
17
The Schrödinger field

The Schrödinger equation is the quantum mechanical representation of the non-
relativistic energy equation

p2

2m
+ V = E (17.1)

and is obtained by making the replacement pi → −ih̄∂i and E = ih̄∂̃t , and
allowing the equation to operate on a complex field ψ(x). The result is the basic
equation of quantum mechanics(

− h̄2

2m
∇2 + V

)
ψ = ih̄∂̃tψ. (17.2)

which may also be written

HDψ = ih̄∂̃tψ, (17.3)

thereby defining the differential Hamiltonian operator. The free Hamiltonian
operator H0 is defined to be the above with V = 0.

17.1 The action

The action for the Schrödinger field is

S =
∫

dσdt
{
− h̄2

2m
(∂ iψ)∗(∂iψ)− Vψ∗ψ

+ ih̄

2
(ψ∗∂̃tψ − ψ∂̃tψ

∗)− J ∗ψ − ψ∗ J
}
. (17.4)

Notice that this is not Lorentz-invariant, and cannot be expressed in terms of
n + 1 spacetime dimensional vectors.
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17.4 Expression for the Green function 411

17.2 Field equations and continuity

The variation of the action can be performed with respect to both ψ(x) and
ψ∗(x) since these are independent variables. The results are

δψ∗S =
∫

dσdt δψ∗
(

h̄2

2m
∂ i∂iψ − Vψ + ih̄∂̃tψ

)

+
∫

dσ
[ ih̄

2
δψ∗ψ

]
+

∫
dσ i

[ h̄2

2m
δψ(∂iψ)

†
]
= 0

δψ S =
∫

dσdt δψ
( h̄2

2m
∂ i∂iψ

∗ − Vψ∗ − ih̄∂̃tψ
∗
)

+
∫

dσ
[
− ih̄

2
δψψ∗

]
+

∫
dσ i

[ h̄2

2m
δψ∗(∂iψ)

]
= 0, (17.5)

where we have used integration by parts, and the two expressions are mutually
conjugate. From the surface terms, we can now infer that the canonical
momentum conjugate to ψ(x) is

! = ih̄ψ, (17.6)

and that spatial continuity at an interface is guaranteed by the condition

�

(
h̄2

2m
(∂iψ)

)
= 0, (17.7)

where � means the change in value across the interface.

17.3 Free-field solutions

The free-field solutions may be written in a compact form as a linear combina-
tion of plane waves satisfying the energy constraint:

ψ(x) =
∫ ∞

0

dω̃

2π

∫ +∞

−∞

dnk
(2π)n

ei(k·�x−ω̃�t) ψ(k, ω̃)

× θ(ω̃) δ
( h̄2k2

2m
− h̄ω̃

)
. (17.8)

The coefficients of the Fourier expansion ψ(k, ω̃) are arbitrary.

17.4 Expression for the Green function

The Schrödinger Green function contains purely retarded solutions. This is a
consequence of its spectrum of purely positive energy solutions. If one views
the Schrödinger field as the non-relativistic limit of a relativistic field, then the
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negative frequency Wightman function for the relativistic field vanishes in the
non-relativistic limit as a result of choosing only positive energy solutions. The
Fourier space expression for the free-field Green function is

GNR(x, x ′) =
∫ +∞

−∞
dω̃

∫ +∞

−∞

dnk
(2π)n

ei(k·�x−ω̃�t)

( h̄2k2

2m − h̄ω̃)− iε
. (17.9)

This may be interpreted in the light of the more general expression:

GNR(x, x ′) =
∑

n

θ(t − t ′) un(x)u
∗
n(x

′)

=
∫

dα

2π
e−iα(t−t ′) un(x)u∗n(x

′)
α − ωn + iε

(17.10)

where un(x) are a complete set of eigenfunctions of the free Hamiltonian, i.e.

(H0 − En)un(x) = 0, (17.11)

where En = h̄ωn .

17.5 Formal solution by Green functions

The free Schrödinger Green function satisfies the equation(
− h̄2∇2

2m
− ih̄∂̃t

)
GNR(x, x ′) = δ(x, x′)δ(t, t ′), (17.12)

or

(H0 − E)GNR(x, x ′) = δ(x, x′)δ(t, t ′), (17.13)

and provides the solution for the field perturbed by source J (x),

ψ(x) =
∫
(dx ′)GNR(x, x ′)J (x ′). (17.14)

The infinitesimal source J is not normally written as such, but rather in the
framework of the potential V , so that J = Vψ :

(H0 − En)ψn = −Vψn, (17.15)

where ψ(x) =∑
n cnψn(x). Substitution of this into the above relation leads to

an infinite regression:

ψ(x) =
∫
(dx ′)GNR(x, x ′)J (x ′)

=
∫
(dx ′)GNR(x, x ′)V (x ′)ψ(x ′)

=
∫
(dx ′)(dx ′′)GNR(x, x ′)GNR(x

′, x ′′)J (x ′′), (17.16)
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and so on. This multiplicative hierarchy is only useful if it converges. It is thus
useful to make this into an additive series, which converges for sufficiently weak
V (x). To do this, one defines the free-field ψ0(x) as the solution of the free-field
equation

(H0 − En)ψ0n(x) = 0, (17.17)

and expands in the manner of a perturbation series. The solutions to the full-field
equation are defined by

ψn(x) = ψ0n(x)+ δψn (17.18)

where the latter terms are assumed to be small in the sense that they lead to
convergent results in calculations. Substituting this into eqn. (17.15) gives

(H0 − En)δψn = −V (x)ψn(x), (17.19)

and thus

δψ(x) = −
∫
(dx ′) GNR(x, x ′) V (x ′)ψ(x ′), (17.20)

or

ψ(x) = ψ0(x)−
∫
(dx ′) GNR(x, x ′) V (x ′)ψ(x ′). (17.21)

This result is sometimes called the Lippmann–Schwinger equation. The equa-
tion can be solved iteratively by re-substitution, i.e.

ψ(x) = ψ0(x) −
∫
(dx ′) GNR(x, x ′) V (x ′)ψ0(x

′′)

+
∫
(dx ′)(dx ′′) GNR(x, x ′)GNR(x

′, x ′′) V (x ′)V (x ′′)ψ(x ′′),

(17.22)

and generates the usual quantum mechanical perturbation series, expressed in
the form of Green functions.

17.6 Conserved norm and probability

The variation of the action with respect to constant δs under a phase transforma-
tion ψ → eisψ is given by

δS =
∫
(dx)

{
− h̄2

2m

[−iδs(∂ iψ∗)(∂iψ)+ (∂ iψ∗)iδs(∂iψ)
]

+ i
[
−iδsψ∗∂̃tψ + iδsψ∗∂̃tψ

]}
. (17.23)
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414 17 The Schrödinger field

Integrating by parts and using the equation of motion, we obtain the expression
for the continuity equation,

δS =
∫
(dx)δs

(
∂̃t J t + ∂i J i

)
= 0, (17.24)

where

J t = ψ∗ψ = ρ
J i = ih̄2

2m

[
ψ∗(∂ iψ)− (∂ iψ∗)ψ

]
, (17.25)

which can be compared to the current conservation equation eqn. (12.1). ρ is the
probability density and J i is the probability current. The conserved probability
is therefore

P =
∫

dσψ∗(x)ψ(x), (17.26)

and this can be used to define the notion of an inner product between two
wavefunctions, given by the overlap integral

(ψ1, ψ2) =
∫

dσψ∗1 (x)ψ2(x). (17.27)

17.7 Energy–momentum tensor

Replacing ηµν by δµν (the Euclidean metric), we have for the components of the
energy–momentum tensor:

θt t = ∂L
∂(∂̃tψ)

(∂̃tψ)+ (∂̃tψ
∗)

∂L
∂(∂̃tψ)∗

− L

= h̄2

2m
(∂ iψ)†(∂iψ)+ Vψ∗ψ, (17.28)

≡ H. (17.29)

In the second-quantized theory, where ψ(x) is a field operator, this quantity is
often called the Hamiltonian density operator H . This is to be distinguished
from HD, the differential Hamiltonian operator. In the classical case, the spatial
integral of θt t is the expectation value of the Hamiltonian, as may be seen by
integration by parts:

H =
∫

dσθt t =
∫

dσ ψ(x)∗
[
− h̄2

2m
∂2 + V

]
ψ(x)

= (ψ, HDψ)

≡ 〈HD〉. (17.30)
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Thus, θt t represents the total energy of the fields in the action S. The off-diagonal
spacetime components are related to the expectation value of the momentum
operator

θti = ∂L
∂∂̃tψ

(∂iψ)+ (∂iψ
∗)
∂L
∂∂̃tψ∗

= ih̄

2
ψ∗(∂iψ)− ih̄

2
(∂iψ

∗)ψ∫
dσθti = (ψ, ih̄∂iψ)

= −〈pi 〉, (17.31)

and

θi t = ∂L
∂(∂iψ)

(∂̃tψ)+ ∂L
∂(∂iψ∗)

(∂̃tψ
∗)

= − h̄2

2m

{
(∂iψ)

∗(∂̃tψ)+ (∂iψ)(∂̃tψ)
∗
}
. (17.32)

Note that θ is not symmetrical in the spacetime components: θi t �= θti . This is
a result of the lack of Lorentz invariance. Moreover, the sign of the momentum
component is reversed, as compared with the relativistic cases, owing to the
difference in metric signature. Finally, the ‘stress’ in the field is given by the
spatial components:

θi j = ∂L
∂(∂iψ)

(∂ jψ)+ ∂L
∂(∂iψ)∗

(∂ jψ)
∗ − Lδi j

= − h̄2

2m

{
(∂iψ)

∗(∂ jψ)+ (∂iψ)(∂ jψ)
∗ − (∂kψ)∗(∂kψ)δi j

}
+

{
Vψ∗ψ − ih̄

2
(ψ∗

↔
∂̃t ψ)

}
δi j . (17.33)

Using the field equation (17.2), the trace of the spatial part may be written

Tr θi i = (n − 2)
h̄2

2m
(∂kψ)∗(∂kψ)+ n

(
Vψ∗ψ − 1

2

h̄2

2m
ψ∗

↔
∂2 ψ

)
= (1− n) H + 2Vψ∗ψ, (17.34)

where the last line is obtained by partial integration over all space, and on
identifying the first and last terms as being H − V , and is therefore true only
up to a partial derivative, or under the integral sign. See also Jackiw and Pi for
a discussion of a conformally improved energy–momentum tensor, coupled to
electromagnetism [78].
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