
JFP 33, e1, 55 pages, 2023. c© The Author(s), 2023. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.
doi:10.1017/S0956796822000120

Is sized typing for Coq practical?

J O N A T H A N C H A N
University of British Columbia

(e-mails: jcxz@cs.ubc.ca,jcxz@seas.upenn.edu)

Y U F E N G L I
University of Waterloo

(e-mails: yufeng.li@uwaterloo.ca,yufeng.li@mail.mcgill.ca)

W I L L I A M J . B O W M A N
University of British Columbia

(e-mail: wjb@williamjbowman.com)

Abstract

Contemporary proof assistants such as Coq require that recursive functions be terminating and core-
cursive functions be productive to maintain logical consistency of their type theories, and some
ensure these properties using syntactic checks. However, being syntactic, they are inherently delicate
and restrictive, preventing users from easily writing obviously terminating or productive functions
at their whim.

Meanwhile, there exist many sized type theories that perform type-based termination and produc-
tivity checking, including theories based on the Calculus of (Co)Inductive Constructions (CIC), the
core calculus underlying Coq. These theories are more robust and compositional in comparison. So
why haven’t they been adapted to Coq?

In this paper, we venture to answer this question with CIĈ∗, a sized type theory based on
CIC. It extends past work on sized types in CIC with additional Coq features such as global and
local definitions. We also present a corresponding size inference algorithm and implement it within
Coq’s kernel; for maximal backward compatibility with existing Coq developments, it requires no
additional annotations from the user.

In our evaluation of the implementation, we find a severe performance degradation when compil-
ing parts of the Coq standard library, inherent to the algorithm itself. We conclude that if we wish
to maintain backward compatibility, using size inference as a replacement for syntactic checking is
impractical in terms of performance.

1 Introduction

Proof assistants based on dependent type theory rely on the termination of recursive func-
tions and the productivity of corecursive functions to ensure two important properties:
logical consistency, so that it is not possible to prove false propositions; and decidability
of type checking, so that checking that a program proves a given proposition is decidable.

In proof assistants such as Coq, termination and productivity are enforced by a guard
predicate on fixpoints and cofixpoints respectively. For fixpoints, recursive calls must be

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796822000120
https://orcid.org/0000-0003-0830-3180
mailto:jcxz@cs.ubc.ca,jcxz@seas.upenn.edu
mailto:yufeng.li@uwaterloo.ca,yufeng.li@mail.mcgill.ca
https://orcid.org/0000-0002-6402-4840
mailto:wjb@williamjbowman.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796822000120&domain=pdf
https://doi.org/10.1017/S0956796822000120

2 J. Chan et al.

guarded by destructors; that is, they must be performed on structurally smaller arguments.
For cofixpoints, corecursive calls must be guarded by constructors; that is, they must be
the structural arguments of a constructor. The following examples illustrate these structural
conditions.

Fixpoint plus n m : nat :=

match n with

| O => m

| S p => S (plus p m)

end.

CoFixpoint const {A} a : Stream A := Cons a (const a).

In the recursive call to plus, the first argument p is structurally smaller than S p, which
is the shape of the original first argument n. Similarly, in const, the constructor Cons is
applied to the corecursive call.

The actual implementation of the guard predicate extends beyond the
guarded-by-destructors and guarded-by-constructors conditions to accept a larger
set of terminating and productive functions. In particular, function calls will be unfolded
(i.e. inlined) in the bodies of (co)fixpoints and reduction will be performed if needed
before checking the guard predicate. This has a few disadvantages: firstly, the bodies
of these functions are required, which hinders modular design; and secondly, as aptly
summarized by The Coq Development Team (2018),

... unfold[ing] all the definitions used in the body of the function, do[ing] reductions,
etc.... makes typechecking extremely slow at times. Also, the unfoldings can cause the

code to bloat by orders of magnitude and become impossible to debug.

Furthermore, changes in the structural form of functions used in (co)fixpoints can cause
the guard predicate to reject the program even if the functions still behave the same. The
following simple example, while artificial, illustrates this structural fragility.

Fixpoint minus n m : nat :=

match n, m with

| O, _ => n

| _, O => n

| S n', S m' => minus n' m'

end.

Fixpoint div n m : nat :=

match n with

| O => O

| S n' => S (div (minus n' m) m)

end.

If we replace | O, _ => n with | O, _ => O in minus, the behaviour doesn’t
change, but O is not a structurally smaller term of n in the recursive call to div, so div no
longer satisfies the guard predicate. The acceptance of div then depends on a separate def-
inition independent of div. While the difference is easy to spot here, for larger programs

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 3

or programs that use many imported library definitions, this behaviour can make debug-
ging much more difficult. Furthermore, the guard predicate is unaware of the obvious fact
that minus never returns a nat larger than its first argument, which the user would have to
prove in order for div to be accepted with our alternate definition of minus.

In short, the extended syntactic guard condition long used by Coq is anti-modular, anti-
compositional, has poor performance characteristics, and requires the programmer to either
avoid certain algorithms or pay a large cost in proof burden.

This situation is particularly unfortunate, as there exists a non-syntactic termination- and
productivity-checking method that overcomes these issues, whose theory is nearly as old
as the guard condition itself: sized types.

In essence, the (co)inductive type of a construction is annotated with a size, which pro-
vides some information about the size of the construction. In this paper, we consider a
simple size algebra: s := υ | ŝ |∞, where υ ranges over size variables. If the argument to
a constructor has size s, then the fully-applied constructor would have a successor size ŝ.
For instance, the constructors for the naturals follow the below rules:

� � O : Natŝ

� � n : Nats

� � S n : Natŝ

Termination and productivity checking is then just a type checking rule that uses size
information. For termination, the recursive call must be done on a construction with a
smaller size, so when typing the body of the fixpoint, the reference to itself in the typing
context must have a smaller size. For productivity, the returned construction must have a
larger size than that of the corecursive call, so the type of the body of the cofixpoint must
be larger than the type of the reference to itself in the typing context. In short, they both
follow the following (simplified) typing rule, where υ is an arbitrary fresh size variable
annotated on the (co)inductive types, and s is an arbitrary size expression as needed.

�(f : tυ) � e : tυ̂

� � (co)fix f : t := e : ts

We can then assign minus the type Natυ → Nat → Natυ . The fact that we can assign it
a type indicates that it will terminate, and the υ annotations indicate that the function pre-
serves the size of its first argument. Then div uses only the type of minus to successfully
type check, not requiring its body. Furthermore, being type-based and not syntax-based,
replacing | O, _ => n with | O, _ => O doesn’t affect the type of minus or the
typeability of div. Similarly, some other (co)fixpoints that preserve the size of arguments
in ways that aren’t syntactically obvious may be typed to be size preserving, expanding
the set of terminating and productive functions that can be accepted. Finally, if additional
expressivity is needed, rather than using syntactic hacks like inlining, we could take the
semantic approach of enriching the size algebra.

It seems perfect; so why doesn’t Coq just use sized types?
That is the question we seek to answer in this paper.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

4 J. Chan et al.

Table 1. Comparison of the features in CIĈ , CIC−̂, Coq, and CIĈ∗
Feature CIĈ CIC−̂ Coq CIĈ∗
Universe cumulativity � � � �
Definitions � � � �
Parameter polarities � � � �
Nested (co)inductives � � � �
Normalization proven? � � ? �
Size inference algorithm � � N/A �

Unfortunately, past work on sized types (Barthe et al., 2006; Sacchini, 2011, 2013) for
the Calculus of (Co)Inductive Constructions (CIC), Coq’s underlying calculus, have some
practical issues:

• They require nontrivial backward-incompatible additions to the surface language,
such as size annotations on (co)fixpoint types and polarity annotations on (co)-
inductive definitions.

• They are missing important features found in Coq such as global and local definitions,
and universe cumulativity.

• They restrict size variables from appearing in terms, which precludes, for instance,
defining type aliases for sized types.

To resolve these issues, we extend CIĈ (Barthe et al., 2006), CIC−̂ (Grégoire and
Sacchini, 2010; Sacchini, 2011), and CCω̂ (Sacchini, 2013) in our calculus CIĈ∗ (“CIC-
star-hat”), and design a size inference algorithm from CIC to CIĈ∗, borrowing from the
algorithms in past work (Barthe et al., 2005, 2006; Sacchini, 2013). Table 1 summarizes
the differences between CIĈ∗ and these past works; we give a detailed comparison in
Subsection 6.1.

For CIĈ∗ we prove confluence and subject reduction. However, new difficulties arise
when attempting to prove strong normalization and consistency. Proof techniques from
past work, especially from Sacchini (2011), don’t readily adapt to our modifications, in
particular to universe cumulativity and unrestricted size variables. On the other hand, set-
theoretic semantics of type theories that do have these features don’t readily adapt to the
interpretation of sizes, either, with additional difficulties due to untyped conversion. We
detail a proof attempt on a variant of CIĈ∗ and discuss its shortcomings.

Even supposing that the metatheoretical problems can be solved and strong normaliza-
tion and consistency proven, is an implementation of this system practical? Seeking to
answer this question, we have forked Coq (The Coq Development Team and Chan, 2021),
implemented the size inference algorithm within its kernel, and opened a draft pull request
to the Coq repository1. To maximize backward compatibility, the surface language is com-
pletely unchanged, and sized typing can be enabled by a flag that is off by default. This
flag can be used in conjunction with or without the existing guard checking flag enabled.

While sized typing enables many of our goals, namely increased expressivity with mod-
ular and compositional typing for (co)fixpoints, the performance cost is unacceptable. We

1 https://github.com/coq/coq/pull/12426/ (now closed).

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://github.com/coq/coq/pull/12426/
https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 5

measure at least a 5.5× increase in compilation time in some standard libraries. Much
of the performance cost is intrinsic to the size inference algorithm, and thus intrinsic to
attempting to maintain backward compatibility. We analyze the performance of our size
inference algorithm and our implementation in detail.

So why doesn’t Coq just use sized types? Because it seems it must either sacrifice back-
ward compatibility or compile-time performance, and the lack of a proof of consistency
may be a threat to Coq’s trusted core. While nothing yet leads us to believe that CIĈ∗
is inconsistent, the performance sacrifice required for compatibility makes our approach
seem wildly impractical.

The remainder of this paper is organized as follows. We formalize CIĈ∗ in Section 2, and
discuss the desired metatheoretical properties in Section 3. In Section 4, we present the size
inference algorithm from unsized terms to sized CIĈ∗ terms, and evaluate an implementa-
tion in our fork in Section 5. While prior sections all handle the formalization metatheory
of CIĈ∗, Section 5 contains the main analysis and results on the performance. Finally, we
take a look at all of the past work on sized types leading up to CIĈ∗ in Section 6, and
conclude in Section 7.

2 CIĈ∗
In this section, we introduce the syntax and judgements of CIĈ∗, culminating in the typing
and well-formedness judgements. Note that this is the core calculus, which is produced
from plain CIC by the inference algorithm, introduced in Section 4.

2.1 Syntax

The syntax of CIĈ∗, environments, and signatures are described in Figure 1. It is a standard
CIC with expressions (or terms) consisting of cumulative universes, dependent functions,
definitions, (co)inductives, case expressions, and mutual (co)fixpoints. Additions relevant
to sized types are highlighted in grey, which we explain in detail shortly. Notation such as
syntactic sugar or metafunctions and metarelations will also be highlighted in grey where
they are first introduced in the prose.

The overline · denotes a sequence of syntactic constructions. We use 1-based indexing
for sequences using subscripts; sequences only range over a single index unless otherwise
specified. Ellipses may be used in place of the overline where it is clearer; for instance,
the branches of a case expression are written as 〈cj ⇒ ej〉 or 〈c1 ⇒ e1, . . . , cj ⇒ ej, . . . 〉,
and ej is the jth branch expression in the sequence. Additionally, e a is syntactic sugar for
application of e to the terms in a.

2.1.1 Size Annotations and Substitutions

As we have seen, (co)inductive types are annotated with a size expression representing its
size. A (co)inductive with an infinite ∞ size annotation is said to be a full type, representing
(co)inductives of all sizes. Otherwise, an inductive with a noninfinite size annotation s

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

6 J. Chan et al.

m, n, i, j, k, � ::= positive naturals

f , g, h, x, y, z ::= term variables τ , υ ::= size variables

I ::= (co)inductive type names c ::= constructor names

r, s ::= υ | ŝ |∞ ρ ::= {υ
→ s} U ::= Prop | Set | Typen

e, a, b, p, q, t, u, v, P ::= x | xρ | U |�x : t. t | λx : t◦. e | e e | let x : t◦ := e in e | Is | c

(sized terms) | caseP◦ e of 〈c ⇒ e〉 | fixm 〈f n : t∗ := e〉 | cofixm 〈f : t∗ := e〉
. . . , e◦, t◦, P◦ ::= x | U |�x : t◦. t◦ | λx : t◦. e◦ | e◦ e◦ | let x : t◦ := e◦ in e◦ | I | c

(bare terms) | caseP◦ e◦ of 〈c ⇒ e◦〉 | fixm 〈f n : t◦ := e◦〉 | cofixm 〈f : t◦ := e◦〉

 ::= • |
(x : e) (telescopes)

� ::= • | �(x : e) | �(x : t := t) (local environments)

�G ::= • | �G(Assm x : e.) | �G(Defn x : t := t.) (global environments)

� ::= • |�(〈Ii
p :�
∞
i . Ui〉 := 〈cj :�
∞

j . Ij dom(
p) t∞j 〉) (signatures)

Fig. 1. Syntax of CIĈ∗ terms, environments, and signatures.

represents inductives of size s or smaller, while a coinductive with annotation s represents
coinductives of size s or larger. This captures the idea that a construction of an inductive
type has some amount of content to be consumed, while one of a coinductive type must
produce some amount of content.

As a concrete example, a list with s elements has type Lists t, because it has at most s
elements, but it also has type Listŝ t, necessarily having at most ŝ elements as well. On
the other hand, a stream producing at least ŝ elements has type Streamŝ t, and also has
type Streams t since it necessarily produces at least s elements as well. These ideas are
formalized in the subtyping rules in an upcoming subsection.

Variables bound by local definitions (introduced by let expressions) and constants bound
by global definitions (introduced in global environments) are annotated with a size sub-
stitution that maps size variables to size expressions. The substitutions are performed
during their reduction. As mentioned in the previous section, this makes definitions size
polymorphic.

In the type annotations of functions and let expressions, as well as the motive of case
expressions, rather than ordinary sized terms, we instead have bare terms t◦. This denotes
terms where size annotations are removed. These terms are required to be bare in order to
preserve subject reduction without requiring explicit size applications or typed reduction,
both of which would violate backward compatibility with Coq. We give an example of the
loss of subject reduction when type annotations aren’t bare in Subsubsection 3.2.2

In the syntax of signatures, we use the metanotation t∞ to denote full terms, which are
sized terms with only infinite sizes and no size variables. Note that where bare terms occur
within sized terms, they remain bare in full terms. Similarly, we use the metanotation t∗ to
denote position terms, whose usage is explained in the next subsubsection.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 7

2.1.2 Fixpoints and Cofixpoints

In contrast to CIĈ and CIC−̂, CIĈ∗ has mutual (co)fixpoints. In a mutual fixpoint
fixm 〈f nk

k : t∗k := ek〉, each f nk
k : t∗k := ek is one fixpoint definition. nk is the index of the

recursive argument of fk , and fixm means that the mth fixpoint definition is selected.
Instead of bare terms, fixpoint type annotations are position terms t∗, where size anno-
tations are either removed or replaced by a position annotation ∗. They occur on the
inductive type of the recursive argument, as well as the return type if it is an inductive with
the same or smaller size. For instance (using t → u as syntactic sugar for �_ : t. u), the
recursive function fix1 〈minus1 : Nat∗ → Nat→ Nat∗ := . . .〉 has a position-annotated
return type since the return value won’t be any larger than that of the first argument.

Mutual cofixpoints cofixm 〈fk : t∗k := ek〉 are similar, except cofixpoint definitions don’t
need nk , as cofixpoints corecursively produce a coinductive rather than recursively
consuming an inductive. Position annotations occur on the coinductive return type as
well as any coinductive argument types with the same size or smaller. As an exam-
ple, cofix1 〈dup :�A : Set. Stream∗ A → Stream∗ A := . . .〉, a corecursive function that
duplicates each element of a stream, has a position-annotated argument type since it returns
a larger stream.

Position annotations mark the size annotation locations in the type of the (co)fixpoint
where we are allowed to assign the same size expression. This is why we can give the
minus fixpoint the type Natυ̂ → Nat∞ → Natυ̂ , for instance. In general, if a (co)fixpoint
has a position annotation on an argument type and the return type, we say that it is size
preserving in that argument. Intuitively, f is size preserving over an argument e if using
f e in place of e should be allowed, size-wise.

2.1.3 Environments and Signatures

We divide environments into local and global ones. They consist of declarations, which
can be either assumptions or definitions. While local environments represent bindings
introduced by functions and let expressions, global environments represent top-level decla-
rations corresponding to Coq vernacular. We may also refer to global environments alone
as programs. Telescopes (that is, environments consisting only of local assumptions) are
used in syntactic sugar: given
= (xi : ti), �
. t is sugar for �x1 : t1. . . . �xi : ti. . . . t,
while dom(
) is the sequence xi. Additionally,
∞ denotes telescopes containing only
full terms.

We use x ∈ � , (x : t) ∈ � , and (x : t := e) ∈ � to represent the presence of some decla-
ration binding x, the given assumption, and the given definition in �, respectively, and
similarly for �G and
.

Signatures consist of mutual (co)inductive definitions. For simplicity, throughout the
judgements in this paper, we assume some fixed, implicit signature � separate from
the global environment, so that well-formedness of environments can be defined sepa-
rately from that of (co)inductive definitions. Global environments and signatures should
be easily extendible to an interleaving of declarations and (co)inductive definitions,
which would be more representative of a real program. A mutual (co)inductive definition
〈Ii
p :�
∞

i . Ui〉 := 〈cj :�
∞
j . Ij dom(
p) t∞j〉 consists of the following:

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

8 J. Chan et al.

• Ii, the names of the defined (co)inductive types;
•
p, the parameters common to all Ii;
•
∞

i , the indices of each Ii;
• Ui, the universe to which Ii belongs;
• cj, the names of the defined constructors;
•
∞

j , the arguments of each cj;
• Ij, the (co)inductive type to which cj belongs; and
• t∞j, the indices to Ij.

We require that the index and argument types be full types and terms. Note also that Ij

is the (co)inductive type of the jth constructor, not the jth (co)inductive in the sequence Ii.
We forgo the more precise notation Iij for brevity.

As a concrete example, the usual Vector type (using (x : t) → u as syntactic sugar for
�x : t. u) would be defined as:

〈Vector (A : Type) : Nat→ Type〉 :=
〈VNil : Vector A O,

VCons : (n : Nat) → A → Vector A (S n))〉.
As mentioned in the previous section, unlike CIĈ and CIC−̂, our (co)inductive def-

initions don’t have parameter polarity annotations. In those languages, for Vector’s
parameter for instance, they might write (A+ : Type), giving it positive polarity, so that
Vector∞ Nats n is a subtype of Vector∞ Natŝ n.

As is standard, the well-formedness of (co)inductive definitions depends not only on the
well-typedness of its types but also on syntactic positivity conditions. We reproduce the
strict positivity conditions in Appendix 1, and refer the reader to clauses I1–I9 in Sacchini
(2011), clauses 1–7 in Barthe et al. (2006), and the Coq Manual (The Coq Development
Team, 2021) for further details. As CIĈ∗ doesn’t support nested (co)inductives, we don’t
need the corresponding notion of nested positivity. Furthermore, we assume that our fixed,
implicit signature is well-formed, or that each definition in the signature is well-formed.
The definitions of well-formedness of (co)inductives and signatures are also given in
Appendix 1.

2.2 Reduction and Convertibility

The reduction rules listed in Figure 2 are the usual ones for CIC with definitions: β-reduc-
tion (function application), ζ -reduction (let expression evaluation), ι-reduction (case
expressions), μ-reduction (fixpoint expressions), ν-reduction (cofixpoint expressions),
δ-reduction (local definitions), and
-reduction (global definitions).

In the case of δ-/
-reduction, where the variable or constant has a size substitution
annotation, we modify the usual rules. These reduction rules are important for supporting
size inference with definitions. If the definition body contains (co)inductive types (or other
defined variables and constants), we can assign them fresh size variables for each distinct
usage of the defined variable. Further details are discussed in Section 4.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 9

�G, � � e�βζδ
ιμν e

�G, � � xρ �δ ρe where (x : t := e) ∈ �
�G, � � xρ �
 ρe where (Defn x : t := e.) ∈ �G

�G, � � (λx : t◦. e1) e2 �β e1[x := e2]

�G, � � let x : t◦ := e1 in e2 �ζ e2[x := e1]

�G, � � caseP◦ (c� p a) of 〈cj ⇒ ej〉�ι e� a

�G, � � qm b (c� p a)�μ em[fk := qk] b (c� p a)

where qi ≡ fixi 〈f nk
k : tk := ek〉, ‖b‖ = nm − 1

�G, � � caseP◦ (qm b) of 〈cj ⇒ aj〉�ν caseP◦ (em[fk := qk] b) of 〈cj ⇒ aj〉
where qi ≡ cofixi 〈fk : tk := ek〉

Fig. 2. Reduction rules.

�G, � � e�∗ e

RED-REFL

�G, � � e�∗ e

RED-TRANS

�G, � � e1 � e2 �G, � � e2 �∗ e3

�G, � � e1 �∗ e3

Fig. 3. Multi-step reduction rules.

Much of the reduction behaviour is expressed in terms of term and size substitution.
Capture-avoiding substitution is denoted with e[x := e′] , and simultaneous substitution
with e[xi := ei] . ρe denotes applying the substitutions e[υi := si] for every υi
→ si in ρ,
and similarly for ρs .

This leaves applications of size substitutions to environments, and to size substitutions
themselves when they appear as annotations on variables and constants. A variable x{υ
→s}

bound to x : t := e in the environment, for instance, can be thought of as a delayed appli-
cation of the sizes s, with the definition implicitly abstracting over all size variables υ.
Therefore, the “free size variables” of the annotated variable are those in s, and given
some size substitution ρ, we have that ρx{υ
→s} = x{υ
→ρs}. Meanwhile, we treat all υ in the
definition as bound, so that ρ(�1(x : t := e)�2) = (ρ�1)(x : t := e)(ρ�2), skipping over all
definitions, and similarly for global environments.

Finally, · ≡ · is syntactic equality up to α-equivalence (renaming), the erasure meta-
function |·| removes all size annotations from a sized term, and ‖·‖ yields the cardinality
of its argument (e.g. sequence length, set size, etc.).

We define reduction (�) as the congruent closure of the reductions, multi-step reduction
(�∗) in Figure 3 as the reflexive–transitive closure of�, and convertibility (≈) in Figure 4.
The latter also includes η-convertibility, which is presented informally in the Coq man-
ual (The Coq Development Team, 2021) and formally (but part of typed conversion) by
Abel et al. (2017). Note that there are no explicit rules for symmetry and transitivity of
convertibility because these properties are derivable, as proven by Abel et al. (2017).

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

10 J. Chan et al.

�G, � � e ≈ e

CONV-RED

�G, � � e1 �∗ e′1
�G, � � e2 �∗ e′2
�G, � � e′1 ≈ e′2
�G, � � e1 ≈ e2

CONV-CONG

For every i: �G, � � ai ≈ bi

�G, � � e[xi := ai] ≈ e[xi := bi]

CONV-η-L

�G, � � e1 �∗ λx : |t|. e
�G, �(x : t) � e ≈ e2 x

�G, � � e1 ≈ e2

CONV-η-R

�G, � � e2 �∗ λx : |t|. e
�G, �(x : t) � e1 x ≈ e

�G, � � e1 ≈ e2

Fig. 4. Convertibility rules.

s � s

SS-INFTY

s �∞

SS-REFL

s � s

SS-SUCC

s � ŝ

SS-TRANS

s1 � s2 s2 � s3

s1 � s3

Fig. 5. Subsizing rules.

�G, � � t ≤ t

ST-CUMUL

�G, � � Prop≤ Set≤ Type1 �G, � � Typei ≤ Typei+1

ST-CONV

�G, � � t ≈ u

�G, � � t ≤ u

ST-TRANS

�G, � � t ≤ u
�G, � � u ≤ v
�G, � � t ≤ v

ST-PROD

�G, � � t1 ≈ t2
�G, �(y : t2) � u1[x := y] ≤ u2

�G, � ��x : t1. u1 ≤�y : t2. u2

ST-APP

�G, � � t1 ≤ t2
�G, � � u1 ≈ u2

�G, � � t1 u1 ≤ t2 u2

ST-IND

I inductive s � s′

�G, � � Is ≤ Is′

ST-COIND

I coinductive s′ � s

�G, � � Is ≤ Is′

Fig. 6. Subtyping rules.

2.3 Subtyping and Positivity

First, we define the subsizing relation in Figure 5. Subsizing is straightforward since our
size algebra is simple. Notice that both ∞�∞̂ and ∞̂ �∞ hold.

The subtyping rules in Figure 6 extend those of cumulative CIC with rules for sized (co)-
inductive types. In other words, they extend those of CIĈ , CIC−̂, and CCω̂ with universe

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 11

�G, � � υ pos t �G, � � υ neg t

POS-NEG-/∈
�G, � � υ /∈ SV(t)

�G, � � υ pos t
�G, � � υ neg t

POS-CONV

�G, � � t ≈ t′

�G, � � υ pos t′

�G, � � υ pos t

NEG-CONV

�G, � � t ≈ t′

�G, � � υ neg t′

�G, � � υ neg t

POS-�
υ pos u

�G, � � υ /∈ SV(t)

�G, � � υ pos�x : t. u

NEG-�
υ neg u

�G, � � υ /∈ SV(t)

�G, � � υ neg�x : t. u

POS-IND

I inductive
�G, � � υ /∈ SV(a)

�G, � � υ pos Is a

NEG-COIND

I coinductive
�G, � � υ /∈ SV(a)

�G, � � υ neg Is a

Fig. 7. Positivity/negativity of size variables in terms.

cumulativity. The name Set is retained merely for uniformity with Coq’s kernel; it could
also have been named Type0.

Inductive types are covariant in their size annotations with respect to subsizing
(Rule ST-IND), while coinductive types are contravariant (Rule ST-COIND). Coming back
to the examples in the previous section, this means that Lists t ≤ Listŝ t holds as we
expect, since a list with s elements has no more than ŝ elements; dually, Streamŝ t ≤
Streams t holds as well, since a stream producing ŝ elements also produces no fewer than
s elements.

Rules ST-PROD and ST-APP differ from past work in their variance, but correspond
to those in Coq. As (co)inductive definitions have no polarity annotations, we treat all
parameters as ordinary, invariant function arguments. The remaining rules are otherwise
standard.

In addition to subtyping, we define a positivity and negativity judgements like in past
work. They are syntactic approximations of monotonicity properties of subtyping with
respect to size variables; we have that υ pos t ⇔ t ≤ t[υ := υ̂] and υ neg t ⇔ t[υ := υ̂] ≤ t
hold. Positivity and negativity are then used to indicate where position annotations are
allowed to appear in the types of (co)fixpoints, as we will see in the typing rules.

2.4 Typing and Well-Formedness

We begin with the rules for well-formedness of local and global environments, presented
in Figure 8. As mentioned, this and the typing judgements implicitly contain a signature�,
whose well-formedness is assumed. Additionally, we use _ to omit irrelevant constructions
for readability.

The typing rules for sized terms are given in Figure 11. As in CIC, we define the three
sets Axioms and Rules (Barendregt, 1993), as well as Elims, in Figure 9. These describe
how universes are typed, how products are typed, and what eliminations are allowed in
case expressions, respectively. Metafunctions that construct important function types for
inductive types, constructors, and case expressions are listed in Figure 10; they are also
used by the inference algorithm in Section 4.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

12 J. Chan et al.

WF(�G, �)

WF-NIL

WF(•, •)

WF-LOCAL-ASSUM

�G, � � t : U x /∈ �
WF(�G, �(x : t))

WF-LOCAL-DEF

�G, � � e : t x /∈ �
WF(�G, �(x : t := e))

WF-GLOBAL-ASSUM

�G, • � t : U x /∈ �G

WF(�G(Assm x : t.), •)

WF-GLOBAL-DEF

�G, • � e : t x /∈ �G

WF(�G(Defn x : t := e.), •)

Fig. 8. Well-formedness of environments.

Axioms= {(Prop, Type1), (Set, Type1), (Typei, Typei+1)}
Rules= {(U , Prop, Prop)} ∪ {(U , Set, Set) | U ∈ {Prop, Set}}

∪ {(Typei, Typej, Typek) | k = max(i, j)}
Elims= {(U ′, U , I) | U ′ ∈ {Set, Type}} ∪ {(Prop, Prop, I)}

∪ {(Prop, U , I | I empty or singleton}
Fig. 9. Universe relations: Axioms, Rules, and Eliminations.

indType(Ii) =�
p.�
∞
i . Ui

constrType(cj, s) =�
p.�
∞
j [I∞j := Is

j]. I ŝ
j dom(
p) t∞j

motiveType(p, U , Is
i) =�
∞

i [dom(
p) := p].�_ : Is
i p dom(
∞

i). U

branchType(p, cj, s, P) =�
∞
j [I∞j := Is

j][dom(
p) := p]. P t∞j[dom(
p) := p] (cj p dom(
∞
j))

where
(〈Ii
p :�
∞

i . Ui〉 := 〈cj :�
∞
j . Ij _ t∞j〉

) ∈�
Fig. 10. Metafunctions for typing rules.

Rules VAR-ASSUM, CONST-ASSUM, UNIV, CUMUL, PI, and APP are essentially
unchanged from CIC. Rules LAM and LET differ only in that type annotations need to
be bare to preserve subject reduction.

The first significant usage of size annotations are in Rules VAR-DEF and CONST-DEF. If
a variable or a constant is bound to a term in the local or global environment, it is annotated
with a size substitution such that the term is well typed after performing the substitution,
allowing for proper δ-/
-reduction of variables and constants. Notably, each usage of a
variable or a constant doesn’t have to have the same size annotations.

Inductive types and constructors are typed mostly similar to CIC, with their types speci-
fied by indType and constrType. In Rule IND, the (co)inductive type itself holds a single
size annotation. In Rule CONSTR, size annotations appear in two places:

• In the argument types of the constructor. We annotate each occurrence of Ij in the
arguments
∞

j with a size expression s.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 13

�G, � � e : t

VAR-ASSUM

WF(�G, �)
(x : t) ∈ �
�G, � � x : t

VAR-DEF

WF(�G, �)
� ≡ �1(x : t := e)�2 �G, �1 � ρe : ρt

�G, � � xρ : ρt

CONST-ASSUM

WF(�G, �)
(Assm x : t.) ∈ �G

�G, � � x : t

CONST-DEF

WF(�G, �)
�G ≡ �G1(Defn x : t := e.)�G2 �G1, • � ρe : ρt

�G, � � xρ : ρt

UNIV

WF(�G, �) (U1, U2) ∈ Axioms

�G, � � U1 : U2

CUMUL

�G, � � e : t �G, � � u : U �G, � � t ≤ u

�G, � � e : u

PI

(U1, U2, U3) ∈ Rules
�G, � � t : U1 �G, �(x : t) � u : U2

�G, � ��x : t. u : U3

LAM

�G, � � t : U �G, �(x : t) � e : u

�G, � � λx : |t|. e :�x : t. u

APP

�G, � � e1 :�x : t. u �G, � � e2 : t

�G, � � e1 e2 : u[x := e2]

LET

�G, � � e1 : t �G, �(x : t := e1) � e2 : u

�G, � � let x : |t| := e1 in e2 : u[x := e1]

IND

WF(�G, �)

�G, � � Is : indType(I)

CONSTR

WF(�G, �)

�G, � � c : constrType(c, s)

CASE

�G, � � e : I ŝ p a indType(I) =�_.�_. U ′

(U ′, U , I) ∈ Elims �G, � � P : motiveType(p, U , I ŝ)
For each j: �G, � � ej : branchType(p, cj, s, P)

�G, � � case|P| e of 〈cj ⇒ ej〉 : P a e

FIX

For each k: �G, � � tk ≈�
k .�xk : Iυk
k ak . uk ‖
k‖ = nk − 1 �G, � � υk pos uk

υk /∈ SV(�, ak , ek ,
k) �G, � � tk : Uk �G, �(fk : tk) � ek : tk[υk := υ̂k]

�G, � � fixm 〈f nk
k : |tk|υk := ek〉 : tm[υm := s]

COFIX

For each k: �G, � � tk ≈�
k . Iυk
k ak �G, � � υk neg
k

υk /∈ SV(�, ak , ek) �G, � � tk : Uk �G, �(fk : tk) � ek : tk[υk := υ̂k]

�G, � � cofixm 〈fk : |tk|υk := ek〉 : tm[υm := s]

Fig. 11. Typing rules.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

14 J. Chan et al.

• On the (co)inductive type of the fully-applied constructor, which is annotated with
the size expression ŝ. Using the successor guarantees that the constructor always
constructs a construction that is larger than any of its arguments of the same type.

As an example, consider a possible typing of VCons:

•, • � VCons : (A : Type)︸ ︷︷ ︸
parameter

→ (n : Nat∞) → A → Vectors A n︸ ︷︷ ︸
arguments

→ Vectorŝ A (S n)︸ ︷︷ ︸
return type

It has a single parameter A and S n corresponds to the index t∞j of the constructor’s
inductive type. The input Vector has size s, while the output Vector has size ŝ.

In Rule CASE, a case expression has three parts:

• The target e that is being destructed. It must have a (co)inductive type I with a suc-
cessor size annotation ŝk so that recursive constructor arguments have the predecessor
size annotation.

• The motive P, which yields the return type of the case expression. While it ranges
over the (co)inductive’s indices, the parameter variables dom(
p) in the indices’ types
are bound to the parameters p of the target type. As usual, the universe of the motive
U is restricted by the universe of the (co)inductive U ′ according to Elims.
(This presentation follows that of Coq 8.12, but differs from those of Coq 8.13 and
by Sacchini (2011, 2014, 2013), where the case expression contains a return type in
which the index and target variables are free and explicitly stated, in the syntactic
form y.x.P.)

• The branches ej, one for each constructor cj. Again, the parameters of its type are
fixed to p, while ranging over the constructor arguments. Note that like in the type of
constructors, we annotate each occurrence of cj’s (co)inductive type I in
j with the
size expression s.

Finally, we have the typing of mutual (co)fixpoints in rules FIX and COFIX. We take
the annotated type tk of the kth (co)fixpoint definition to be convertible to a function type
containing a (co)inductive type, as usual. However, instead of the guard condition, we
ensure termination/productivity using size expressions.

The main complexity in these rules is supporting size-preserving (co)fixpoints. We must
restrict how the size variable vk appears in the type of the (co)fixpoints using the positivity
and negativity judgements. For fixpoints, the type of the nk th argument, the recursive argu-
ment, is an inductive type annotated with a size variable vk . For cofixpoints, the return type
is a coinductive type annotated with vk . The positivity or negativity of vk in the rest of tk
indicate where vk may occur other than in the (co)recursive position. For instance, suppos-
ing that n = 1, Listυ Nat→ List Nat→ Listυ Nat is a valid fixpoint type with respect
to υ, while Listυ Nat→ List Natυ → Streamυ Nat is not, since υ illegally appears
negatively in Stream and must not appear at all in the parameter of the second List
argument type. This restriction ensures the aforementioned monotonicity property of sub-
typing for the (co)fixpoints’ types, so that uk ≤ uk[υk := υ̂k] holds for fixpoints, and that
u[υk := υ̂k] ≤ u for each type u in
k holds for cofixpoints.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 15

As in Rule LAM, to maintain subject reduction, we cannot keep the size annota-
tions, instead replacing them with position variables. The metafunction |·|υ replaces υ
annotations with the position annotation ∗ and erases all other size annotations.

Checking termination and productivity is then relatively straightforward. If tk are well
typed, then the (co)fixpoint bodies should have type tk with a successor size when (fk : tk)
are in the local environment. This tells us that the recursive calls to fk in fixpoint bodies are
on smaller-sized arguments, and that corecursive bodies produce constructions with size
larger than those from the corecursive call to fk . The type of the mth (co)fixpoint is then
the mth type tm with some size expression s substituted for the size variable vm.

In Coq, the indices of the recursive elements are often elided, and there are no user-
provided position annotations at all. We show how indices and position annotations can be
computed during size inference in Section 4.

3 Metatheoretical Results

In this section, we describe the metatheory of CIĈ∗. Some of the metatheory is inherited
or essentially similar to past work (Sacchini, 2011, 2013; Barthe et al., 2006), although we
must adapt key proofs to account for differences in subtyping and definitions. Complete
proofs for a language like CIĈ∗ are too involved to present in full, so we provide only key
lemmas and proof sketches.

In short, CIĈ∗ satisfies confluence and subject reduction, with the same caveats as in
CIC for cofixpoints. While strong normalization and logical consistency have been proven
for a variant of CIĈ∗ with features that violate backward compatibility, proofs for CIĈ∗
itself remain future work.

3.1 Confluence

Recall that we define � as the congruent closure of βζδ
ιμν-reduction and �∗ as the
reflexive–transitive closure of �.

Theorem 3.1 (Confluence). If �G, � � e�∗ e1 and �G, � � e�∗ e2, then there is some
term e′ such that �G, � � e1 �∗ e′ and �G, � � e2 �∗ e′.

Proof [sketch]. The proof is relatively standard. We use the Takahashi translation tech-
nique due to Komori et al. (2014), which is a simplification of the standard parallel
reduction technique. It uses the Takahashi translation e† of terms e, defined as the simulta-
neous single-step reduction of all βζδ
ιμν-redexes of e in left-most inner-most order. One
notable aspect of this proof is that to handle let expressions that introduce local definitions,
we need to extend the Takahashi method to support local definitions. This is essentially the
same as the presentation in Section 2.3.2 of Sozeau et al. (2019). In particular, we require
Theorem 2.1 (Parallel Substitution) of Sozeau et al. (2019) to ensure that δ-reduction (i.e.
reducing a let-expression) is confluent. The exact statement of parallel substitution adapted
to our setting is given in the following Lemma 3.2.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

16 J. Chan et al.

�G, � � e�βζδ
ιμν′ e
. . .

�G, � � qm �ν′ em[fk := qk]

where ∀i ∈ k, qi ≡ cofixi 〈fk : tk := ek〉
Fig. 12. Reduction rules with unrestricted cofixpoint reduction.

Lemma 3.2 (Parallel Substitution). Fix contexts �G, �. For all terms e, t and x free in e,
we have e[x := t]† = e†[x := t†], where −† denotes the Takahashi translation (simultaneous
single-step reduction of all redexes in left-most inner-most order) in �G, �.

3.2 Subject Reduction

Subject reduction does not hold in CIĈ∗ or in Coq due to the way coinductives are pre-
sented. This is a well-known problem, discussed previously in a sized-types setting by
Sacchini (2013), on which our presentation of coinductives is based, as well as by the Coq
developers2.

In brief, the current presentation of coinductives requires that cofixpoint reduction be
restricted, i.e. occurring only when it is the target of a case expression. This allows for
strong normalization of cofixpoints in much the same way restricting fixpoint reduction to
when the recursive argument is syntactically a fully-applied constructor does. One way this
can break subject reduction is by making the type of a case expression not be convertible
before and after the cofixpoint reduction. As a concrete example, consider the following
coinductive definition for conaturals.

〈Conat : Type〉 := 〈O : Conat, S : Conat→ Conat〉
For some motive P and branch e, we have the following ν-reduction.

case|P| cofix1 〈ω : Conat := Sω〉 of 〈S⇒ e〉�ν
case|P| S (cofix1 〈ω : Conat := Sω〉) of 〈S⇒ e〉

Assuming both terms are well typed, the former has type P (cofix1 〈ω : Conat := Sω〉)
while the latter has type P (S (cofix1 〈ω : Conat := Sω)〉), but for an arbitrary P these
aren’t convertible without allowing cofixpoints to reduce arbitrarily.

On the other hand, if we do allow unrestricted ν ′-reduction as in Figure 12, subject
reduction does hold, at the expense of normalization, as a cofixpoint on its own could
reduce indefinitely.

Theorem 3.3 (Subject Reduction). Let � be a well-formed signature. Suppose� includes
unrestricted ν ′-reduction of cofixpoints. Then �G, � � e : t and e� e′ implies �G, � � e′ : t.

Proof [sketch]. By induction on �G, � � e : t. Most cases are straightforward, making use
of confluence when necessary, such as for a lemma of �-injectivity to handle β-reduction

2 The discussion of the problem and suggested solutions can be found here: https://github.com/coq/coq/
issues/5288/.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://github.com/coq/coq/issues/5288/
https://github.com/coq/coq/issues/5288/
https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 17

in Rule APP. The case for Rule CASE where e� e′ by ι-reduction relies on the fact that if x is
the name of a (co)inductive type and appears strictly positively in t, then x appears covari-
antly in t. (This is only true without nested (co)inductive types, which CIĈ∗ disallows in
well-formed signatures.)

The case for Rule CASE and e (guarded) ν-reduces to e′ requires an unrestricted ν-
reduction. After guarded ν-reduction, the target (a cofixpoint) appears in the motive
unguarded by a case expression, but must be unfolded to re-establish typing the type t.

3.2.1 The Problem with Nested Inductives

Recall from Section 2 that we disallow nested (co)inductive types. This means that when
defining a (co)inductive type, it cannot recursively appear as the parameter of another type.
For instance, the following definition N, while equivalent to Nat, is disallowed due to the
appearance of N as a parameter of Box.

〈Box (A : Type) : Type〉 := 〈MkBox : A → Box A〉
〈N : Type〉 := 〈O : N, S : Box N→ N〉

Notice that we have the subtyping relation Nυ ≤ Nυ̂ , but as all parameters are invariant for
backward compatibility and need to be convertible, we do not have Box∞ Nυ ≤ Box∞ Nυ̂ .
But because case expressions on some target Nŝ force recursive arguments to have size s
exactly, and the target also has type Nˆ̂s by cumulativity, the argument of S could have both
type Box∞ Ns and Box∞ Nŝ, violating convertibility. We exploit this fact and break subject
reduction explicitly with the following counterexample term.

case|λ_:N.N∞| S (MkBox Nυ̂ O) of
〈O⇒ O,

S⇒ (λA : Type. λx : A. O) (Box∞ N ˆ̂υ)〉

By cumulativity, the target can be typed as Nυ̂
3

(that is, with size
ˆ̂̂
υ). By Rule CASE, the

second branch must then have type�x : Box N ˆ̂υ . N∞ (and so it does). Then the case expres-
sion is well typed with type N∞. However, once we reduce the case expression, we end up
with a term that is no longer well typed.

(λA : Type. λx : A. O) (Box∞ N
ˆ̂υ) (MkBox Nυ̂ O)

By Rule APP, the second argument should have type Box∞ N ˆ̂υ (or a subtype thereof), but it
cannot: the only type the second argument can have is Box∞ Nυ̂ .

There are several possible solutions, all threats to backward compatibility. CIĈ ’s solu-
tion is to require that constructors be fully-applied and that their parameters be bare terms,
so that we are forced to write MkBox N O. The problem with this is that Coq treats con-
structors essentially like functions, and ensuring that they are fully applied with bare
parameters would require either reworking how they are represented internally or adding
an intermediate step to elaborate partially-applied constructors into functions whose bod-
ies are fully-applied constructors. The other solution, as mentioned, is to add polarities
back in, so that Box with positive polarity in its parameter yields the subtyping relation
Box∞ Nυ̂ ≤ Box∞ N ˆ̂υ .

Interestingly, because the implementation infers all size annotations from a completely
bare program, our counterexample and similar ones exploiting explicit size annotations

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

18 J. Chan et al.

aren’t directly expressible, and don’t appear to be generated by the algorithm, which would
solve for the smallest size annotations. For the counterexample, in the second branch, the
size annotation would be (a size constrained to be equal to) υ̂. We conjecture that the
terms synthesized by the inference algorithm do indeed satisfy subject reduction even in
the presence of nested (co)inductives by being a strict subset of all well-typed terms that
excludes counterexamples like the above.

3.2.2 Bareness of Type Annotations

As mentioned in Figure 1, type annotations on functions and let expressions as well as case
expression motives and (co)fixpoint types need to be bare terms (or position terms, for the
latter) to maintain subject reduction. To see why, suppose they were not bare, and consider
the term (fix1 〈f 1 : Natτ → Natτ := λn : Natτ̂ . n〉) (S O). Under empty environments, the

fixpoint argument is well typed with type Natˆ̂s for any size expression s, while the fixpoint
itself is well typed with type Natr → Natr for any size expression r. For the application to
be well typed, it must be that r is ˆ̂s, and the entire term has type Natˆ̂s.

By the μ-reduction rule, this steps to the term (λn : Natτ̂ . n) (S O). Unfortunately, the
term is no longer well typed, as S O cannot be typed with type Natτ̂ as is required. By
erasing the type annotation of the function, there is no longer a restriction on what size
the function argument must have, and subject reduction is no longer broken. An alternate
solution is to substitute τ for ŝ during μ-reduction, but this requires typed reduction to
know what the correct size to substitute is, violating backward compatibility with Coq,
whose reduction and convertibility rules are untyped.

3.3 Strong Normalization and Logical Consistency

Following strong normalization and logical consistency for CIC−̂ and CCω̂, we conjec-
ture that they hold for CIĈ∗ as well. We present some details of a model constructed in
our a proof attempt; unfortunately, the model requires changes to CIĈ∗ that are back-
ward incompatible with Coq, so we don’t pursue it further. We discuss from where these
backward-incompatible changes arise for posterity.

Conjecture 3.4 (Strong Normalization). If �G, � � e : t then there are no infinite reduction
sequences starting from e.

Conjecture 3.5 (Logical Consistency). There is no e such that •, • � e :�p : Prop. p.

3.3.1 Proof Attempt and Apparent Requirements for Set-Theoretic Model

In attempting to prove normalization and consistency, we developed a variant of CIĈ∗
called CIĈ∗-Another which made a series of simplifying assumptions suggested by the
proof attempt:

• Reduction, subtyping, and convertibility are typed, as is the case for most set-theoretic
models. That is, each judgement requires the type of the terms, and the derivation rules
may have typing judgements as premises.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 19

• A new size irrelevant typing judgement is needed, similar to that introduced by Barras
(2012). While CIĈ∗ is probably size irrelevant, this is not clear in the model without
an explicit judgement.

• Fixpoint type annotations require explicit size annotations (i.e. are no longer merely
position terms) and explicitly abstract over a size variable, and fixpoints are explicitly
applied to a size expression. The typing rule no longer erases the type, and the size in
the fixpoint type is fixed.

�(f : t) � e : t[υ := υ̂]

� � {fixυ f : t := e}s : t[υ := s]
FIX-EXPLICIT

The fixpoint above binds the size variable υ in t and in e. The reduction rule adds an
additional substitution of the predecessor of the size expression, in line with how f
may only be called in e with a smaller size.

� � {fixυ f : t := e}ŝ b (c� p a)�μ e[υ := s][f := {fixυ f : t := e}s] b (c� p a)

• Rather than inductive definitions in general, only predicative W types are considered.
W types can be defined as an inductive type:

〈W (A : U) (B : A → U)〉 := 〈Sup : (a : A) → (b : B a → W A B) → W A B〉
Predicative W types only allow U to be Set or Type, while impredicative W types
also allow it to be Prop. Including impredicative W types as well poses several
technical challenges.

Because some of these changes violate backward compatibility, they cannot be adopted
in CIĈ∗.

The literature suggests that future work could prove CIĈ∗-Another and CIĈ∗ equivalent
to derive that strong normalization (and therefore logical consistency) of CIĈ∗-Another
implies that they hold in CIĈ∗. More specifically, Abel et al. (2017) show that a typed
and an untyped convertibility in a Martin–Löf type theory (MLTT) imply each other; and
Hugunin (2021); Abbott et al. (2004) show that W types in MLTT with propositional
equality can encode well-formed inductive types, including nested inductive types.

We leave this line of inquiry as future work3, since we have other reasons to believe
backward-incompatible changes are necessary in CIĈ∗ to make sized typing practical.
Nevertheless, we next explain where each of these changes originate and why they seem
necessary for the model.

3.3.2 Typed Reduction

Recall from Subsubsection 6.2.1 that we add universe cumulativity to the existing universe
hierarchy in CIC−̂. We follow the set-theoretical model presented by Miquel and Werner
(2002), where Prop is treated proof-irrelevantly: its set-theoretical interpretation is the set
{∅, {∅}}, and a type in Prop is either {∅} (representing true, inhabited propositions) or ∅
(representing false, uninhabited propositions).

3 In fact, ongoing work by the second author, Yufeng Li, in collaboration with Bruno Barras has reportedly fin-
ished the strong normalization proof of CIĈ∗-Another using realisability candidates based on work by Barras
(2012). (Private communication, Dec. 2021).

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

20 J. Chan et al.

Impredicativity of function types is encoded using a trace encoding (Aczel, 1998). First,
the trace of a (set-theoretical) function f : A → B is defined as

trace(f) = {(a, b) | a ∈ A, b ∈ f (a)}.
Then the interpretation of a function type �x : t. u is defined as{

trace(f)

∣∣∣∣ f ∈ A ×
⋃
a∈A

Ba and ∀a ∈ A, f (a) ∈ Ba

}

where A is the interpretation of t and Ba is the interpretation of u when x = a, while a
function λx : t. e is interpreted as {(a, b) | a ∈ A, b ∈ ya} where ya is the interpretation of e
when x = a.

To see that this definition satisfies impredicativity, suppose that u is in Prop. Then Ba

is either ∅ or {∅}. If it is ∅, then there is no possible f (a), making the interpretation of the
function type itself ∅. If it is {∅}, then f (a) =∅, and trace(f) =∅ since there is no b ∈ f (a),
making the interpretation of the function type itself {∅}.

Since reduction is untyped, it is perfectly fine for ill-typed terms to reduce. For instance,
we can have the derivation •, • � (λx : (�p : Prop. p → p). x) Prop�β Prop even though
the left-hand side is not well typed. However, to justify a convertibility (such as a reduc-
tion) in the model, we need to show that the set-theoretic interpretations of both sides
are equal. For the example above, since �p : Prop. p → p is in Prop and is inhabited by
λp : Prop. λx : p. x, its interpretation must be {∅}. Then the interpretation of the function
on the left-hand side must be {(∅, ∅)}. By the definition of the interpretation of application,
since the interpretation of Prop is not in the domain of the function, the left-hand side
becomes ∅. Meanwhile, the right-hand side is {∅, {∅}}, and the interpretations of the two
sides aren’t equal.

Ultimately, the set-theoretic interpretations of terms only make sense for well-typed
terms, despite being definable for ill-typed ones as well. Therefore, to ensure a sensible
interpretation, reduction (and therefore subtyping and convertibility) needs to be typed.

3.3.3 Size Irrelevance

In the model, we need to know that functions cannot make computational decisions based
on the value of a size variable, i.e. that computation is size irrelevant. This is necessary
to model functions as set-theoretic functions, since sizes are ordinals and (set-theoretic)
functions quantifying over ordinals may be too large to be proper sets.

In short, while we conjecture that size irrelevance holds in CIĈ∗ since size expressions
are second class and size variables are implicitly quantified, it is no longer true in the
model, where sizes are modelled as ordinals and size variables must be explicitly quanti-
fied. As a result, we follow Barras (2012) in creating two typing modes in CIĈ∗-Another
(normal and size irrelevant) and two function spaces (normal and sized) which allow prov-
ing that functions respect sizes in necessary situations in the model. The sized function
space and size irrelevant mode enforce that the size of the function’s domain is irrelevant
during typing, and this is used to type check fixpoints.

In detail, the problem arises as follows.
Given a recursive call f of some fixpoint whose body is e′ and two functions ψ1,ψ2 of

the same type as f , if they behave identically, then the model requires that e′[f :=ψ1] and

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 21

e′[f :=ψ2] are indistinguishable. However, this cannot be shown with the current typing
rules, which is why size irrelevance is introduced.

Formally, the set-theoretic model interprets terms and types as their natural set-theoretic
counterparts and size expressions as ordinals; we call these their valuations. Given some
environment � and a term e that is well typed under � with size variables V = SV(e), letting
ρ be the valuations of the term variables of � and π be the valuations of the size variables
in V , the valuation of e is denoted by Val(e)πρ .

Consider now the valuation of the following term that is well typed under �.

e = {fixυ f : Natυ → Natυ := e′}∞
As the fixpoint is evaluated at the infinite size ∞, intuitively the valuation of e must be the
fixed point of e′ with respect to f . Then to compute e, we take an initial approximation of
e′ and iterate until the fixed point has been reached.

For simplicity, suppose that for every ordinal α, we have some valuation
Val(Natυ)π[υ:=α]

ρ =N α , where given some ordered ordinals α, N α is a ⊆-increasing
sequence of sets constant beyond α =ω. Let D0 = {∅}, the vacuous function space
(representing N 0 →N 0), and define the following:

Dα =Val(Natυ → Natυ)π[υ:=α]
ρ =N α →N α

ϕα(ψ) =Val(e′)π[υ:=α]
ρ[f :=ψ] (where ψ ∈ Dα)

The usual approach to compute Val(e)πρ is to iterate up to the least fixed point of ϕα
starting at ψ0 = D0 and setting ψα+1 = ϕα(ψα). Rule FIX-EXPLICIT ensures that ψα ∈ Dα;
however, we also need to ensure that the sequence ψα eventually converges.

What would be a sufficient condition for convergence? As ψα is obtained by succes-
sively improving upon approximations of the fixed point of (the interpretation of) the
defining body e′, we expect that subsequent approximations to use the results of previous
approximations, and so that

∀x ∈N α ⊆N β ,ψα(x) =ψβ(x). (IRREL)

This is the formal statement of size irrelevance in the model: size variables bound by
fixpoints merely restrict their domains and don’t affect their computation. It turns out that
size irrelevance ensures that ψα converges at ψω, so it suffices to prove (IRREL).

We proceed by induction on α and β. Assuming (IRREL) holds for some α and β,
unfolding definitions, the goal is to show that

∀x ∈N α+1 ⊆N β+1, Val(e′)π[υ:=α]
ρ[f :=ψα](x) = Val(e′)π[υ:=β]

ρ[f :=ψβ](x).

Inductively, ψα and ψβ behave identically, but from Rule FIX-EXPLICIT we cannot easily
conclude that e′ cannot tell them apart. This is the same problem encountered by Barras
(2012), who resolves it using a new size irrelevant judgement. We use a similar judgement
for CIĈ∗-Another, expanding it to allow recursive references of fixpoints as arguments to
other functions.

3.3.4 Size-Annotated Fixpoints

As shown above, the set-theoretic interpretation of a fixpoint evaluated at some size s is
the iteration of its corresponding operator up to α times, where α is the valuation of s.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

22 J. Chan et al.

Without explicitly annotating the size, we wouldn’t know how many times to iterate, since
s is otherwise only found in the type of the fixpoint and not in the fixpoint term itself.

4 Size Inference

In this section, we present a size inference algorithm, based on that of CIĈ (Barthe et al.,
2006). Starting with a program (that is, a global environment) consisting of bare global
declarations, we want to obtain a program consisting of the corresponding size-annotated
global declarations. Given bare terms corresponding to terms in CIC (with no size annota-
tions but with the recursive argument index marked on fixpoints), the algorithm assigns
size annotations while collecting a set of subsizing constraints. Because the subsizing
constraints that must be satisfied are based on the typing rules, this algorithm is also neces-
sarily a type checking algorithm, ensuring well-typedness of the size-annotated term. The
algorithm then returns either a size-annotated and well-typed term along with the set of
subsizing constraints, or fails.

Before proceeding to the next global declaration, we solve its constraints by finding an
assignment from size variables to size expressions such that these size expressions sat-
isfy all of the constraints. Then we perform the substitution of these assignments on the
declaration. This lets us run the inference algorithm on each declaration independently,
without needing to manipulate a constraint set every time a global declaration is used in a
subsequent one.

One of the most involved parts of the algorithm is the size inference and type checking
of (co)fixpoints, which adapts the RecCheck algorithm from F̂ (Barthe et al., 2005). The
other notably involved part of the algorithm is the solve algorithm, which given a set
of constraints produces a valid solution. Finally, we state soundness and completeness
theorems for the algorithm as a whole, proving only soundness and leaving completeness
as a conjecture.

4.1 Preliminaries

We first formally define the notions of constraints and solutions, as well as some additional
notation.

Definition 4.1. A subsizing constraint set (or simply constraint set) C is a set of pairs of
size expressions s1 � s2 (also referred to as a constraint) representing a subsizing rela-
tion from s1 to s2 that must be enforced. (When ambiguous, we will explicitly distinguish
between the constraint s1 � s2 and the judgement s1 � s2.)

We write s1 = s2 to mean the two pairs s1 � s2 and s2 � s1. Given a set of size variables
V, we also write υ � V for the pointwise constraint set {υ � υ ′ | υ ′ ∈ V}, and similarly for
V � υ.

This is the natural representation of the constraints: the algorithm is based on the typing
rules, and they produce constraints representing subsizing judgements that need to hold.
However, in RecCheck and in solve we will need to view these constraints as a graph.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 23

We use C to represent either the constraint set or the graph depending on the context. First,
notice that any noninfinite size consists of a size variable and some finite number n of

successor “hats”; we will write this as υ̂n so that, for instance,
ˆ̂̂
υ is instead υ̂3.

Definition 4.2. A subsizing constraint graph (or simply constraint graph) C of a con-
straint set is a weighted, directed graph whose vertices are size variables, edges are
constraints, and weights are integers.

Given a constraint υ̂n1
1 � υ̂n2

2 , the constraint graph contains an edge from υ1 to υ2 with
weight n2 − n1. Constraints of the form s �∞ are trivially true and aren’t added to the
graph. Constraints of the form ∞� υ̂n correspond to an edge from ∞ to υ with weight 0.

Given a constraint graph and some set of size variables V , it is useful to know which
variables in the graph can be reached from V or will reach V .

Definition 4.3 (Transitive closures).

• Given a set of size variables V, the upward closure
⊔

V with respect to C is the set
of variables that can be reached from V by travelling along the directed edges of C.
That is, V ⊆ ⊔

V, and if υ1 ∈⊔
V and υ̂n1

1 � υ̂n2
2 , then υ2 ∈ ⊔

V.
• Given a set of size variables V, the downward closure

�
V with respect to C is the

set of variables that can reach V by travelling along the directed edges of C. That is,
V ⊆�

V, and if υ2 ∈ �
V and υ̂n1

1 � υ̂n2
2 , then υ1 ∈�

V.

Finally, we can define what it means to be a solution of a constraint set, as well as some
useful related notation.

Definition 4.4 (Size substitutions and constraint satisfaction).

• A size substitution ρ applied to a set of size variables produces a set of size
expressions: ρV := {ρυ | υ ∈ V}. Applying ρ to a constraint set works similarly.

• The composition of size substitutions ρ1 and ρ2 is defined as (ρ1 ◦ ρ2)υ := ρ1(ρ2υ).
• A size substitution ρ satisfies the constraint set C (or is a solution of C), written

as ρ �C, if for every constraint s1 � s2 in C, the judgement ρs1 � ρs2 holds. For
convenience, we will also require that ρ maps to size expressions whose size variables
are fresh, and that it doesn’t map any size variables not in C.

We now define four judgements to represent algorithmic subtyping, checking, inference,
and well-formedness. They all use the symbol �, with inputs on the left and outputs on
the right.

• �G, � � t � u�C (algorithmic subtyping) takes environments �G, � and annotated
terms t, u, and produces a set of constraints C that must be satisfied in order for t to
be a subtype of u.

• C, �G, � � e◦ ⇐ t�C′, e (checking) takes a set of constraints C, environments
�G, �, a bare term e◦, and an annotated type t, and produces the annotated term e
with a set of constraints C′ that ensures that the type of e subtypes t.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

24 J. Chan et al.

• C, �G, � � e◦�C′, e ⇒ t (inference) takes a set of constraints C, environments
�G, �, and a bare term e◦, and produces the annotated term e, its annotated type t,
and a set of constraints C′.

• �◦
G� �G (well-formedness) takes a global environment with bare declarations and

produces a global environment where each declaration has been properly annotated
via size inference.

In checking and inference, the input constraint set represents the constraints that must be
satisfied for the local environment to be well formed. Algorithmic subtyping doesn’t need
this constraint set since subtyping doesn’t rely on well-formedness of the environments.
The output constraint set represents additional constraints that must be satisfied for the
input term(s) to be well typed.

The algorithm is implicitly parameterized over a fixed signature�, as well as two muta-
ble sets of size variables V , V∗, such that V∗ ⊆ V . Their assignment is denoted with := and
they are initialized as empty. The set V∗ contains position size variables, which mark size-
preserving types by replacing position annotations, and we use τ for these position size
variables. We define two related metafunctions: PV returns all position size variables in a
given term, while |·|∗ erases position size variables to position annotations and all other
annotations to bare.

Finally, on the right-hand size of inference judgements, we use e ⇒∗ t to mean e ⇒
t′ ∧ t = whnf(t′). whnf reduces a term until it is in weak head normal form (WHNF), which
allows us to syntactically match on and take apart the term. A term is in weak head normal
form when its outer form is not a redex. For our purposes, the important thing is that we
can tell whether a term is a universe, a function type, or an inductive type.

We define a number of additional metafunctions to translate the side conditions from the
typing rules into procedural form. They are introduced as needed.

The entry point of the algorithm is the well-formedness judgement, which takes and pro-
duces global environments representing whole programs. Its rules are defined in Figure 19
and use the mutually-defined rules of the checking and inference judgements, defined
in Figure 13, Figure 15, and Figure 16 respectively. We begin with the latter two first
in Subsection 4.2, followed by a detailed look at RecCheck in Subsection 4.3. Well-
formedness is discussed in Subsection 4.4. Finally, we make our way up to soundness
and completeness with respect to the typing rules in Subsection 4.5.

4.2 Inference Algorithm

Size inference begins with either a bare term or a position term. For the bare terms, even
type annotations of (co)fixpoints are bare, i.e.

e◦ ::= · · · | fixm 〈f n : t◦ := e◦〉 | cofixm 〈f : t◦ := e◦〉
Notice that fixpoints still have the indices n of the recursive arguments, whereas sur-

face Coq programs generally have no indices. To produce these indices, we do what Coq
currently does: brute-force search. We try the algorithm on every combination of indices
from left to right. This continues until one combination works, or fails if none do. Then

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 25

C, �G, � � e◦ ⇐ t�C, e

A-CHECK

C, �G, � � e◦�C1, e ⇒ t �G, � � t � u�C2

C, �G, � � e◦ ⇐ u�C1 ∪ C2, e

Fig. 13. Size inference algorithm: Checking.

�G, � � t � u�C

. . .

A-ST-IND

I inductive

�G, � � Is ≤ Is′� {s � s′}

A-ST-COIND

I coinductive

�G, � � Is ≤ Is′� {s′ � s}
Fig. 14. Size inference algorithm: Algorithmic subtyping (excerpt).

the type annotations are initially position annotated on as many types as possible, and this
position term itself is passed into the algorithm. Because of the way the Coq kernel is struc-
tured, this may not always be possible in the implementation. We discuss this and other
implementational issues in the next section.

4.2.1 Checking

Rule A-CHECK in Figure 13 is the checking component of the algorithm. It uses algorithmic
subtyping in Figure 14 to ensure that the inferred type of the term is a subtype of given
type. This subtyping is defined inductively over the rules of the subtyping judgement in the
straightforward manner, taking the union of constraint sets from their premises; we present
only Rules A-ST-IND and A-ST-COIND, which shows the concrete subsizing constraints
derived from comparing two (co)inductive types. It may also fail if two terms are not
subtypes and are inconvertible.

4.2.2 Inference: Part 1

Figure 15 is the first half of the inference component of the algorithm, presenting the
rules for basic language constructs. In general, when the local environment is extended
with some term, we make sure that the input constraint set is extended as well with the
constraints generated from size inference on that term. The constraints returned are simply
the union of all the constraints generated by the premises. Note that since type annotations
need to be bare (to maintain subject reduction, as discussed in Subsubsection 3.2.2), they
must be erased first before reconstructing the term.

Rules A-VAR-ASSUM, A-CONST-ASSUM, A-UNIV, A-PROD, A-ABS, A-APP, and
A-LET-IN are all fairly straightforward. These rules use the metafunctions axiom, rule,
and elim, which correspond to the sets Axioms, Rules, and Elims, defined in Figure 9.
The metafunction axiom produces the type of a universe; rule produces the type of a func-
tion type given the universes of its argument and return types; and elim directly checks
membership in Elims and can fail.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

26 J. Chan et al.

C, �G, � � e◦�C, e ⇒ t

A-VAR-ASSUM

(x : t) ∈ �
C, �G, � � x� {}, x ⇒ t

A-VAR-DEF

(x : t := e) ∈ � υ ′
i = SV(e, t) \ SV(C)

υi = fresh(‖υ ′
i‖) ρ = {υ ′

i
→ υi}
C, �G, � � x� {}, xρ ⇒ ρt

A-CONST-ASSUM

(Assm x : t.) ∈ �G

C, �G, � � x� {}, x ⇒ t

A-CONST-DEF

(Defn x : t := e.) ∈ �G υ ′
i = SV(e, t) \ SV(C)

υi = fresh(‖υ ′
i‖) ρ = {υ ′

i
→ υi}
C, �G, � � x� {}, xρ ⇒ ρt

A-UNIV

C, �G, � � U� {}, U ⇒ axiom(U)

A-PROD

C, �G, � � t◦�C1, t ⇒∗ U1

C ∪ C1, �G, �(x : t) � u◦�C2, u ⇒∗ U2

C, �G, � ��x : t◦. u◦�C1 ∪ C2,�x : t. u ⇒ rule(U1, U2)

A-ABS

C, �G, � � t◦�C1, t ⇒∗ U
C ∪ C1, �G, �(x : t) � e◦�C2, e ⇒ u

C, �G, � � λx : t◦. e◦�C1 ∪ C2, λx : |t|. e ⇒�x : t. u

A-APP

C, �G, � � e◦1�C1, e1 ⇒∗�x : t. u
C, �G, � � e◦2 ⇐ t�C2, e2

C, �G, � � e◦1 e◦2�C1 ∪ C2, e1 e2 ⇒ u[x := e2]

A-LET-IN

C, �G, � � t◦�C1, t ⇒∗ U C, �G, � � e◦1 ⇐ t�C2, e1

C ∪ C1 ∪ C2, �G, �(x : t := e1) � e◦2�C3, e2 ⇒ u

C, �G, � � let x : t◦ := e◦1 in e◦2�C1 ∪ C2 ∪ C3, let x : |t| := e1 in e2 ⇒ u[x := e1]

Fig. 15. Size inference algorithm: Inference (1/2).

In Rules A-VAR-DEF and A-CONST-DEF, we generate a size substitution that freshens
the size variables in the associated definition using fresh, which freshly generates the
given number of variables and adds them to V . By freshening the size variables, we can
define let-bound type aliases that can be used like regular types. For instance, in the term

let N : Type := Natυ1 in λn : N → N . n

the two uses of N need not have the same size: the type of the function might be inferred
as N 〈υ1
→υ2〉 → N 〈υ1
→υ3〉, which by δ-reduction is convertible with Natυ2 → Natυ3 .

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 27

C, �G, � � e◦�C, e ⇒ t

. . .

A-IND

υ = fresh(1)

C, �G, � � I� {}, Iυ ⇒ indType(I)

A-IND-STAR

τ = fresh(1) V∗ := V∗ ∪ {τ }
C, �G, � � I∗� {}, Iτ ⇒ indType(I)

A-CONSTR

υ = fresh(1)

C, �G, � � c� {}, c ⇒ constrType(c, υ)

A-CASE

C, �G, � � e◦�C1, e ⇒∗ Is
k p a C, �G, � � P◦�C2, P ⇒ tp

�_.�
k . Uk = indType(Ik) U = decompose(tp, ‖
k‖ + 1)
elim(Uk , U , Ik) υ = fresh(1) �G, � � tp � motiveType(p, U , I υ̂k)�C3

For each j: C, �G, � � e◦j ⇐ branchType(p, cj, υ, P)�C4j, ej

C5 = caseSize(Is
k , υ̂) ∪ C1 ∪ C2 ∪ C3 ∪ (

⋃
j C4j)

C, �G, � � caseP◦ e◦ of 〈cj ⇒ e◦j 〉�C5, case|P| e of 〈cj ⇒ ej〉⇒ P a e

A-FIX

For each k:
C, �G, � � t◦k � _, _⇒ _ C, �G, � � setRecStars(t◦k , nk)�C1k , tk ⇒∗ U

�
k . uk = whnf(tk) �
k . u′
k = shift(�
k . uk)⋃

k C1k ∪ C, �G, �(fk : tk) � e◦k ⇐�
k . u′
k�C2k , ek

�G, �
k � uk � u′
k�C3k C4 =⋃

k C1k ∪ C2k ∪ C3k ∪ C
C5 = RecCheckLoop(C4, �, getRecVar(tk , nk), tk , ek)

C, �G, � � fixm 〈f nk
k : t◦k := e◦k〉�C5, fixm 〈f nk

k : |tk|∗ := ek〉⇒ tm

A-COFIX

For each k:
C, �G, � � t◦k � _, _⇒ _ C, �G, � � setCorecStars(t◦k)�C1k , tk ⇒∗ U

�
k . uk = whnf(tk) �
′
k . u′

k = shift(�
k . uk)⋃
k C1k ∪ C, �G, �(fk : tk) � e◦k ⇐�
′

k . u′
k�C2k , ek �G, � �
′

k �
k�C3k

C4 = ⋃
k C1k ∪ C2k ∪ C3k ∪ C C5 = RecCheckLoop(C4, �, getCorecVar(tk), tk , ek)

C, �G, � � cofixm 〈fk : t◦k := e◦k〉�C5, cofixm 〈fk : |tk|∗ := ek〉⇒ tm

Fig. 16. Size inference algorithm: Inference (2/2).

4.2.3 Inference: Part 2

Figure 16 is the second half of inference, presenting the rules related to (co)inductives
and (co)fixpoints. A position term from a position-annotated (co)fixpoint type can be
passed into the algorithm, so we deal with the possibilities separately in Rules A-IND and
A-IND-STAR. In both rules, a bare (co)inductive type is annotated with a size variable;
in Rule A-IND-STAR, it is also added to the set of position size variables V∗. The position
annotation of (co)inductive types occurs in Rule A-FIX or Rule A-COFIX, which we discuss
shortly.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

28 J. Chan et al.

In Rule A-CONSTR, we generate a single fresh size variable, which gets annotated on the
constructor’s (co)inductive type in the argument types of the constructor type, as well as
the return type, which has the successor of that size variable. All other (co)inductive types
which aren’t the constructor’s (co)inductive type continue to have ∞ annotations.

The key constraint in Rule A-CASE is generated by caseSize. Similar to Rule A-CON-
STR, we generate a single fresh size variable υ to annotate on Ik in the branches’ argument
types, which correspond to the constructor arguments of the target. Then, given the unap-
plied target type Is

k , caseSize returns {s � υ̂} if Ik is inductive and {υ̂ � s} if Ik is

coinductive. This ensures that the target type satisfies Is
k p a ≤ I υ̂k

k p a, so that Rule CASE

is satisfied.
The rest of the rule proceeds as we would expect: we infer the sized type of the target

and the motive, we check that the motive and the branches have the types we expect given
the target type, and we infer that the sized type of the case expression is the annotated
motive applied to the target type’s annotated indices and the annotated target itself. We
also ensure that the elimination universes are valid using elim on the motive type’s return
universe and the target type’s universe. To obtain the motive type’s return universe, we
use decompose. Given a type t and a natural n, this metafunction reduces t to a function
type�
. u where ‖
‖ = n, reduces u to a universe U , and returns U . It can fail if t cannot
be reduced to a function type, if ‖
‖< n, or if u cannot be reduced to a universe.

4.2.4 Inference: (Co)fixpoints

Finally, we come to size inference and termination/productivity checking for (co)fixpoints.
It uses the following metafunctions:

• setRecStars, given a function type t and an index n, decomposes t into arguments
and a return type, reduces the nth argument type to an inductive type, annotates that
inductive type with position annotation ∗, annotates the return type with ∗ if it has the
same inductive type, and rebuilds the function type. This is how fixpoint types obtain
their position annotations without being user-provided; the algorithm will remove
other position annotations if size preservation fails.
Similarly, setCorecStars annotates the coinductive return type first, then the
argument types with the same coinductive type. Both of these can fail if the nth argu-
ment type or the return type respectively are not (co)inductive types. Note that the
decomposition of t may perform reductions using whnf.

• getRecVar, given a function type t and an index n, returns the position size variable
of the annotation on the nth inductive argument type, while getCorecVar returns the
position size variable of the annotation on the coinductive return type. Essentially,
they retrieve the position size variable of the annotation on the primary (co)recursive
type of a (co)fixpoint type.

• shift replaces all position size annotations s (i.e. where s = τ̂ n) by their successor ŝ.

Although the desired (co)fixpoint is the mth one in the block of mutually-defined (co)fix-
points, we must still size-infer and type-check the entire mutual definition. Rules A-FIX and
A-COFIX first run the size inference algorithm on each of the (co)fixpoint types, ignoring
the results, to ensure that any reduction on those types will terminate. Then we annotate

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 29

Fig. 17. Illustration of simplification of RecCheckLoop.

let rec RecCheckLoop Γ =

try let ′ = {} in

let for i = 1 to k do

let pv = PV in (* noninfinite ∗ *)

let sv = (SV Γ ∪ SV ∪ SV) \ pv in (* infinite ≠ *)
′ := ′ ∪ RecCheck pv sv

done in ′

with RecCheckFail ->

if (empty?)

then raise RecCheckLoopFail

else V∗ := V∗ \ ; RecCheckLoop

C

V

V
V

V

V

C

C

C

C
C

i

i

i

k kt e

e

k

k kt

t
t

ek

i i

ii

i

i

C τ

τ

τ

Fig. 18. Pseudocode implementation of RecCheckLoop.

the bare types with position annotations (using setRecStars/setCorecStars) and pass
these position types through the algorithm to get sized types tk . Next, we check that the
(co)fixpoint bodies have the successor-sized types of tk when the (co)fixpoints have types
tk in the local environment.

Lastly, we need to check that the constraint set so far is satisfiable. However,
setRecStars and setCorecStars optimistically annotate all possible (co)inductive
types in the (co)fixpoint type with position annotations, while not all (co)fixpoints are
size preserving. Therefore, instead of calling RecCheck directly to check satisfiability,
RecCheckLoop iteratively calls RecCheck and discards incorrect position annotations at
each iteration. A simplification of the algorithm, not handling mutual (co)fixpoints and
removing single position annotations at a time, is illustrated in Figure 17. The substitution
from τi to υi represents turning the position size variable into a regular size variable.

More precisely, RecCheck either returns a new constraint set, or it fails with some set
V of position size variables that must be set to infinity and therefore mark arguments that
aren’t size preserving. If V is empty, then RecCheckLoop fails overall: this indicates that
the overall constraint set is unsatisfiable. If V is not empty, then we can try RecCheck again
after removing the size variables in V from our set of position size variables, thus no longer
enforcing that they must be size preserving. An OCaml-like pseudocode implementation
of RecCheckLoop is provided by Figure 18.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

30 J. Chan et al.

4.3 RecCheck

As in previous work on CCω̂ with coinductive streams (Sacchini, 2013) and in CIĈ , we
use the same RecCheck algorithm from F̂ (Barthe et al., 2005). This algorithm attempts to
ensure that the subsizing rules in Figure 5 can be satisfied within a given set of constraints.
It does so by checking the set of constraints for invalid circular subsizing relations, setting
the size variables involved in the cycles to ∞, and producing a new set of constraints
without these problems; or it fails, indicating nontermination or nonproductivity. It takes
four arguments:

• A constraint set C, which we treat as a constraint graph.
• The size variable τ of the annotation on the type of the recursive argument (for fix-

points) or on the return type (for cofixpoints). While the return type (for fixpoints)
or the types of other arguments (for cofixpoints) may optionally be marked as size
preserving, each (co)fixpoint type requires at least τ for the primary (co)recursive
type.

• A set of size variables V ∗ that must be set to some noninfinite size. These are the size
annotations in the (co)fixpoint type that have position size variables. Note that τ ∈ V ∗.

• A set of size variables V � = that must be set to ∞. These are all other non-position
size annotations, found in the (co)fixpoint types and bodies.

The key idea of the algorithm is that if there is a negative cycle in C, then for any size
variable υ in the cycle, supposing that the total weight going once around the cycle is
−n, by transitivity we have the subsizing relation υ̂n � υ, This relation can be satisfied by
υ =∞, since ∞̂ �∞, while it cannot hold for any finite size. The algorithm proceeds as
follows:

1. Let V ι = �
V ∗, and add τ � V ι to C. This ensures that τ is the smallest size variable

among all the noninfinite size variables.
2. Find all negative cycles in C, and let V− be the set of all size variables in some

negative cycle.
3. Remove all edges with size variables in V− from C, and add ∞� V−.
4. Add ∞� (⊔

V � = ∩ ⊔
V ι

)
to C.

5. Let V⊥ = (⊔{∞}) ∩ V ι. This is the set of size variables that we have determined to
both be infinite and noninfinite. If V⊥ is empty, then return C.

6. Otherwise, let V = V⊥ ∩ (V ∗ \ {τ }), and fail with RecCheckFail(V). This is the set
of contradictory position size variables excluding τ , which we can remove from V∗

in RecCheckLoop. If V is empty, there are no position size variables left to remove,
so the check and therefore the size inference algorithm fails.

Disregarding closure operations and set operations like intersection and difference, the
time complexity of a single pass is O(‖V‖‖C‖), where V is the set of size variables
appearing in C. This comes from the negative-cycle finding in (2) using, for instance,
the Bellman–Ford algorithm (Ford, 1958).

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 31

�◦
G� �G

•� • A-GLOBAL-NIL

�◦
G� �G {}, �G, • � t◦�C1, t ⇒∗ U

ρ = solve(C1)

�◦
G(Assm x : t◦.)� �G(Assm x : ρt.)

A-GLOBAL-ASSUM

�◦
G� �G {}, �G, • � t◦�C1, t ⇒∗ U

{}, �G, • � e◦ ⇐ t�C2, e ρ = solve(C1 ∪ C2)

�◦
G(Defn x : t◦ := e◦.)� �G(Defn x : ρt := ρe.)

A-GLOBAL-DEF

Fig. 19. Size inference algorithm: Well-formedness.

4.4 Well-Formedness

A self-contained chunk of code, be it a file or a module, consists of a sequence of (co)-
inductive definitions (signatures) and programs (global declarations). For our purposes,
we assume that there is a singular well-formed signature defined independently. Then we
need to perform size inference on each declaration of �G in order, as given by Figure 19.

In Rule A-GLOBAL-ASSUM, from a bare type t◦, inference gets us back a constraint
set C1, the annotated type t, and its type U , such that �G, • � t : U when the constraints
in C1 hold. Similarly, Rule A-GLOBAL-DEF gets back from inference a term e, its type
t, and a constraint sets C1, C2, with �G, • � e : t when the constraints in C1 ∪ C2 hold.
To rid ourselves of the constraint sets, we need to instantiate the size variables involved
with size expressions that satisfy those constraints. This is done by solve which, when
given a constraint set, produces a substitution ρ that performs the instantiation. Then given
ρ �C1 ∪ C2, for instance, �G, • � ρe : ρt holds unconditionally.

4.4.1 Solving Constraints

Let C be a constraint graph corresponding to some constraint set for which we want to
produce a substitution. Supposing for now that it contains no negative cycles, for every
connected component, the simplest solution is to assign size expressions to each size
variable such that all of those size expressions have the same base size variable. For
instance, given the constraint set {υ1 � υ̂2, υ̂1 � υ3}, one solution could be the mapping
{υ1
→ τ , υ2
→ τ , υ3
→ τ̂ }.

This kind of problem is a difference constraint problem (Cormen et al., 2009). Generally
a solution involves finding a mapping from variables to integers, whereas our solution will
map from size variables to size expressions with the same base, but the technique using a
single-source shortest-path algorithm still applies. Given a connected component Cc with
no negative cycles or an ∞ vertex, our algorithm solveComponent for finding a solution
proceeds as follows:

1. Generate a fresh size variable τ .
2. For every size variable υi in Cc, add an edge τ � υi of weight 0.
3. Find the weights wi of the shortest paths from τ to every other size variable υi in Cc.

This yields the constraint τ � υ̂wi
i .

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

32 J. Chan et al.

4. Naïvely, we would map each υi to the size expression τ̂−wi to trivially satisfy τ � υ̂wi
i ,

since this would become τ � τ after substitution. However, −wi may be negative,
which would make no sense as the size of a size variable. Therefore, we find the
largest weight wmax := maxi wi, and shift all the sizes up by wmax. In other words, we
return the map ρ := {υi
→ τ̂wmax−wi}.

Again, the time complexity of a single pass is O(‖V‖‖Cc‖) (where V is the set of size
variables in Cc) due to finding the single-source shortest paths in (3) using, for instance,
the Bellman–Ford algorithm (Ford, 1958). (Note that although there are no negative cycles,
there are still negative weights, so we cannot use, for example, Dijkstra’s algorithm.) The
total solve algorithm, given some constraint graph C, is then as follows:

1. Initialize an empty size substitution ρ.
2. Find all negative cycles in C, and let V− be all size variables in some negative cycle.
3. Let V∞ = ⊔{∞}.
4. Remove all edges with size variables in V− ∪ V∞ from C, and for every υi ∈ V− ∪

V∞, add υi
→∞ to ρ.
5. For every connected component Cc of C, add mappings solveComponent(Cc) to ρ.

Since dividing the constraint graph into connected components will partition the size
variables and constraints into disjoint sets, the time complexity of all executions of
solveComponent is O(‖V‖‖C‖). This is also the time complexity of negative-cycle find-
ing. These two dominate the time complexity of finding the connected components, which
is O(‖V‖ + ‖C‖).

4.5 Metatheory

In this subsection, we focus on soundness and completeness theorems of various parts
of the inference algorithm. The proof sketches and partial proofs for these and for the
intermediate lemmas and theorems can be found in Appendix 2.

We first need soundness and completeness of RecCheck. The constraint set returned by
RecCheck ensures that variables that should be infinite are constrained to be so, and that
variables that shouldn’t be infinite are not. Intuitively, soundness then says that if you have
a solution to a constraint set returned by RecCheck, then there must also be a solution to
the original constraint set that also ensures the same things. Dually, completeness says that
if you have a solution to the original constraint set that ensures these constraints, then it
must also be a solution to the constraint set returned by RecCheck.

In these theorems, we use the metafunction �s which returns either the size variable of
a finite size expression or ∞ if the given size expression is infinite. Since sizes are (succes-
sors of) either a size variable or the infinite size, we have that �υ̂n = υ and �∞̂n =∞.

Theorem 4.5 (Soundness of RecCheck (SRC)). If RecCheck(C′, τ , V ∗, V � =) = C, then
for every ρ such that ρ �C, given a fresh size variable υ, there exists a ρ ′ such that the
following all hold:

1. ρ ′ �C′;
2. ρ ′τ = υ;

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 33

3. �ρ ′V ∗ = υ;
4. �ρ ′V � = �= υ;
5. For all υ ′ ∈ V � =, ({υ
→ ρτ } ◦ ρ ′)(υ ′) = ρυ ′; and
6. For all τ ′ ∈ V ∗, ({υ
→ ρτ } ◦ ρ ′)(τ ′) � ρτ ′.

Theorem 4.6 (Completeness of RecCheck (CRC)).
Suppose the following all hold:

• ρ �C′;
• ρτ = υ;
• �ρV ∗ = υ; and
• �ρV � = �= υ.

Then ρ � RecCheck(C′, τ , V ∗, V � =).

RecCheck returns a constraint set for a single (co)fixpoint definition with a fixed set of
position variables; RecCheckLoop, on the other hand, returns a constraint set for an entire
mutual (co)fixpoint definition, finding a suitable set of position variables. There are then
two properties we want to ensure.

Theorem 4.7 (Correctness of RecCheckLoop).

1. RecCheckLoop terminates on all inputs.
2. If RecCheckLoop(C′, �, τk , tk , ek) = C with an initial position variable set V∗, then

for every i ∈ k, RecCheck(C′, τi, PV(ti), SV(�, ti, ei) \ PV(ti)) ⊆ C with some final posi-
tion variable set V∗⊆ ⊆ V∗.

We also want to ensure that solveComponent and solve actually return solutions of
the constraint sets they are solving.

Theorem 4.8 (Correctness of solve and solveComponent).

1. If the constraint set Cc contains no negative cycles, then solveComponent(Cc) �Cc

and
2. solve(C) �C.

Before proceeding onto the main soundness theorems, we need a few lemmas ensur-
ing that the positivity/negativity judgements and algorithmic subtyping are sound and
complete with respect to subtyping.

Lemma 4.9 (Soundness of positivity/negativity). Let �G, � be environments, t a sized
term and ρ1, ρ2 size substitutions. Suppose that ∀υ ∈ SV(t), ρ1υ � ρ2υ.

1. If ∀υ ∈ SV(t), �G, � � υ pos t, then �G, � � ρ1t ≤ ρ2t; and
2. If ∀υ ∈ SV(t), �G, � � υ neg t, then �G, � � ρ2t ≤ ρ1t.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

34 J. Chan et al.

Lemma 4.10 (Completeness of positivity/negativity). Let �G, � be environments, t a sized
term and υ ∈ SV(t) some size variable.

1. If �G, � � t ≤ t[υ := υ̂] then �G, � � υ pos t.
2. If �G, � � t[υ := υ̂] ≤ t then �G, � � υ neg t.

Lemma 4.11 (Soundness of algorithmic subtyping). Let �G, � � t � u�C, and suppose
that ρ �C. Then �G, ρ� � ρt ≤ ρu.

Now we are ready to tackle the main theorems, in particular soundness of checking,
inference, and well-formedness with respect to the typing rules. We leave completeness
of checking and inference as a conjecture, but show that if it holds, then completeness of
well-formedness will hold as well.

Theorem 4.12 (Soundness (check/infer)). Let � be a fixed, well-formed signature, �G a
global environment, � a local environment, and C a constraint set. Suppose we have the
following:

a) ∀ρ �C, WF(�G, ρ�).
b) If ∃�1, �2, e, t such that � ≡ �1(x : t := e)�2 then ∀υ ∈ SV(e, t), υ /∈ SV(�G, �1).

Then the following hold:

1. If C, �G, � � e◦ ⇐ t�C′, e, then ∀ρ �C ∪ C′, we have �G, ρ� � ρe : ρt.
2. If C, �G, � � e◦�C′, e ⇒ t, then ∀ρ �C ∪ C′, we have �G, ρ� � ρe : ρt.

Conjecture 4.13 (Completeness (check/infer)). Let � be a fixed, well-formed signature,
�G a global environment, � a local environment, C a constraint set, and ρ �C a solution
to the constraint set.

1. If �G, ρ� � e : ρt, then there exist C′, ρ ′, e′ such that:

• ρ ′ �C′;
• ∀υ ∈ SV(�, t), ρυ = ρ ′υ; and
• C, �G, � � |e|⇐ t�C′, e′ where �G, � � ρ ′e′ ≈ e.

2. If �G, ρ� � e : t, then there exist C, ρ ′, t′ such that:

• ρ ′ �C′;
• ∀υ ∈ SV(�, t), ρυ = ρ ′υ; and
• C, �G, � � |e|�C′, e′ ⇒ t′ where �G, � � ρ ′e′ ≈ e and �G, � � ρ ′t ≤ t.

Theorem 4.14 (Soundness (well-formedness)). If �◦
G� �G then WF(�G, •).

The completeness theorem for well-formedness is slightly different than expected: a
well-formed global environment, when erased, should successfully have sizes inferred.
The inferred environment and the original environment also erase to the same bare
environment, which can be proven by induction on the size inference derivations.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 35

coq
lib

WeightedDigraph........graph data structure and algorithms for constraints
pretyping
kernel

Constr...core AST and traversals
Environ......................................environments and lookups
Reduction..................................reduction and convertibility
Inductive functions on (co)fixpoints (guard checking)
Typeops............................. entrypoint to type checker for terms
Term_typing...................entrypoint to type checker for declarations
Sized constructs and functions for sized types
Subsizing...............................producing subsizing constraints

Fig. 20. Selected excerpts of the Coq codebase structure.

Theorem 4.15 (Completeness (well-formedness)). If WF(�G, •) then |�G|� �′
G and

|�G| = |�′
G|.

5 Prototype Implementation and Evaluation

We have implemented the sized typing algorithm in a beta version of Coq 8.12 (The Coq
Development Team and Chan, 2021), which can also be found in the supplementary mate-
rials. Naturally, the full core language of Coq has more features (irrelevant for sized typing)
than CIĈ∗, and the implementation has to interact with these as well as other proof assis-
tant features such as elaboration and the vernacular. Furthermore, many details of the sized
typing algorithm are left underspecified. In this section, we take a take a brief look at these
details, verify the time complexity of the implementation against the theoretical complexi-
ties from the previous section, determine its impact on performance as a whole, and discuss
the practical feasibility of the implementation as well as the problems encountered.

5.1 Architecture of the Coq Kernel

The core type checking/inference algorithm is found in Coq’s kernel. Before reaching the
kernel, terms go through a round of pretyping where existential metavariables (essen-
tially typed holes) are solved for, and the recursive indices of fixpoints are determined.
Size inference is implemented as an augmentation of the existing type checking/inference
algorithm, making use of the recursive indices.

Figure 20 summarizes the relevant file/module structure. Most of the added code specif-
ically for size inference is in the new Sized and Subsizing modules; the remaining
structure remains the same as that of Coq 8.12’s codebase (The Coq Development Team,
2021). (Subsizing is only separate from Sized to break circular dependencies: it relies
on the global environment, while the environment depends on Sized.)

The Sized module contains several submodules, four of which are relevant to our
performance discussion:

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

36 J. Chan et al.

• State keeps track of the (position) size variables that have been used;
• SMap defines the data structure for and operations on size substitutions;
• Constraints defines the data structure for and operations on constraint sets; and
• RecCheck implements the RecCheck and solve algorithms.

Sized typing is implemented as a vernacular flag that can be set and unset, just like guard
checking. By default, the flag is off; the commands

Set Sized Typing. Unset Guard Checking.

will enable sized typing only. If both are set, then guard checking will only occur if sized
typing fails. When sized typing is not set, size annotations are still added, but constraints
aren’t collected, meaning that global definitions checked in this state will never be marked
as size preserving.

5.2 Analysis of Performance Degradation

When compiling parts of the Coq standard library with sized typing on, we noticed some
severe performance degradation. This is bad news if we hope to replace guard checking
with sized typing, or even if we simply wish to use sized typing as the primary method
of termination or productivity checking throughout. In particular, we examine compi-
lation of the Coq.MSets.MSetList library4, which is an implementation of finite sets
using ordered lists that contains a fair amount of both fixpoints and proof terms and that
happens to compile successfully with sized typing on. In this file alone, we find a 5.5×
increase in compilation time with coqc. Other files may have even worse degradation;
for an earlier version of the algorithm, there was a 15× increase in compilation time for
Coq.setoid_ring.Field_theory5, which is about twice as large as MSetList and con-
tains mostly proofs. We investigate possible causes of the performance degradation and
discuss potential solutions.

5.2.1 Profiling Sized Functions

To measure the performance degradation, we compare compiling MSetList against itself
with sized typing on and guard checking off, which we refer to as MSetList_sized. Both
compilations are run five times each. The compilation times are significantly different
(t = 463.94, p " 0.001), with MSetList’s compilation time at 15.122 ± 0.073 seconds
and MSetList_sized’s at 82.660 ± 0.286 seconds.

To identify the source of the slowdown and test our hypothesis that the majority of it is
intrinsically due to size inference, we first profile the performance of functions relevant to
the Sized module during the compilation. We divide these functions into five groups: the
solve and RecCheck functions, the foldmap6 function common to all operations manip-
ulating size annotations on the AST (such as applying size substitutions), the functions
in State, the functions in SMap, and the functions in Constraints. Table 2 summarizes
the results, as well as the relative time spent in the functions in MSetList_sized. The

4 This file can be found in the artifact at coq/theories/MSets/MSetList.v.
5 This file can be found in the artifact at coq/theories/setoid_ring/Field_theory.v.
6 This is the foldmap_annots function in coq/kernel/Constr.ml.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 37

Table 2. Relevant function runtimes when compiling MSetList vs. MSetList_sized
Function(s) Unsized time (s) Sized time (s) t Sized time %

solve 0.029 ± 0.002 62.397 ± 0.414 337 74.6
RecCheck 0.000 ± 0.000 2.203 ± 0.023 219 2.63
Constraints 0.186 ± 0.005 2.899 ± 0.028 217 3.46
SMap 0.011 ± 0.001 0.281 ± 0.003 215 0.34
State 0.047 ± 0.002 0.104 ± 0.002 55 0.12
foldmap 0.163 ± 0.004 0.266 ± 0.004 46 0.32

Total of above 0.436 ± 0.014 68.150 ± 0.474 81.5
Total compilation 15.122 ± 0.073 83.660 ± 0.286 100

differences in execution times of the functions in each group are all statistically significant
(p " 0.001 for all of the t-statistics).

77.2% of the total compilation time in MSetList_sized is taken up by solve and
RecCheck. Other Sized-related overhead is smaller, although not insignificant, especially
Constraint operations, which form a proportion slightly larger than that of RecCheck.
We conjecture that some of this other overhead can be reduced with more clever imple-
mentations. For instance, instead of explicitly performing size substitutions, the sizes can
be looked up as needed; or instead of explicitly passing around a size state, we could
use mutable global state; or constraints could be stored in a data structure incrementally
checked for negative cycles, similar to the current implementation of universe level con-
straints. We therefore focus our attention on solve and RecCheck, where performance
degradation may not be limited to mere implementational details.

5.2.2 Time Complexity of solve and RecCheck

As shown in Section 4, given a constraint graph from constraint graph C with size variables
V , the time complexities of solve and RecCheck are O(‖V‖‖C‖). Indeed, in Figure 21a,
plotting the mean execution times of each of the 155 calls to solve against ‖V‖‖C‖ for
that call (shown as blue dots), we see a strong positive correlation (r = 0.983). Doing the
same for the 186 calls to RecCheck in Figure 21a, we have a weaker positive correlation
(r = 0.698), likely due to the two visible outliers. (Without the outliers, we have r = 0.831.)

To verify that the execution times are dominated by linear relationships to ‖V‖‖C‖,
we fit the data to linear models using least-square regressions (shown as orange lines),
and examine the residuals plots in Figure 21c and Figure 21d for solve and RecCheck,
respectively. (Note the logarithmic horizontal scale used for clarity, as there are more calls
with fewer variables and constraints).

For solve, the model appears to be a good fit at first, but residuals increase in magnitude
as ‖V‖‖C‖ increases, indicating some additional behaviour unexplained by the model.
Similarly, for RecCheck, the model also appears to be a good fit at first, but then follow a
downward curving pattern, also indicating additional behaviour unexplained by the model
(such as the two outliers).

Although there might be additional smaller factors influencing the time complexities of
solve and RecCheck beyond the number of variables and constraints, we can at least rea-
sonably conclude that execution time increases with ‖V‖‖C‖. Since this time complexity

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

38 J. Chan et al.

(a) solve execution time vs. ‖V‖‖C‖
(blue dots), linear model (orange line)

(b) RecCheck execution time vs. ‖V‖‖C‖
(blue dots), linear model (orange line)

(c) solve model residuals plot (log scale) (d) RecCheck model residuals plot (log scale)

(e) ‖V‖‖C‖ distribution in solve, 10 bins (f) ‖V‖‖C‖ distribution in RecCheck, 10 bins

Fig. 21. Execution vs. ‖V‖‖C‖, residuals, ‖V‖‖C‖ distributions for solve and RecCheck.

is intrinsic to the algorithms and is not due to mere implementational details, and more than
three-fourths of the total compilation time is due to solve and RecCheck, the majority of
the slowdown is therefore intrinsic and unavoidable.

5.2.3 An Explosion of Size Variables

As solve and RecCheck contribute so much to the compilation time and their complexities
depend on ‖V‖‖C‖, there must be a significant number of calls involving large numbers of

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 39

Unset Guard Checking.

Set Sized Typing.

Time Definition nats1 := (nat, nat, nat, nat, nat, nat, nat, nat).

Time Definition nats2 := (nats1, nats1, nats1, nats1).

Time Definition nats3 := (nats2, nats2, nats2, nats2).

Time Definition nats4 := (nats3, nats3, nats3, nats3).

Time Definition nats5 := (nats4, nats4, nats4, nats4).

Time Definition nats6 := (nats5, nats5, nats5, nats5).

Fig. 22. Coq definitions with an explosion in size variables and in elapsed time.

variables and constraints. Indeed, Figure 21e and Figure 21f show that despite most calls
during compilation of MSetList involving small values of ‖V‖‖C‖, the number of calls
with large values of ‖V‖‖C‖ is not trivial.

Of course, the presence of large numbers of variables and constraints of only MSetList
with sized typing doesn’t tell us whether this is a common property of Coq files on average,
but the fact that this occurs in the standard library indicates that it is absolutely possible
for an explosion in size variables and constraints to be a significant barrier to the adoption
of sized typing for general-purpose use. In fact, this behaviour is easily reproducible with
the artificial but comparatively small and simple example in Figure 22. Table 3 lists the
number of size variables present in the types and bodies of these definitions, along with
the elapsed type checking time reported by Coq.

There are two things we can do to reduce the execution time of solve and RecCheck:
eliminate constraints when possible, or reduce the number of size variables in definitions.
One way to accomplish the first option would be to turn on sized typing only for certain
definitions, in particular the ones involving (co)fixpoints where they will be most useful.
Then for all other definitions, since no constraints are collected, calls to solve will be
trivial regardless of how many size variables they contain.

However, a (co)fixpoint might require that some non-(co)recursive definition with many
size variables be size preserving, which means that that definition also needs to be checked
with sized typing on, or the (co)fixpoint itself may have a large number of size variables.
Furthermore, there’s no clear indication of which definitions might have a large number
of size variables and which don’t, leaving it up to a lot of guesswork and experimentation.
Using sized typing as a targeted tool for particular programs is not viable if we cannot
directly tell which particular programs will benefit the most in terms of tradeoffs between
non-structural (co)recursion and performance.

The second option to reduce the number of size variables can be done by allowing
manual annotation of (co)inductive types with the infinite size, reducing the number of
free size variables that need to be substituted for and that propagate throughout subsequent
definitions. For example, the tuple types in Figure 22 can have infinite size annotations
without affecting the sizes of the nat arguments. In other words, we allow size annotations
in the surface language that users write, which would no longer be plain CIC; as this
solution deviates from the philosophy of being wholly backward compatible, it is beyond
the scope of this paper.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

40 J. Chan et al.

Table 3. Size variables and time elapsed for definitions in Figure 22

Definition ‖V‖ (body) ‖V‖ (type) Time (s)

nats1 14 7 0.004
nats2 62 31 0.020
nats3 254 127 0.177
nats4 1022 511 2.299
nats5 4094 2047 35.385
nats6 16382 8191 > 120

5.3 Inferring Recursive Indices

As previously mentioned, users aren’t obligated to indicate which fixpoint argument is the
one on which we recur, and its position index is inferred during pretyping in the kernel. In
Coq, for a mutual fixpoint, this is done by trying the guard predicate on every combination
of indices7. This is possible because the guard predicate is a syntactic check, requiring
nothing but the elaborated fixpoint term.

Unfortunately, we run into problems when attempting to apply the same strategy to
inferring recursive indices through sized typing alone. Because termination checking is
inextricably tied to type checking, the entire fixpoint needs to be type checked to verify
whether the current set of indices is correct, and this type checking in the kernel can fail
if the fixpoint still contains unsolved metavariables. Furthermore, because we only have
access to the bare environments (i.e. with no sizes inferred), local definitions in scope at
the fixpoint may not yet be known to be size preserving, thus causing the check to fail. As
an example, in the following Coq term, id has no size annotations and is therefore treated
as not size preserving, even though it ought to be, which causes the recursive call on the
smaller argument wrapped in id to not pass type checking.

let id (x : nat) := x in

fix f (n : nat) :=

match n with

| O => O

| S k => f (id k)

end

This suggests that size inference should be done during the pretyping phase: size inference
could be viewed as part of the elaboration step from the surface CIC to the core CIĈ∗. This,
too, is beyond the scope of this paper, especially as there is no past work on formalizing
the interaction between size inference and elaboration to build on.

6 Related Work

The history of sized types is vast and varied. Extensive prior accounts are given in dis-
sertations by Frade (2004) and Abel (2006). Here, we focus on two lineages towards

7 This is the search_guard function in coq/kernel/Pretyping.ml.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 41

sized dependent type theories: first, the more-or-less direct ancestry of CIĈ∗, and second,
a contrasting line of work on type systems with explicit higher-order sized types.

6.1 Ancestry of CIĈ∗
Perhaps the most well-known work on sized types is by Hughes et al. (1996), who intro-
duce sized types for a Hindley–Milner type system with (co)inductives and a size inference
algorithm, as well as the term “sized types”. Their size algebra is more expressive than
ours, with size addition s1 + s2 and constant multiplication n × s. Independently, Giménez
(1998) introduces CCR, a Calculus of Constructions (CoC) with guarded types, a type-
based termination checking alternative to the earlier syntactic guard condition (Giménez,
1995). There, types are guarded with a type operator ·̂, similar to the later modal-
ity �· in modern guarded type theories. Based on a semantic interpretation of CCR,
Amadio and Coupet-Grimal (1998) introduce a simply-typed lambda calculus (STLC) with
coinductives with type labels, corresponding roughly to size annotations with successor
sizes.

Following this, Barthe et al. (2004) and Frade (2004) introduce λ̂ , another STLC with
inductives and size annotations with the same size algebra we use, although they are instead
called stages. It improves upon the work of Amadio and Coupet-Grimal (1998) by adding
an implicit form of size polymorphism: the position size variable of fixpoint types are sub-
stituted by an arbitrary size expression, just as in Rule FIX. Barthe et al. (2005) extend λ̂ to
System F with F̂ , and introduce and prove correct a size inference algorithm. This includes
the RecCheck algorithm that we use. They continue on to extend F̂ with sized products
(that is, pairs with size annotations) in F×̂ (Barthe et al., 2008), whose size expressions
include size addition, and to CIC in CIĈ (Barthe et al., 2006). Our size inference algorithm
is based directly on that of CIĈ . We add to it global and local definitions and explic-
itly treat mutually-defined (co)inductives and (co)fixpoints, while removing polarities and
subtyping based on these polarities.

However, normalization of CIĈ is only a conjecture; it is later proven for the restricted
language CIC−̂ by Grégoire and Sacchini (2010) (with only naturals) and by Sacchini
(2011) (with inductive types). The restrictions include disallowing size variables in the
bodies of functions, in the arguments of applications, in the branches of case expressions,
and in the indices of inductives; erasing the parameters to constructors; and disallowing
strong elimination to types with size variables. We remove these restrictions to allow using
sized definitions and for backward compatibility with Coq.

Our typing rules and inference algorithm for coinductives and cofixpoints are based
on CCω̂ (Sacchini, 2013), which extends CoC with sized coinductive streams. Further
extensions to the size algebra are linear sized types in CIĈl (Sacchini, 2014), which adds
constant multiplication to a sized CoC with naturals and streams; and well-founded sized
types in CIC�̂ (Sacchini, 2015), which changes the premise type checking the (co)fixpoint
body in Rules FIX and COFIX to the recursive reference having any smaller size according
to the subsizing rules, rather than the direct predecessor. All three include size inference
algorithms similar to that of CIĈ .

There are prototype implementations of CIC−̂ (Sacchini, 2015) and CIC�̂ (Sacchini,
2015). It appears that there were also plans to implement sized types in Coq by Sacchini
(2016), but seem to be abandoned.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

42 J. Chan et al.

6.2 Past Work in Detail

Past work CIĈ , CIC−̂, and CCω̂ add sized types to CIC with the explicit philosophy of
requiring no size annotations: a user would write bare CIC code, and the type checker
would have the simultaneous task of synthesizing and checking types, while also inferring
all the size annotations. However, Coq’s core calculus extends quite a bit beyond merely
CIC, and the presentation of various analogous features differ subtly but nontrivially. The
goal of CIĈ∗ is to bring sized types in CIC a few steps closer to Coq, while keeping with
the original philosophy. In the process of conforming to Coq’s calculus, to minimize the
changes required to it so that a prototype implementation is viable, we must also discard
some features from past work.

6.2.1 Cumulativity

CIĈ and CIC−̂ are extensions of CIC, with dependent functions, a universe hierarchy,
inductive definitions, case expressions, and fixpoints. CCω̂ dually has coinductive streams
and cofixpoints instead. CIĈ and CIC−̂ differ in that CIĈ includes a size inference
algorithm but no proof of strong normalization, while CIC−̂ is proven to be strongly nor-
malizing, with no size inference algorithm explicitly given. CIC−̂ also restricts where size
variables may appear in terms. Since CIĈ∗ doesn’t have such restrictions, it can be thought
of as an extension of CIĈ combined with CCω̂, featuring sized (mutual) (co)inductive
types and (mutual) (co)fixpoints, and further adding universe cumulativity, which is an
existing feature in Coq. As noted in Section 3, cumulativity and impredicativity complicate
the set-theoretic model by Sacchini (2011).

6.2.2 Definitions

Coq’s core calculus contains two kinds of variables:8 one for local bindings from func-
tions, function types, and let expressions, and one for global bindings from vernacular
declarations such as Definition and Axiom (which we call constants). CIĈ∗ adds let
expressions and global declarations to CIĈ , with separate local and global environments,
and definitions in the environments in the style of a PTS with definitions (Severi and Poll,
1993).

Global definitions and let expressions let us define aliases for types for concision and
organization of code, which necessitates a form of size polymorphism if we want the
aliases to behave as we expect. For instance, if we globally define Defn N : Type := Natυ .,
and later want to define an addition function with type N → N → N , it would not be cor-
rect to perform the naïve substitution to get Natυ → Natυ → Natυ : addition intuitively
does not always return something of the same size.

What we want instead is to allow a different size for each use of N , so that the above
type reduces to Natυ1 → Natυ2 → Natυ3 . This means N must be polymorphic in the sizes
involved in its definition, the same kind of rank-1 or prenex polymorphism in ML-style
let polymorphism for type variables. To retain backward compatibility, there is no explicit
size quantification or application — every definition and let binding is implicitly quantified
over all size variables involved. The corresponding notion of size instantiation comes in

8 It also has a third type of variable for section-level bindings; this is beyond the scope of CIĈ∗.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 43

the form of size substitution annotations on variables and constants, so that N {υ
→s} for
instance reduces to Nats.

Having definitions and annotated variables and constants also means we need to now
allow sizes to appear not only in the bodies of let expressions but also in the bodies of
functions and in the branches of case expressions, in contrast to the restrictions of CIC−̂.

6.2.3 Polarities

(Co)Inductive definitions in CIC−̂ are also annotated with polarities for each of its parame-
ters to augment the subtyping relation. For example, if the type parameter of the usual List
type is given a positive polarity, then Listr Nats ≤ Listr Natŝ holds because Nats ≤ Natŝ

holds, which in turn holds because ŝ is a larger size than s. Similarly, a negative polarity
reverses the subtyping relation, while an invariant polarity induces no subtyping relation
from the parameters at all. It is not known whether these polarity annotations are inferrable
from the (co)inductive definitions alone, so again in the name of backward compatibility,
CIĈ∗ doesn’t have these annotations, and treats all parameters as invariant. This aligns
with Coq’s current behaviour, where list Set is not a subtype of list Type despite the
presence of cumulativity where Set is a subtype of Type.

Unfortunately, the invariance of parameters and subtyping of sized (co)inductive types
interferes with nested (co)inductive types, where the type itself may appear as a parameter
to another type in the type of its constructors. Subject reduction is violated: it becomes
possible to have a well-typed term that becomes no longer well typed after a reduction
step, as demonstrated in in Subsection 3.2. The approach CIĈ∗ takes is to disallow nested
(co)inductives, removing them from CIĈ .

6.2.4 Implementation

Whereas CIĈ∗ can be seen as an extension of CIĈ and CCω̂, its implementation is an
extension of Coq: all features of Coq orthogonal to sized types remain untouched, such as
universe polymorphism, strict Prop, various primitives, modules, and so on. The imple-
mentation also retains Coq’s nested (co)inductives, especially as it doesn’t appear possible
for size inference to produce the kind of annotations that break subject reduction.

6.3 Higher-Order Sized Types

For the purposes of size inferrability from unannotated code, the type systems from λ̂

up to CIĈ and its variations treat sizes as merely annotations and feature only what can
be considered as prenex size polymorphism. On the other hand, Abel (2006) introduces
F̂ω, a sized type system for System Fω that treats size as a kind, which therefore allows for
higher-order size polymorphism via explicit quantification. While F̂ω subsumes F̂ and uses
the same size algebra, it uses recursive and corecursive type constructors (μ- and ν-types)
rather than inductive (and coinductive) type definitions.

Higher-order sized types of the same flavour are implemented in a dependently-typed
setting in MiniAgda (Abel, 2010). To avoid inconsistencies introduced by the interplay
between sized types and pattern matching, it also introduces bounded size patterns υ1 <υ2.
Abel (2012) expands upon the theoretical side with bounded size quantification ∀υ < s. t

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

44 J. Chan et al.

and well-founded recursion on sizes, which are also implemented in MiniAgda. Abel and
Pientka (2016) combine well-founded sized types and copatterns for System Fω with (co)-
recursive type constructors in Fcop

ω (which was cited as the inspiration for CIC�̂).
Abel et al. (2017) prove normalization of a higher-order sized dependent type theory

with naturals, but without bounded size quantification. To our knowledge, this is the only
formalization of higher-order sized dependent types in the literature. Additionally, they
also add a notion of size irrelevance so that more terms are convertible when their sizes
don’t matter; this is an orthogonal feature that can be added to CIĈ∗ as well, since the
issues size irrelevance aims to resolve can also arise here.

Sized types with higher-order bounded size quantification are implemented in Agda9;
however, it is known to be inconsistent10. In short, it is possible to express the well-
foundedness of sizes within Agda, but the infinite size ∞ itself is not well founded, as
∞+ 1 =∞ and ∞<∞ hold, making it possible to derive a contradiction.

7 Perspectives and the Future of Sized Types

We have introduced CIĈ∗, a sized type system based on CIC and made to be compatible
with Coq, more than a decade since (prenex, fully-inferrable) sized types for CIC were first
introduced in CIĈ and CIC−̂. And yet, despite good metatheoretical properties having
been established for CIC−̂, no functioning attempt at implementing sized types in Coq
has previously been made. This we have done, finding significant performance problems
caused by size inference for definitions yielding an explosion in size variables.

This doesn’t necessarily spell doom for CIĈ∗. The seasoned type system implemen-
tor may employ implementational tricks to improve performance in practice. Perhaps with
some program analysis of how definitions are used, certain size variables known to be irrel-
evant could immediately be instantiated to the infinite size; maybe a dependency analysis
would reveal which definitions need to be checked with the sized typing flag turned on.
Our naïve implementation tries to be as general as possible to accept as many programs as
possible, and heuristics could be used to guess where and why the user wants to use sized
types, whittling down the number of open possibilities for size-inferred programs.

But all of these feel like arbitrary and potentially fragile hacks—and perhaps it’s because
they are. We have discussed some more sensible solutions to not only the performance
problems but also the theoretical ones: Why don’t we explicitly quantify over the size
variables of a definition to specify which ones are actually relevant? Why don’t we require
that all recursive arguments be marked? Why not solve the problem of nested inductives
using polarities? but we immediately shoot them down because they require additional
work from the user’s perspective and therefore violate the philosophy of backward com-
patibility. Perhaps this philosophy maintained for more than a decade of past work from λ̂

to CIC�̂ is wrong.
So far, size inference seems to work for programs because the notion of programs were

merely single terms. Inference was merely extracting hidden information already present

9 For Agda’s documentation on sized types, see https://agda.readthedocs.io/en/latest/language/
sized-types.html.

10 For a detailed discussion on the issue, see https://github.com/agda/agda/issues/2820.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://agda.readthedocs.io/en/latest/language/sized-types.html
https://agda.readthedocs.io/en/latest/language/sized-types.html
https://github.com/agda/agda/issues/2820
https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 45

in the term. The moment we introduce a little modularity with definitions, we don’t have
concrete information on how these definitions will be used, and by being as general as pos-
sible to accommodate all usages, we end up with terrible performance. Inference becomes
a guessing game we are losing.

If we make size quantification, abstraction, and application explicit, then there won’t be
any more size variables involved than are strictly necessary. To ease the tedious burden
of all the extra annotations from the user, sizes that can be deduced could be marked as
implicit and filled in by the elaborator, as is done for terms. The performance would likely
still be better than full inference due to the smaller number of size variables, and because it
would be reasonable to expect the elaborator to also fail due to a lack of information rather
than only on ill-typed terms. Another benefit of explicit sized types is that it can easily be
extended to higher-order size quantification. This appears to be the best future direction
for sized types; after all, Agda, which uses explicit sizes, is still to date the only practical
proof assistant with sized types.

So is sized typing for Coq practical? Our answer is that it might be—but only if we
allow ourselves to ask users to put in a little work as well.

Acknowledgements

We gratefully thank Bruno Barras, Amin Timany, and Andreas Abel for helpful dis-
cussions on the metatheory, in particular on strong normalization, and Felipe Bañados
Schwerter for testing the implementation and finding bugs, as well as the anonymous
reviewers for their time and patience in providing helpful comments.

We acknowledge the support of the Natural Sciences and Engineering Research Council
of Canada (NSERC), funding reference number RGPIN-2019-04207, and the Canada
Graduate Scholarships – Master’s (CGS M) programme. Cette recherche a été financée par
le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), numéro
de référence RGPIN-2019-04207, et le Programme de bourses d’études supérieures du
Canada au niveau de la maitrise (BESC M).

Conflicts of Interest.

None.

References

Abbott, M., Altenkirch, T. & Ghani, N. (2004) Representing Nested Inductive Types Using
W-Types. Automata, Languages and Programming. Springer Berlin Heidelberg. pp. 59–71.

Abel, A. (2006) Type-based termination: a polymorphic lambda-calculus with sized higher-order
types. Theses. Ludwig Maximilian University of Munich. URL:http://www.cse.chalmers.
se/~abela/diss.pdf.

Abel, A. (2010) MiniAgda: Integrating Sized and Dependent Types. Electronic Proceedings in
Theoretical Computer Science. 43, 14–28. DOI:10.4204/eptcs.43.2.

Abel, A. (2012) Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-
Coinductive Types. Electronic Proceedings in Theoretical Computer Science. 77, 1–11.
DOI:10.4204/eptcs.77.1.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

http://www.cse.chalmers.se/~abela/diss.pdf
http://www.cse.chalmers.se/~abela/diss.pdf
https://doi.org/10.4204/eptcs.43.2
https://doi.org/10.4204/eptcs.77.1
https://doi.org/10.1017/S0956796822000120

46 J. Chan et al.

Abel, A., Öhman, J. & Vezzosi, A. (2017) Decidability of Conversion for Type Theory
in Type Theory. Proceedings of the ACM on Programming Languages. 2(POPL).
DOI:10.1145/3158111.

Abel, A. & Pientka, B. (2016) Well-founded recursion with copatterns and sized types. Journal of
Functional Programming. 26. DOI:10.1017/S0956796816000022.

Abel, A., Vezzosi, A. & Winterhalter, T. (2017) Normalization by Evaluation for Sized Dependent
Types. Proc. ACM Program. Lang. 1(ICFP). DOI:10.1145/3110277.

Aczel, P. (1998) On Relating Type Theories and Set Theories. TYPES.
Amadio, R. M. & Coupet-Grimal, S. (1998) Analysis of a guard condition in type theory. In

Foundations of Software Science and Computation Structures. vol. 1378 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg. pp. 48–62. DOI:10.1007/BFb0053541.

Barendregt, H. P. (1993) Lambda Calculi with Types. Oxford University Press, Inc.
Barras, B. (2012) Semantical Investigations in Intuitionistic Set Theory and Type Theories with

Inductive Families. Habilitation thesis. Université Paris Diderot (Paris 7). URL:http://www.
lsv.fr/~barras/habilitation/barras-habilitation.pdf.

Barthe, G., Frade, M. J. a., Giménez, E., Pinto, L. & Uustalu, T. (2004) Type-based termi-
nation of recursive definitions. Mathematical Structures in Computer Science. 14(1), 97–141.
DOI:10.1017/S0960129503004122.

Barthe, G., Grégoire, B. & Pastawski, F. (2005) Practical inference for type-based termination in a
polymorphic setting. Typed Lambda Calculi and Applications. Springer-Verlag Berlin. pp. 71–85.
DOI:10.1007/11417170_7.

Barthe, G., Grégoire, B. & Pastawski, F. (2006) CIĈ : Type-Based Termination of
Recursive Definitions in the Calculus of Inductive Constructions. Logic for Programming,
Artificial Intelligence, and Reasoning, Proceedings. Springer-Verlag Berlin. pp. 257–271.
DOI:10.1007/11916277_18.

Barthe, G., GrÃl’goire, B. & Riba, C. (2008) Type-Based Termination with Sized Products.
In Computer Science Logic. vol. 5213. Springer Berlin Heidelberg. pp. 493–507.
DOI:10.1007/978-3-540-87531-4_35.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. (2009) Difference Constraints and Shortest
Paths. The MIT Press.

Ford, B. (1958) On a routing problem. Quart. Appl. Math. 16, 87–90. DOI:10.1090/qam/102435.
Frade, M. J. (2004) Type-Based Termination of Recursive Definitions and Constructor Subtyping

in Typed Lambda Calculi. PhD Thesis. University of Minho. Braga, Portugal. URL:https://
haslab.uminho.pt/sites/default/files/mjf/files/thesis.pdf.

Giménez, E. (1995) Codifying guarded definitions with recursive schemes. Types for Proofs and
Programs. Springer Berlin Heidelberg. pp. 39–59.

Giménez, E. (1998) Structural recursive definitions in type theory. In Automata, Languages and
Programming. vol. 1443 of Lecture Notes in Computer Science. Springer Berlin Heidelberg. pp.
397–408. DOI:10.1007/BFb0055070.

Grégoire, B. & Sacchini, J. L. (2010) On Strong Normalization of the Calculus of Constructions
with Type-Based Termination. In Logic for Programming, Artificial Intelligence, and Reasoning.
vol. 6397 of Lecture Notes in Computer Science. Springer Berlin Heidelberg. pp. 333–347.
DOI:10.1007/978-3-642-16242-8_24.

Hughes, J., Pareto, L. & Sabry, A. (1996) Proving the correctness of reactive systems
using sized types. Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. Association for Computing Machinery. pp. 410–423.
DOI:10.1145/237721.240882.

Hugunin, J. (2021) Why Not W? Types for Proofs and Programs. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. pp. 8:1–8:9. DOI:10.4230/LIPIcs.TYPES.2020.8.

Komori, Y., Matsuda, N. & Yamakawa, F. (2014) A Simplified Proof of the Church—Rosser
Theorem. Stud. Log. 102(1), 175–183. DOI:10.1007/s11225-013-9470-y.

Miquel, A. & Werner, B. (2002) The Not So Simple Proof-Irrelevant Model of CC. Types for Proofs
and Programs. Springer Berlin Heidelberg. pp. 240–258. DOI:10.1007/3-540-39185-1_14.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1145/3158111
https://doi.org/10.1017/S0956796816000022
https://doi.org/10.1145/3110277
https://doi.org/10.1007/BFb0053541
http://www.lsv.fr/~barras/habilitation/barras-habilitation.pdf
http://www.lsv.fr/~barras/habilitation/barras-habilitation.pdf
https://doi.org/10.1017/S0960129503004122
https://doi.org/10.1007/11417170_7
https://doi.org/10.1007/11916277_18
https://doi.org/10.1007/978-3-540-87531-4_35
https://doi.org/10.1090/qam/102435
https://haslab.uminho.pt/sites/default/files/mjf/files/thesis.pdf
https://haslab.uminho.pt/sites/default/files/mjf/files/thesis.pdf
https://doi.org/10.1007/BFb0055070
https://doi.org/10.1007/978-3-642-16242-8_24
https://doi.org/10.1145/237721.240882
https://doi.org/10.4230/LIPIcs.TYPES.2020.8
https://doi.org/10.1007/s11225-013-9470-y
https://doi.org/10.1007/3-540-39185-1_14
https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 47

Sacchini, J. L. (2011) On type-based termination and dependent pattern matching in the calculus of
inductive constructions. Theses. École Nationale Supérieure des Mines de Paris. URL:https://
pastel.archives-ouvertes.fr/pastel-00622429.

Sacchini, J. L. (2013) Type-Based Productivity of Stream Definitions in the Calculus
of Constructions. In 2013 28th Annual IEEE/ACM Symposium on Logic in Computer
Science (LICS). IEEE Symposium on Logic in Computer Science. IEEE. pp. 233–242.
DOI:10.1109/LICS.2013.29.

Sacchini, J. L. (2014) Linear Sized Types in the Calculus of Constructions. In Functional and Logic
Programming, FLOPS 2014. vol. 8475 of Lecture Notes in Computer Science. Springer-Verlag
Berlin. pp. 169–185. DOI:10.1007/978-3-319-07151-0_11.

Sacchini, J. L. (2015) jsacchini/cic-wf. Zenodo. URL:https://doi.org/10.5281/zenodo.
5182857.

Sacchini, J. L. (2015) jsacchini/cicminus. Zenodo. URL:https://doi.org/10.5281/zenodo.
3928999.

Sacchini, J. L. (2015) Well-Founded Sized Types in the Calculus of (Co)Inductive Constructions.
Unpublished paper. URL:https://web.archive.org/web/20160606143713/http://www.
qatar.cmu.edu/~sacchini/well-founded/well-founded.pdf.

Sacchini, J. L. (2016). Coq̂ : Type-Based Termination in the Coq Proof Assistant. URL:https://
web.archive.org/web/20160530175545/http://www.qatar.cmu.edu/~sacchini/coq.
html.

Severi, P. G. & Poll, E. (1993) Pure type systems with definitions. vol. 9324 of Computing science
notes. Technische Universiteit Eindhoven.

Sozeau, M., Boulier, S., Forster, Y., Tabareau, N. & Winterhalter, T. (2019) Coq coq correct! ver-
ification of type checking and erasure for coq, in coq. Proc. ACM Program. Lang. 4(POPL).
DOI:10.1145/3371076.

The Coq Development Team. (2018). CoqTerminationDiscussion. URL:https://github.com/
coq/coq/wiki/CoqTerminationDiscussion.

The Coq Development Team. (2021) The Coq Proof Assistant (8.13). Zenodo. URL:https://
github.com/coq/coq/tree/V8.13.0.

The Coq Development Team & Chan, J. (2021) ionathanch/coq: Is Sized Typing for Coq Practical?
(JFP). Zenodo. URL:https://doi.org/10.5281/zenodo.5661975.

Well-Formedness of (Co)Inductive Definitions

In this section we define what it means for a (co)inductive definition to be well-formed,
including some required auxillary definitions. A signature is then well formed if each of its
(co)inductive definitions are well-formed. Note that although we prove subject reduction
for CIĈ∗ without nested inductive types, we include their definitions for completeness.

Definition 1.1 (Strict Positivity). Given some existing signature �, the variable x occurs
strictly positively in the term t, written x ⊕ t, if any of the following holds:

• x /∈ FV(t)
• t ≈ x e and x /∈ FV(e)
• t ≈�x : u. v and x /∈ FV(u) and x ⊕ v

If nested (co)inductive types are permitted, then x ⊕ t may hold if the following also
holds:

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://pastel.archives-ouvertes.fr/pastel-00622429
https://pastel.archives-ouvertes.fr/pastel-00622429
https://doi.org/10.1109/LICS.2013.29
https://doi.org/10.1007/978-3-319-07151-0_11
https://doi.org/10.5281/zenodo.5182857
https://doi.org/10.5281/zenodo.5182857
https://doi.org/10.5281/zenodo.3928999
https://doi.org/10.5281/zenodo.3928999
https://web.archive.org/web/20160606143713/http://www.qatar.cmu.edu/~sacchini/well-founded/well-founded.pdf
https://web.archive.org/web/20160606143713/http://www.qatar.cmu.edu/~sacchini/well-founded/well-founded.pdf
https://web.archive.org/web/20160530175545/http://www.qatar.cmu.edu/~sacchini/coq.html
https://web.archive.org/web/20160530175545/http://www.qatar.cmu.edu/~sacchini/coq.html
https://web.archive.org/web/20160530175545/http://www.qatar.cmu.edu/~sacchini/coq.html
https://doi.org/10.1145/3371076
https://github.com/coq/coq/wiki/CoqTerminationDiscussion
https://github.com/coq/coq/wiki/CoqTerminationDiscussion
https://github.com/coq/coq/tree/V8.13.0
https://github.com/coq/coq/tree/V8.13.0
https://doi.org/10.5281/zenodo.5661975
https://doi.org/10.1017/S0956796822000120

48 J. Chan et al.

• t ≈ I∞k p a where 〈Ii
p : _〉 := 〈cj :�
j. Ij dom(
p) tj〉 ∈� for some k ∈ ı and all of
the following hold:

– ‖p‖ = ‖
p‖
– x /∈ FV(a)
– For every j, if Ij = Ik, then x ©⊕ Ik

(�
j. Ij p tj)[dom(
p) := p]

Definition 1.2 (Nested Positivity). Given some existing signature �, the variable x is
nested positive in t of Ik, written x ©⊕ Ik

t, if 〈Ii
p : _〉 := _ ∈� for some k ∈ ı and any of
the following holds:

• t ≈ I∞k p a and ‖p‖ = ‖
p‖ and x /∈ FV(a)
• t ≈�x : u. v and x ⊕ u and x ©⊕ Ik

v

In short, x ©⊕ I t if t ≈�
. I p a and x ⊕
 and x /∈ FV(a).

Note that if nested (co)inductive types are permitted, then strict and nested positivity are
mutually defined.

Definition 1.3 (Constructor Type). The term t is a constructor type for I when:

• t = I e; or
• t =�x : u. v where x /∈ FV(u) and v is a constructor type for I; or
• t = u → v where x ⊕ u and v is a constructor type for I.

Note that in particular, this means that t =�
. I e such that I ⊕ u for every u ∈
codom(
), and the recursive arguments of t are not dependent.

Definition 1.4 (Well-formedness of (Co)Inductive Definitions). Suppose we have some
signature � and some global environment �G. Consider the following (co)inductive
definition, where p = dom(
p).

〈Ii
p :�
i. Ui〉 := 〈cj :�
j. Ij p tj〉
This (co)inductive definition is well-formed if the following all hold:

(I1). For every i, there is some U ′
i such that �, �G,
p ��
i. Ui : U ′

i holds.
(I2). For every j, there is some Uj such that �, �G,
p(I∞j :�
p.�
i. Ui) �

�
j. I∞j p tj : Uj holds.
(I3). For every j, �
j. Ij p tj is a constructor type for Ij. Note that this implies Ij ⊕

codom(
j).
(I4). For every i, j, all (co)inductive types in the terms codom(
p), codom(
i), codom(
j)

are annotated with ∞.

Well-formedness of a signature � is then defined in terms of the well-formedness of its
(co)inductive definitions, given below.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 49

WF(�)

WF(•)

WF(�) p = dom(
p) 〈Ii
p :�
i. Ui〉 := 〈cj :�
j. Ij p tj〉 is well formed

WF(�(〈Ii
p :�
i. Ui〉 := 〈cj :�
j. Ij p tj〉))

Inference Soundness and Completeness Proofs

Here we provide some more detailed proof sketches for the various soundness and com-
pleteness theorems found in Subsection 4.5. Further details when not specified can be
found in Barthe et al. (2005), Barthe et al. (2006), and Sacchini (2013).

Theorem 2.1 (Soundness of RecCheck (SRC)). If RecCheck(C′, τ , V ∗, V � =) = C, then
for every ρ such that ρ �C, given a fresh size variable υ, there exists a ρ ′ such that the
following all hold:

1. ρ ′ �C′;
2. ρ ′τ = υ;
3. �ρ ′V ∗ = υ;
4. �ρ ′V � = �= υ;
5. For all υ ′ ∈ V � =, ({υ
→ ρτ } ◦ ρ ′)(υ ′) = ρυ ′; and
6. For all τ ′ ∈ V ∗, ({υ
→ ρτ } ◦ ρ ′)(τ ′) � ρτ ′.

Proof [Partial]. Let Cι be C with all vertices in
⊔{∞} removed. By the definition of

RecCheck, since all negative cycles in C′ are removed and the only constraints that are
added are of the form ∞� s, Cι has no negative cycles either. Let V ι = �

V ∗. Note that
the constraints τ � V ι are in Cι. Then we are able to compute the weights wi of the shortest
paths from τ to

⊔
V ι with respect to Cι. According to Barthe et al. (2005), these weights

are nonnegative. Then we can define ρ ′ := ρ ◦ {υi
→ υ̂wi | υi ∈⊔
V ι, ρυi �=∞}.

1. The proof is more involved; see Barthe et al. (2005).
2. The shortest path from τ to itself is no path at all, so ρ ′τ = υ.
3. Since V ∗ ⊆ V ι ⊆⊔

V ι, for every υi ∈ V ∗, ρ ′υi = υ̂wi where wi is the weight of the
shortest path from υ to υi, and its size variable is obviously υ.

4. Let υ ′ ∈ V � =. If υ ′ ∈ ⊔
V ι, then ∞� υ ′ must be in C, and therefore ρυ ′ =∞, so

ρ ′υ ′ = ρυ ′. Otherwise, if υ ′ /∈ ⊔
V ι, we again have ρ ′υ ′ = ρυ ′. Since υ is fresh, it

could not be mapped to by ρ, so the size variable of ρυ ′ cannot be υ.
5. Let υ ′ ∈ V � =. If υ ′ ∈⊔

V ι, then we must have the constraint ∞� υ ′ in C, so ρυ ′ =
∞. Therefore, ({υ
→ ρτ } ◦ ρ ′)υ ′ = ({υ
→ ρτ } ◦ ρ)υ ′ = ρυ ′.

6. Let τ ′ ∈ V ∗. Note that V ∗ ⊆ V ι ⊆⊔
V ι. Then letting w′ be the weight of the shortest

path from υ to τ ′, we have ρ ′τ ′ = υ̂w′
, and ({υ
→ ρτ } ◦ ρ ′)τ ′ = ρ̂τw′

. Since ρ �C and
there is a path of weight w′ from τ to τ ′ in C, we have ρ̂τw′� ρτ ′. �

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

50 J. Chan et al.

Theorem 2.2 (Completeness of RecCheck (CRC)).
Suppose the following all hold:

• ρ �C′;
• ρτ = υ;
• �ρV ∗ = υ; and
• �ρV � = �= υ.

Then ρ � RecCheck(C′, τ , V ∗, V � =).

Proof. Let C = RecCheck(C′, τ , V ∗, V � =). To show that ρ �C, we need to show that for
every constraint s1 � s2 in C, ρs1 � ρs2 holds. Since ρ �C′, this means we need to show
that ρ satisfies every constraint added to C′ in RecCheck. We handle them step by step.
Let V ι :=�

V ∗, and let V− be the set of size variables involved in some negative cycle
in C′.

• Step 1: τ � V ι. Since we have ρτ = υ and ρV ∗ = υ̂n for some n by assumption, ρτ �
ρV ι holds.

• Step 2: ∞� V−. For all size variables υ ′ ∈ V−, since being in a negative cycle tran-
sitively implies a subsizing relation υ̂ ′n � υ ′ for some n, the only way for ρυ̂ ′n � ρυ ′

to hold is if ρυ ′ =∞, which satisfies ∞� ρυ ′.
• Step 4: ∞� (

⊔
V � = ∩ ⊔

V ι). Since ρV � = and ρV ι have different size variables by
assumption, if a size variable υ ′ is in both

⊔
V � = and

⊔
V ι, it must be set to ∞,

which satisfies ∞� υ ′. �

Theorem 2.3 (Correctness of RecCheckLoop).

1. RecCheckLoop terminates on all inputs.
2. If RecCheckLoop(C′, �, τk , tk , ek) = C with an initial position variable set V∗, then

for every i ∈ k, RecCheck(C′, τi, PV(ti), SV(�, ti, ei) \ PV(ti)) ⊆ C with some final posi-
tion variable set V∗⊆ ⊆ V∗.

Proof [Sketch].

1. RecCheckLoop does a recursive call only when RecCheck fails with a size variable
set V , which by definition is a subset of PV(ti) for some ti. Since V is removed from
V∗ every time, PV(tk) is the decreasing measure of RecCheckLoop.

2. Again, V∗ is only removed from, not added to, so the final set must be a subset of the
initial set. By inspection, C is a union of the constraints returned by RecCheck when
they all succeed. �

Theorem 2.4 (Correctness of solve and solveComponent).

1. If the constraint set Cc contains no negative cycles, then solveComponent(Cc) �Cc

and
2. solve(C) �C.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 51

Proof [Sketch].

1. By Cormen et al. (2009), any constant shift (wmax, in our case) of a shortest-path
solution is a valid solution to the difference constraint problem.

2. By the same reasoning for RecCheck, any variables involved in negative cycles must
be set to ∞ in a solution. Remaining constraints are solved by solveComponent. �

Before proceeding, we need a few lemmas ensuring that the positivity/negativity
judgements and algorithmic subtyping are sound and complete with respect to subtyping.

Lemma 2.5 (Soundness of positivity/negativity). Suppose that ∀υ ∈ SV(t), ρ1υ � ρ2υ.

1. If �G, � � υ pos t, then �G, � � ρ1t ≤ ρ2t; and
2. If �G, � � υ neg t, then �G, � � ρ2t ≤ ρ1t.

Proof [Sketch]. By mutual induction on the positivity and negativity rules in Figure 7. �

Lemma 2.6 (Completeness of positivity/negativity).

1. If �G, � � t ≤ t[υ := υ̂] then �G, � � υ pos t.
2. If �G, � � t[υ := υ̂] ≤ t then �G, � � υ neg t.

Proof [Sketch]. By induction on the subtyping rules in Figure 6. �

Lemma 2.7 (Soundness of algorithmic subtyping). Let �G, � � t � u�C, and suppose
that ρ �C. Then �G, ρ� � ρt ≤ ρu.

Proof [Sketch]. By induction on the algorithmic subtyping rules in Figure 14. �

The following lemma and corollary asserting the absence of certain size variables will
later let us commute some substitutions.

Lemma 2.8.

1. If �G, � � e◦ ⇐ t�C, e, then ∀υ ∈ SV(e), υ /∈ SV(�G, �).
2. If �G, � � e◦�C, e ⇒ t, then ∀υ ∈ SV(e), υ /∈ SV(�G, �).

Proof [Sketch]. By mutual induction on the checking and inference rules of the algorithm.
For checking, it follows by the induction hypothesis on the inference premise. For infer-
ence, most cases are straightforward applications of the induction hypothesis; new size
annotations are only introduced in e in Rules A-IND and A-IND-STAR, which introduce
fresh size variables that are by definition not in SV(�G, �). �

Corollary 2.9.
If �◦

GD◦� �GD for bare and sized declarations D◦, D, then ∀υ ∈ SV(D), υ /∈ �G.

Finally, we can proceed with the main theorems.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

52 J. Chan et al.

Theorem 2.10 (Soundness (check/infer)). Let � be a fixed, well-formed signature, �G a
global environment, � a local environment, and C a constraint set. Suppose we have the
following:

a) ∀ρ �C, WF(�G, ρ�).
b) If ∃�1, �2, e, t such that � ≡ �1(x : t := e)�2 then ∀υ ∈ SV(e, t), υ /∈ SV(�G, �1).

Then the following hold:

1. If C, �G, � � e◦ ⇐ t�C′, e, then ∀ρ ′ �C ∪ C′, we have �G, ρ� � ρe : ρt.
2. If C, �G, � � e◦�C′, e ⇒ t, then ∀ρ �C ∪ C′, we have �G, ρ� � ρe : ρt.

Proof [Partial]. By mutual induction on the checking and inference rules of the algorithm.
Suppose a) and b) hold.

1. By Rule A-CHECK, we have

C, �G, � � e◦�C1, e ⇒ t �G, � � t � u�C2

C, �G, � � e◦ ⇐ u�C1 ∪ C2, e

Let ρ �C ∪ C1 ∪ C2. By the induction hypotheses on the premise, we have
C, �G, ρ� � ρe : ρt. By Theorem 2.7, we have �G, ρ� � ρt ≤ ρu. Then by
Rule CUMUL, we have �G, ρ� � ρe : ρu.

2. We will prove the cases for definitions, let expressions, case expressions, and fix-
points; the case for cofixpoints is similar to that of fixpoints, and the remaining cases
are straightforward.

• Rule A-VAR-DEF.

(x : t := e) ∈ � υ ′
i = SV(e, t) \ SV(C) υi = fresh(‖υ ′

i‖) ρ = {υ ′
i
→ υi}

C, �G, � � x� {}, xρ ⇒ ρt

Let ρ ′ �C. We must show that �G, ρ ′� � ρ ′xρ : ρ ′(ρt) holds. By well-
formedness of ρ ′�, we have that �G, ρ ′�1 � ρ ′e : ρ ′t, where � ≡ �1(x : t := e)�2.
Since ρ only does a size variable renaming, we also have �G, ρ(ρ ′�1) � ρ(ρ ′e) :
ρ(ρ ′t). Furthermore, since the size variables in ρ and ρ ′ are fresh, and ρ only
affects size variables in SV(e, t) \ SV(C) while ρ ′ only affects size variables in
SV(C), the two substitutions commute, giving us �G, ρ ′(ρ�1) � ρ ′(ρe) : ρ ′(ρt).
Finally, since υ ′

i /∈ �1, the substitution ρ on �1 has no effect, yielding �G, ρ ′�1 �
ρ ′(ρe) : ρ ′(ρt). Then we can use Rule VAR-DEF to obtain our goal.

• Rule A-CONST-DEF. Similar to Rule A-VAR-DEF, but using Theorem 2.9 instead
of b).

• Rule A-LET-IN.

C, �G, � � t◦�C1, t ⇒∗ U C, �G, � � e◦
1 ⇐ t�C2, e1

C ∪ C1 ∪ C2, �G, �(x : t := e1) � e◦
2�C3, e2 ⇒ u

C, �G, � � let x : t◦ := e◦
1 in e◦

2�C1 ∪ C2 ∪ C3, let x : |t| := e1 in e2 ⇒ u[x := e1]

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 53

Let ρ �C ∪ C1 ∪ C2 ∪ C3. We must show that �G, � � ρ(let x : |t| := e1 in e2) :
ρ(u[x := e1]). The induction hypotheses on the first two premises tell us the
following:

– ∀ρ1 �C ∪ C1, �G, ρ1� � ρ1t : U ; and
– ∀ρ2 �C ∪ C2 �G, ρ2� � ρ2e1 : ρ2t.

To obtain the third induction hypothesis, we need to first show that ∀ρ ′ �
C ∪ C1 ∪ C2, WF(�G, ρ ′(�(x : t := e1))) holds. Letting ρ ′ �C ∪ C1 ∪ C2, by a),
we have that WF(�G, ρ ′�). Applying ρ ′ to the second induction hypothesis,
we have that �G, ρ ′� � ρ ′e1 : ρt. Then using Rule WF-LOCAL-DEF, we have
WF(�G, ρ ′�(x : ρ ′t := ρ ′e1)) as desired. Furthermore, by Theorem 2.8, we know
that ∀υ ∈ SV(e, t), υ /∈ SV(�) Finally, we have the third induction hypothesis:

– ∀ρ3 �C ∪ C1 ∪ C2 ∪ C3, �G, ρ3�(x : t := e1) � ρ3e2 : ρ3u.

Applying ρ to all three induction hypotheses and using Rule LET yields our goal.
• Rule A-CASE.

C, �G, � � e◦�C1, e ⇒∗ Is
k p a

C, �G, � � P◦�C2, P ⇒ tp �_.�
k . Uk = indType(Ik)
U = decompose(tp, ‖
k‖ + 1) elim(Uk , U , Ik)

υ = fresh(1) �G, � � tp � motiveType(p, U , I υ̂k)�C3

For each j: C, �G, � � e◦j ⇐ branchType(p, cj, υ, P)�C4j, ej

C5 = caseSize(Is
k , υ̂) ∪ C1 ∪ C2 ∪ C3 ∪ (

⋃
j C4j)

C, �G, � � caseP◦ e◦ of 〈cj ⇒ e◦j 〉�C5, case|P| e of 〈cj ⇒ ej〉⇒ P a e

Let ρ �C ∪ C5. We must show that �G, ρ� � ρ(case|P| e of 〈cj ⇒ ej〉) :
ρ(P a e). The induction hypotheses and Theorem 2.7 tell us the following:

– ∀ρ1 �C ∪ C1, �G, ρ1� � ρ1e : ρ1(Is
k p a);

– ∀ρ2 �C ∪ C2, �G, ρ2� � ρ2P : ρ2tp;
– ∀ρ3 �C3, �G, ρ3� � ρ3tp ≤ ρ3(motiveType(p, U , I υ̂k)); and
– ∀ρ4j �C ∪ C4j, �G, ρ4j� � ρ4jej : ρ4j(branchType(p, cj, υ, P)).

We can apply ρ to all four of these. By Rule CUMUL, we have that �G, ρ� �
ρP : ρ(motiveType(p, U , I υ̂k)). Because ρ � caseSize(Is

k , υ̂), ρs � ρυ̂ if Ik is
inductive and ρυ̂ � s if Ik is coinductive. Then by Rules ST-IND or ST-COIND

respectively, we have �G, ρ� � ρIs
k ≤ ρI υ̂k , and by Rule CUMUL, we have

�G, ρ� � ρe : ρ(I υ̂k p a). Finally, using Rule CASE, we have our goal.
• Rule A-FIX.

For each k:
C, �G, � � t◦k � _, _⇒ _C, �G, � � setRecStars(t◦k , nk)�C1k , tk ⇒∗ U

�
k . uk = whnf(tk) �
k . u′
k = shift(�
k . uk)⋃

k C1k ∪ C, �G, �(fk : tk) � e◦k ⇐�
k . u′
k�C2k , ek

�G, �
k � uk � u′
k�C3k C4 =⋃

k C1k ∪ C2k ∪ C3k ∪ C
C5 = RecCheckLoop(C4, getRecVar(tk , nk), tk , ek)

C, �G, � � fixm 〈f nk
k : t◦k := e◦k〉�C5, fixm 〈f nk

k : |tk|∗ := ek〉⇒ tm

Let ρ �C ∪ C5. We must show that �G, ρ� � ρ(fixm 〈f nk
k : |tk|∗ := ek〉) : ρtm.

The induction hypotheses and Theorem 2.7 tell us the following:

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

54 J. Chan et al.

– ∀ρ1k �C ∪ C1k , �G, ρ1k� � ρ1ktk : U ;
– ∀ρ2k �C ∪ (

⋃
k C1k) ∪ C2k , �G, ρ2k(�(fk : tk)) � ρ2kek : ρ2k(�
k . u′

k);
– ∀ρ3k �C3k , �G, ρ3k(�
k) � ρ3kuk ≤ ρ3ku′

k .

By Theorem 2.3, from ρ �C5, we also have that for every i ∈ k,
ρ � RecCheck(C4, τi, PV(ti), SV(�, ti, ei) \ PV(ti)), where τi = getRecVar(ti, ni).
Then applying Theorem 2.1, letting υi be a fresh size variable, there exists a ρ ′

such that the following hold:

a. ρ ′ �C4;
b. ρ ′τi = υi

c. �ρ ′PV(ti) = υi

d. �ρ ′(SV(�, ti, ei) \ PV(ti)) �= υi;
e. ∀υ ′ ∈ SV(�, ti, ei) \ PV(ti), ({υi
→ ρτi} ◦ ρ ′)υ ′ = ρυ ′; and
f. ∀τ ′ ∈ PV(ti), ({υi
→ ρτi} ◦ ρ ′)τ ′ � ρτ ′.

By 2d and 2e together, we can conclude that ∀υ ′ ∈ SV(�, ti, ei) \ PV(ti), ρ ′υ ′ =
ρυ ′, so ρ ′� = ρ� and ρ ′ek = ρek . Then by 2a, we can apply ρ ′ to each the
inductive hypotheses and simplify to yield:

– �G, ρ� � ρ ′tk : U ;
– �G, (ρ�)(fk : ρ ′tk) � ρek : ρ ′(�
k . u′

k); and
– �G, (ρ�)(ρ ′
k) � ρ ′uk ≤ ρ ′u′

k .

Notice that shift only shifts position variables up by one, which means that by
2b, ρ ′u′

k = {υi
→ υ̂i}(ρ ′uk). Then by Theorem 2.6, the last subtyping judgement
implies that υk is positive in ρ ′uk . At last, we are able to apply Rule FIX, picking
s = ρτm:

�G, ρ� � fixm 〈f nk
k : |ρ ′tk|υk := ρek〉 : (ρ ′tm)[υm := ρτm] (2.1)

By 2c and 2d, we have |ρ ′ti|υi = |ti|∗, as all position variables in ti are mapped
to υi by ρ ′. Finally, by 2e, {υm
→ ρτm} ◦ ρ ′ = ρ when applied to non-position
variables, while {υm
→ ρτm} ◦ ρ ′ � ρ when applied to position variables. Since

m contains no position variables, and all position variables appear positively in
um, by Theorem 2.5, �G, ρ� � ({υm
→ ρτm} ◦ ρ ′)tm ≤ ρtm. The goal then follows
by Rule CUMUL on Judgement 2.1. �

Conjecture 2.11 (Completeness (check/infer)). Let � be a fixed, well-formed signature,
�G a global environment, � a local environment, C a constraint set, and ρ �C a solution
to the constraint set.

1. If �G, ρ� � e : ρt, then there exist C′, ρ ′, e′ such that:

• ρ ′ �C′;
• ∀υ ∈ SV(�, t), ρυ = ρ ′υ; and
• C, �G, � � |e|⇐ t�C′, e′ where �G, � � ρ ′e′ ≈ e.

2. If �G, ρ� � e : t, then there exist C, ρ ′, t′ such that:

• ρ ′ �C′;
• ∀υ ∈ SV(�, t), ρυ = ρ ′υ; and
• C, �G, � � |e|�C′, e′ ⇒ t′ where �G, � � ρ ′e′ ≈ e and �G, � � ρ ′t ≤ t.

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

Is sized typing for Coq practical? 55

Theorem 2.12 (Soundness (well-formedness)). If �◦
G� �G then WF(�G, •).

Proof. By cases on the size inference rules for global declarations.

• Rule A-GLOBAL-NIL: Trivial.
• Rule A-GLOBAL-ASSUM.

�◦
G� �G {}, �G, • � t◦�C1, t ⇒∗ U ρ = solve(C1)

�◦
G(Assm x : t◦.)� �G(Assm x : ρt.)

By Theorem 2.4, we have that ρ �C1. By the induction hypothesis, we have that
WF(�G, •). Then by Theorem 2.10, we have that �G, • � ρt : U , and by Rule WF–
GLOBAL-ASSUM, we conclude that WF(�G(Assm x : ρt.), •).

• Rule A-GLOBAL-DEF.

�◦
G� �G {}, �G, • � t◦�C1, t ⇒∗ U

{}, �G, • � e◦ ⇐ t�C2, e ρ = solve(C1 ∪ C2)

�◦
G(Defn x : t◦ := e◦.)� �G(Defn x : ρt := ρe.)

By Theorem 2.4, we have that ρ �C1 ∪ C2. By the induction hypothesis, we have that
WF(�G, •). Then by Theorem 2.10, we have that �G, • � ρt : U and �G, • � ρe : ρt.
Finally, by Rule WF-GLOBAL-DEF, we conclude WF(�G(Defn x : ρt := ρe.), •). �

Theorem 2.13 (Completeness (well-formedness)). If WF(�G, •) then |�G|� �′
G.

Proof. By cases on the well-formedness rules for global declarations.

• Rule WF-NIL: Trivial.
• Rule WF-GLOBAL-ASSUM.

�, • � t : U x /∈ �G

WF(�G(Assm x : t.), •)

Follows from Theorem 2.11 on the premise.
• Rule WF-GLOBAL-DEF.

�, • � e : t x /∈ �G

WF(�G(Defn x : t := e.), •)

Follows from Theorem 2.11 on the premise. �

https://doi.org/10.1017/S0956796822000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000120

	Is sized typing for Coq practical?
	Introduction
	CIC^*
	Syntax
	Size Annotations and Substitutions
	Fixpoints and Cofixpoints
	Environments and Signatures

	Reduction and Convertibility
	Subtyping and Positivity
	Typing and Well-Formedness

	Metatheoretical Results
	Confluence
	Subject Reduction
	The Problem with Nested Inductives
	Bareness of Type Annotations

	Strong Normalization and Logical Consistency
	Proof Attempt and Apparent Requirements for Set-Theoretic Model
	Typed Reduction
	Size Irrelevance
	Size-Annotated Fixpoints

	Size Inference
	Preliminaries
	Inference Algorithm
	Checking
	Inference: Part 1
	Inference: Part 2
	Inference: (Co)fixpoints

	RecCheck
	Well-Formedness
	Solving Constraints

	Metatheory

	Prototype Implementation and Evaluation
	Architecture of the Coq Kernel
	Analysis of Performance Degradation
	Profiling Sized Functions
	Time Complexity of solve and RecCheck
	An Explosion of Size Variables

	Inferring Recursive Indices

	Related Work
	Ancestry of CIC^*
	Past Work in Detail
	Cumulativity
	Definitions
	Polarities
	Implementation

	Higher-Order Sized Types

	Perspectives and the Future of Sized Types
	Acknowledgements
	Conflicts of Interest.
	Well-Formedness of (Co)Inductive Definitions
	Inference Soundness and Completeness Proofs

