagell [N2] showed that the equation

$$
2^{x}+7^{y}=3^{z}
$$

has only the positive integer solutions $(x, y, z)=(1,1,2),(5,2,4)$.
Proof. We use the following proposition to show our assertion.

Proposition 3.3.

(i) (Bennett $[\mathrm{Be}])$ Let a and b be integers with $a, b \geq 2$. Then the equation

$$
a^{x}-b^{y}=2
$$

has at most one solution in positive integers x and y.
(ii) (Nagell [N1]) The equation

$$
x^{2}+4=y^{n}
$$

has only the positive integer solution $(x, y, n)=(11,5,3)$ with y odd and $n \geq 3$.
Let (x, y, z) be a solution of (3.1).
Case 1: $x=1$. It follows from (i) in Proposition 3.3 that

$$
a^{z}-\left(a^{2}-2\right)^{y}=2
$$

has only the positive integer solution $y=1, z=2$.
Case 2: $x=2$. If $a \equiv 3(\bmod 8)$, then, from (3.1),

$$
1=\left(\frac{-1}{a}\right)\left(\frac{-2}{a}\right)^{y}=(-1) \cdot 1=-1
$$

where (\cdot / \cdot) denotes the Jacobi symbol. This is impossible.
If $a \equiv 5(\bmod 8)$, then

$$
4+7^{y} \equiv 5^{z}(\bmod 8)
$$

Hence y is even and z is odd. It follows from (ii) in Proposition 3.3 that

$$
\left(\left(a^{2}-2\right)^{y / 2}\right)^{2}+4=a^{z}
$$

has no solutions y, z.
Case 3: $x \geq 3$. Taking (3.1) modulo 8 implies that

$$
7^{y} \equiv 3^{z}, 5^{z} \quad(\bmod 8)
$$

so y and z are even, say $y=2 Y$ and $z=2 Z$. Thus

$$
\left(a^{Z}+\left(a^{2}-2\right)^{Y}\right)\left(a^{Z}-\left(a^{2}-2\right)^{Y}\right)=2^{x}
$$

so

$$
a^{Z}+\left(a^{2}-2\right)^{Y}=2^{x-1} \quad \text { and } \quad a^{Z}-\left(a^{2}-2\right)^{Y}=2
$$

Adding these yields

$$
2^{x-2}+1=a^{Z}
$$

If $x=3,4$, then the above equation has no solutions. Indeed,

$$
a^{2}=\left(a^{2}-2\right)+2 \leq\left(a^{2}-2\right)^{Y}+2=a^{Z}=2^{x-2}+1 \leq 5,
$$

which is impossible. If $x \geq 5$, then $1 \equiv a^{Z}(\bmod 8)$. Since $a \equiv 3,5(\bmod 8)$, we see that Z is even, say $Z=2 Z_{1}$. Then

$$
\left(a^{Z_{1}}+1\right)\left(a^{Z_{1}}-1\right)=2^{x-2}
$$

so

$$
a^{Z_{1}}+1=2^{x-3} \quad \text { and } \quad a^{Z_{1}}-1=2
$$

We therefore obtain $a=3, Z_{1}=1$ and so $x=5, Y=1$.
3.2. The case $\boldsymbol{m} \geq \mathbf{2}$. Let (x, y, z) be a solution of (1.2). By Lemma 3.1, we may suppose that $m \geq 2$. We examine parities of x, y, z. Using $a \equiv 3,5(\bmod 8)$ and $m \equiv \pm 1$ $(\bmod a)$, we show the following lemma.
Lemma 3.4. If (x, y, z) is a solution of (1.2), then both x and y are odd, and z is even.
Proof. Let (x, y, z) be a solution of (1.2). Suppose that our conditions are all satisfied.
Now it follows from $1+c=a^{2}$ that $\mathrm{cm}^{2}-1=\left(a^{2}-1\right) m^{2}-1>a m$. Hence $z \geq 2$ from (1.2). Taking (1.2) modulo m^{2} implies that $1+(-1)^{y} \equiv 0\left(\bmod m^{2}\right)$. Since $m \geq 2$, we see that y is odd. In view of $1+c=a^{2}$ and $m \equiv \pm 1(\bmod a),(1.2)$ leads to

$$
2^{x}+(c-1)^{y} \equiv 2^{x}-2^{y} \equiv 0 \quad(\bmod a)
$$

so $(2 / a)^{x}=(2 / a)^{y}$. Since $(2 / a)=-1$, from $a \equiv 3,5(\bmod 8)$, we have $x \equiv y(\bmod 2)$. Therefore, the fact that y is odd implies that x is odd.

We first show that $\left(m /\left(\mathrm{cm}^{2}-1\right)\right)=1$ and $\left(a /\left(\mathrm{cm}^{2}-1\right)\right)=-1$. Note that $\mathrm{cm}^{2}-1 \equiv$ $-1(\bmod 8)$. Write $m=2^{\alpha} t$ with $\alpha \geq 0$ and t odd. Then

$$
\left(\frac{m}{c m^{2}-1}\right)=\left(\frac{2}{c m^{2}-1}\right)^{\alpha}\left(\frac{t}{c m^{2}-1}\right)=1 \cdot\left(\frac{t}{c m^{2}-1}\right)=\left(\frac{t}{c m^{2}-1}\right)=1 .
$$

If $a \equiv 3(\bmod 8)$, then

$$
\left(\frac{a}{c m^{2}-1}\right)=-\left(\frac{c m^{2}-1}{a}\right)=-\left(\frac{c-1}{a}\right)=-\left(\frac{-2}{a}\right)=(-1) \cdot 1=-1 .
$$

If $a \equiv 5(\bmod 8)$, then

$$
\left(\frac{a}{c m^{2}-1}\right)=\left(\frac{c m^{2}-1}{a}\right)=\left(\frac{c-1}{a}\right)=\left(\frac{-2}{a}\right)=-1 .
$$

Therefore,

$$
\left(\frac{a m}{c m^{2}-1}\right)=\left(\frac{a}{c m^{2}-1}\right)\left(\frac{m}{c m^{2}-1}\right)=(-1) \cdot 1=-1 .
$$

Since $1+c=a^{2}$,

$$
\left(\frac{m^{2}+1}{c m^{2}-1}\right)=\left(\frac{m^{2}+c m^{2}}{c m^{2}-1}\right)=\left(\frac{a^{2} m^{2}}{c m^{2}-1}\right)=1
$$

In view of these, we conclude that z is even from (1.2).

We can easily show that if m is even, then (1.2) has only the positive integer solution $(x, y, z)=(1,1,2)$ by taking (1.2) modulo m^{3}.
Lemma 3.5. If m is even, then (1.2) has only the positive integer solution $(x, y, z)=$ (1, 1, 2).

Proof. If $z \leq 2$, then we obtain $(x, y, z)=(1,1,2)$ from (1.2). Hence we may suppose that $z \geq 3$. It follows from Lemma 3.4 that x and y are odd.

Taking (1.2) modulo m^{3} implies that

$$
1+m^{2} x-1+c m^{2} y \equiv 0 \quad\left(\bmod m^{3}\right)
$$

so

$$
x+c y \equiv 0 \quad(\bmod m)
$$

which is impossible, since x is odd, c is even and m is even. This completes the proof of Lemma 3.5.

Lemma 3.6. In (1.2), if m is odd then $x=1$.
Proof. From Lemma 3.4, it follows that y is odd and z is even. Suppose that $x \geq 2$. Taking (1.2) modulo 4 implies that

$$
3^{y} \equiv(a m)^{z} \equiv 1 \quad(\bmod 4)
$$

This implies that y is even, which contradicts the fact that y is odd. We therefore obtain $x=1$.
3.3. Pillai's equation $\boldsymbol{C}^{z}-\boldsymbol{B}^{\boldsymbol{y}}=\boldsymbol{A}$. From Lemmas 3.4 and 3.6, it follows that $x=1$ and y is odd. If $y=1$, then we obtain $z=2$ from (1.2). From now on, we may suppose that $y \geq 3$. Hence our theorem is reduced to solving Pillai's equation

$$
\begin{equation*}
C^{z}-B^{y}=A \tag{3.2}
\end{equation*}
$$

with $y \geq 3$, where $A=m^{2}+1, B=c m^{2}-1$ and $C=a m$.
We now want to obtain a lower bound for y.
Lemma 3.7. In (3.2), $y \geq\left(m^{2}-1\right) / c$.
Proof. Since $y \geq 3$, (3.2) yields

$$
(a m)^{z}=m^{2}+1+\left(\mathrm{cm}^{2}-1\right)^{y} \geq m^{2}+1+\left(\mathrm{cm}^{2}-1\right)^{3}>(\mathrm{am})^{3} .
$$

Hence $z \geq 4$. Taking (3.2) modulo m^{4} implies that

$$
m^{2}+1-1+c m^{2} y \equiv 0 \quad\left(\bmod m^{4}\right)
$$

so $1+c y \equiv 0\left(\bmod m^{2}\right)$. Hence we obtain our assertion.
We next want to obtain an upper bound for y.

Lemma 3.8. In (3.2), $y<2521 \log C$.
Proof. From (3.2), we now consider the following linear form in two logarithms:

$$
\Lambda=z \log C-y \log B \quad(>0)
$$

Using the inequality $\log (1+t)<t$ for $t>0$,

$$
\begin{equation*}
0<\Lambda=\log \left(\frac{C^{z}}{B^{y}}\right)=\log \left(1+\frac{A}{B^{y}}\right)<\frac{A}{B^{y}} \tag{3.3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\log \Lambda<\log A-y \log B \tag{3.4}
\end{equation*}
$$

On the other hand, we use Proposition 2.1 to obtain a lower bound for Λ. It follows from Proposition 2.1 that

$$
\begin{equation*}
\log \Lambda \geq-25.2\left(\max \left\{\log b^{\prime}+0.38,10\right\}\right)^{2}(\log B)(\log C) \tag{3.5}
\end{equation*}
$$

where $b^{\prime}=y / \log C+z / \log B$.
We note that $B^{y+1}>C^{z}$. Indeed,

$$
\begin{aligned}
B^{y+1}-C^{z} & =B\left(C^{z}-A\right)-C^{z}=(B-1) C^{z}-A B \\
& \geq\left(c m^{2}-2\right)(1+c) m^{2}-\left(m^{2}+1\right)\left(c m^{2}-1\right)>0
\end{aligned}
$$

Hence $b^{\prime}<(2 y+1) / \log C$.
Put $M=y / \log C$. Combining (3.4) and (3.5) leads to

$$
y \log B<\log A+25.2\left(\max \left\{\log \left(2 M+\frac{1}{\log C}\right)+0.38,10\right\}\right)^{2}(\log B)(\log C)
$$

so

$$
M<1+25.2\left(\max \left\{\log \left(2 M+\frac{1}{2}\right)+0.38,10\right\}\right)^{2}
$$

since $\log C=\log (a m) \geq \log 9>2$ and $A<B$. We therefore obtain $M<2521$. This completes the proof of Lemma 3.8.

We are now in a position to prove Theorem 1.1. Recall that $A=m^{2}+1, B=$ $\left(a^{2}-1\right) m^{2}-1$ and $C=a m$. Since $A+B=C^{2}$ and z is even, (3.2) can be written as

$$
\left(C^{2}\right)^{Z}-B^{y}=C^{2}-B
$$

with $z=2 Z$. Then $y \geq Z$. If $y=Z$, then we obtain $y=Z=1$. If $y>Z$, then we consider a 'gap' between the trivial solution $(y, Z)=(1,1)$ and (possibly) another solution (y, Z), and show that making the 'gap' small leads to a contradiction. (See Bennett [Be, page 901] and Terai [T2, page 21] for a 'gap principle' for solutions of Pillai's equation.) Since $C^{2 Z}>B^{y}$, it follows from Lemma 3.8 that

$$
1 \leq y-Z<y-\frac{\log B}{\log C^{2}} y=\frac{\log \left(C^{2} / B\right)}{2 \log C} y<\frac{2521}{2} \log \left(\frac{C^{2}}{B}\right)
$$

By definition of B and C,

$$
\frac{C^{2}}{B}=\frac{a^{2} m^{2}}{\left(a^{2}-1\right) m^{2}-1}=\frac{1}{1-\left(m^{2}+1\right) / a^{2} m^{2}}
$$

Therefore $\alpha:=1-\left(e^{2 / 2521}\right)^{-1}<\left(m^{2}+1\right) / a^{2} m^{2}$. Since $m \geq 3$, this yields

$$
a^{2}<\frac{1}{\alpha}\left(1+\frac{1}{m^{2}}\right) \leq \frac{1}{\alpha}\left(1+\frac{1}{9}\right)=1401.111 .
$$

Consequently, $a \leq 37$.
It follows from Lemmas 3.7 and 3.8, together with $a \leq 37$, that

$$
m^{2}-1<2521\left(a^{2}-1\right) \log (a m) \leq 3448728 \log (37 m)
$$

Hence $m \leq 6538$.
From (3.3), we have the inequality

$$
\left|\frac{\log B}{\log C}-\frac{z}{y}\right|<\frac{A}{y B^{y} \log C},
$$

which implies that $|\log B / \log C-z / y|<1 / 2 y^{2}$, since $y \geq 3$. Thus z / y is a convergent in the simple continued fraction expansion to $\log B / \log C$.

On the other hand, if p_{r} / q_{r} is the r th such convergent, then

$$
\left|\frac{\log B}{\log C}-\frac{p_{r}}{q_{r}}\right|>\frac{1}{\left(a_{r+1}+2\right) q_{r}^{2}},
$$

where a_{r+1} is the $(r+1)$ th partial quotient to $\log B / \log C$ (see, for example, Khinchin [K]). Put $z / y=p_{r} / q_{r}$. Note that $q_{r} \leq y$. It follows, then, that

$$
\begin{equation*}
a_{r+1}>\frac{B^{y} \log C}{A y}-2 \geq \frac{B^{q_{r}} \log C}{A q_{r}}-2 . \tag{3.6}
\end{equation*}
$$

Finally, we checked by Magma $[\mathrm{BC}]$ that for each $a \leq 37$ with $a \equiv 3$, $5(\bmod 8)$, (3.6) does not hold for any r with $q_{r}<2521 \log (a m)$ in the range $3 \leq m \leq 6538$. This completes the proof of Theorem 1.1.

4. Proof of Corollary 1.2

Let m be a positive integer. Let (x, y, z) be a positive solution of the Diophantine equation

$$
\begin{equation*}
\left(m^{2}+1\right)^{x}+\left(8 m^{2}-1\right)^{y}=(3 m)^{z} \tag{4.1}
\end{equation*}
$$

By Theorem 1.1, we may assume $m \equiv 0(\bmod 3)$. Similarly to the proof of Lemma 3.4, we can show that y is odd. Here, we apply Proposition 2.2. For this we set $p:=3$, $a_{1}:=m^{2}+1, a_{2}:=1-8 m^{2}, b_{1}:=x, b_{2}:=y, \Lambda:=\left(m^{2}+1\right)^{x}-\left(1-8 m^{2}\right)^{y}$. Then we
may take $g=1, E=2, A_{1}=m^{2}+1, A_{2}:=8 m^{2}-1$. Hence

$$
2 z \leq \frac{36.1}{8(\log 3)^{4}}\left(\max \left\{\log b^{\prime}+\log (2 \log 3)+0.4,12 \log 3\right\}\right)^{2} \log \left(m^{2}+1\right) \log \left(8 m^{2}-1\right)
$$

where $b^{\prime}:=x / \log \left(8 m^{2}-1\right)+y / \log \left(m^{2}+1\right)$. Suppose $z \geq 4$. We will observe that this leads to a contradiction. Taking (4.1) modulo m^{4}, we find $x+8 y \equiv 0\left(\bmod m^{2}\right)$. In particular, we see $M:=\max \{x, y\} \geq m^{2} / 9$. Therefore, since $z \geq M$ and $b^{\prime} \leq M / \log m$,

$$
\begin{align*}
2 M \leq & \frac{36.1}{8(\log 3)^{4}}\left(\max \left\{\log \left(\frac{M}{\log m}\right)+\log (2 \log 3)+0.4,12 \log 3\right\}\right)^{2} \tag{4.2}\\
& \times \log \left(m^{2}+1\right) \log \left(8 m^{2}-1\right) .
\end{align*}
$$

If $m \geq 3450$, then

$$
2 M \leq \frac{36.1}{8(\log 3)^{4}}\left(\log \left(\frac{M}{\log m}\right)+\log (2 \log 3)+0.4\right)^{2} \log \left(m^{2}+1\right) \log \left(8 m^{2}-1\right) .
$$

Since $m^{2} \leq 9 M$, the above inequality gives

$$
2 M \leq 3.1(\log M-\log (\log 3450)+1.19)^{2} \log (9 M+1) \log (72 M-1)
$$

We therefore obtain $M \leq 22486$, which contradicts the fact that $M \geq m^{2} / 9 \geq 1322500$.
If $m<3450$, then inequality (4.2) gives

$$
2 M \leq \frac{649.8}{(\log 3)^{2}} \log \left(m^{2}+1\right) \log \left(8 m^{2}-1\right)
$$

This implies $m \leq 693$. Hence all x, y and z are also bounded. It is not hard to verify by Magma $[\mathrm{BC}]$ that there is no (m, x, y, z) under consideration satisfying (4.1). We conclude $z \leq 3$. In this case, one can easily show that $(x, y, z)=(1,1,2)$. This completes the proof of Corollary 1.2.

5. Concluding remarks

In Theorem 1.1, when $1+c=a^{2}$ with a odd, we considered the equation

$$
\left(m^{2}+1\right)^{x}+\left(c m^{2}-1\right)^{y}=(a m)^{z} .
$$

The proof is based on the properties that $m^{2}+1 \equiv 2(\bmod 8)$ with m odd and $\mathrm{cm}^{2}-$ $1 \equiv-1(\bmod 8)$.

On the other hand, we cannot apply our method used in the proof of Theorem 1.1 to the equation

$$
\begin{equation*}
\left(c m^{2}+1\right)^{x}+\left(m^{2}-1\right)^{y}=(a m)^{z} \tag{5.1}
\end{equation*}
$$

since $c m^{2}+1 \equiv 1(\bmod 8)$ and $m^{2}-1 \equiv 0(\bmod 8)$ with m odd. But it would be interesting to make the remark that (5.1) has (at least) two solutions $(x, y, z)=(1,1,2)$ and $(2,3,4)$ for m and a satisfying

$$
m^{2}-2 a^{2}=1
$$

We can easily verify this. There are infinitely many m, a, since m, a are solutions of the Pell equation $t^{2}-2 u^{2}=1$. Similarly, when $2+c=a^{2}$, the equation

$$
\begin{equation*}
\left(\mathrm{cm}^{2}+1\right)^{x}+\left(2 m^{2}-1\right)^{y}=(a m)^{z} \tag{5.2}
\end{equation*}
$$

also has (at least) two solutions $(x, y, z)=(1,1,2)$ and $(2,3,4)$ for m and a satisfying

$$
a^{2}-2 m^{2}=-1 .
$$

There are infinitely many m, a, since m, a are solutions of the Pell equation $t^{2}-2 u^{2}=-1$. Note that $\operatorname{gcd}\left(c m^{2}+1, m^{2}-1\right)=\operatorname{gcd}\left(c m^{2}+1,2 m^{2}-1\right)=a^{2}(>1)$ in (5.1) and (5.2). These give new (nontrivial) 'counterexamples' to the generalised Jeśmanowicz' conjecture (Terai's conjecture), which states that if a, b, c, p, q, r are fixed positive integers satisfying $a^{p}+b^{q}=c^{r}$ with $\min \{a, b, c, p, q, r\} \geq 2$ and $\operatorname{gcd}(a, b)=1$, then the Diophantine equation

$$
a^{x}+b^{y}=c^{z}
$$

has only the positive integer solution $(x, y, z)=(p, q, r)$, except for $(a, b, c)=(2,7,3)$ and $(a, b, c)=\left(2,2^{k}-1,2^{k}+1\right)$, where k is a positive integer with $k \geq 2$. (See [M1, M2, T1, T2].) So far, the known 'counterexamples' with $\operatorname{gcd}(a, b) \neq 1$ have been the following:

$$
\begin{aligned}
2^{n}+2^{n} & =2^{n+1} \quad(\text { with } n \geq 1) \\
3+6 & =3^{2}, \quad 3^{3}+6^{3}=3^{5}
\end{aligned}
$$

References

[Be] M. A. Bennett, 'On some exponential equations of S. S. Pillai', Canad. J. Math. 53 (2001), 897-922.
[BC] W. Bosma and J. Cannon, 'Handbook of Magma functions', School of Mathematics and Statistics, University of Sydney, available at http://magma.maths.usyd.edu.au/magma/.
[Bu] Y. Bugeaud, 'Linear forms in p-adic logarithms and the Diophantine equation $\left(x^{n}-1\right) /(x-1)=$ y^{q}, Math. Proc. Cambridge Philos. Soc. 127 (1999), 373-381.
[CD] Z. Cao and X. Dong, 'An application of a lower bound for linear forms in two logarithms to the Terai-Jeśmanowicz conjecture', Acta Arith. 110 (2003), 153-164.
[HT1] B. He and A. Togbé, 'The Diophantine equation $n^{x}+(n+1)^{y}=(n+2)^{z}$ revisited', Glasg. Math. J. 51 (2009), 659-667.
[HT2] B. He and A. Togbé, 'On the positive integer solutions of the exponential Diophantine equation $a^{x}+\left(3 a^{2}-1\right)^{y}=\left(4 a^{2}-1\right)^{z}$, Adv. Math. (China) 40 (2011), 227-234.
[HY] B. He and S. Yang, 'The solutions of a class of exponential Diophantine equation', Adv. Math. (China) 41 (2012), 565-573.
[J] L. Jeśmanowicz, 'Some remarks on Pythagorean numbers’, Wiad. Mat. 1 (1955/1956), 196-202 (in Polish).
[K] A. Y. Khinchin, Continued Fractions, 3rd edn (P. Noordhoff, Groningen, 1963).
[La] M. Laurent, 'Linear forms in two logarithms and interpolation determinants II', Acta Arith. 133 (2008), 325-348.
[Le] M. H. Le, 'On the exponential Diophantine equation $\left(m^{3}-3 m\right)^{x}+\left(3 m^{2}-1\right)^{y}=\left(m^{2}+1\right)^{z}$, Publ. Math. Debrecen 58 (2001), 461-466.
[M1] T. Miyazaki, 'Exceptional cases of Terai's conjecture on Diophantine equations', Arch. Math. (Basel) 95 (2010), 519-527.
[M2] T. Miyazaki, 'Terai's conjecture on exponential Diophantine equations', Int. J. Number Theory 7 (2011), 981-999.
[MT] T. Miyazaki and A. Togbé, 'The Diophantine equation $(2 a m-1)^{x}+(2 m)^{y}=(2 a m+1)^{z}$, Int. J. Number Theory 8 (2012), 2035-2044.
[N1] T. Nagell, 'Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns', Nova Acta Reg. Soc. Upsal. IV Ser. 16(2) (1955), 1-38.
[N2] T. Nagell, 'Sur une classe d'équations exponentielles', Ark. Mat. 3 (1958), 569-582.
[S] W. Sierpiński, 'On the equation $3^{x}+4^{y}=5^{z}$, Wiad. Mat. 1 (1955/1956), 194-195 (in Polish).
[T1] N. Terai, 'The Diophantine equation $a^{x}+b^{y}=c^{z}$, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 22-26.
[T2] N. Terai, 'Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations', Acta Arith. 90 (1999), 17-35.
[T3] N. Terai, 'On the exponential Diophantine equation $\left(4 m^{2}+1\right)^{x}+\left(5 m^{2}-1\right)^{y}=(3 m)^{z}$, Int. J. Algebra 6 (2012), 1135-1146.

TAKAFUMI MIYAZAKI, Department of Mathematics, College of Science and Technology, Nihon University, Suruga-Dai, Kanda, Chiyoda, Tokyo 101-8308, Japan
e-mail: miyazaki-takafumi@math.cst.nihon-u.ac.jp
NOBUHIRO TERAI, Division of Information System Design, Ashikaga Institute of Technology, 268-1 Omae, Ashikaga, Tochigi 326-8558, Japan
e-mail: terai@ashitech.ac.jp

[^0]: (C) 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

