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The part within the bracket may be written

{1 +(n—1) YP1uPoz - Dn1,n-1
+ {(n - 1) + (n - l) (n - 2)}]911 e P2 n-2 Qll——l, n—1

—2
‘f‘{( 9 >+ (’IZ - 1)<n 9 >}p1] s pn—3,n-3 Qn——Z, n—2 Qn—l,n——z

....................................................

+{n—1)+(n— 1)} puugee ... . Gu_1,2
+ {1 + 0}gu -+« Gu-1,10

Adding vertically we get two expressions, exactly similar to the first
term, the second expression being multiplied by (n — 1) p;;. Hence
the part within the brackets is equal to 1 4 (» — 1) py;, and so the
coefficient of a?/2! in the moment G.¥. is

npoo [1 + (n — 1) pul.

Transferring to the mean as origin by subtracting (npy)?, we
derive the second moment u, about the mean, or squared standard
deviation o2, as

0® = nPgo oo — % (M — 1) Poo (Poo — P11)-
Thus the mean and standard deviation of this particular distribution
are given in simple terms.

Ezample. For the distribution of one suit in a bridge hand, we

have .
L =2, n=13 ~1z2_4
Poo—z—a QOO‘_Z’ - ’ pll““5l*‘ﬁ-
39 39
H = g2 = — —
ence He, o2 16 68
~ 207 _ .86
272
and so c = 1:36.
A Problem in Combinations
By A. C. AITkEN.
1. If there are n individuals A4,, 4,, ...., 4,, in how many ways

can they be put into groups? For example, if there are three
individuals 4, B, C, they may be grouped as

A+ B+ C; A+(B+C), B+(C+ 4), C+(4+B); (4+ B+ 0),
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that is, in 5 ways, the respective subgroups, 1, 3, 1 in number, corre-
sponding to the partitions 1 + 1+ 1, 1 4+ 2, 3 of the integer 3.
Hence P (3), say, is 5.

We shall obtain various expressions for P (r), and shall place the
problem in relation to other questions of analysis.

2. Following MacMahon we shall denote partitions, e.g. those of 3
above, by 13, 1121, 31; in general, if the integer » is made up of a
integers a, plus B integers b, and so on, ¢ <b<...., we shall write the

corresponding partition as
a*bf. ... (1)

In the example given above, the partition 17 2’ leads to three
subgroups. The 3 here is 3!/(1!2!), and in general it is easy to see,
by the elementary theory of combinations, that the number of sub-
groups corresponding to the partition a*bf.... of n is

nlf@atb! . ... al Bl L) (2)
Hence one answer to our problem is
Pr)y=Z2Znl/(alb!....alBl....), (3)

the summation being over all partitions of the integer n; but this is
not a very helpful expression.

3. We seek therefore a generating function, in which P (n) shall
appear as coefficient of z", or perhaps of z"/n!.

Consider first groups made up of single units. If there are r
units in the partition (1) of n, then by (2) a factor r! will be required
in the denominator. Hence unit groups will be represented by a
generating function

S wrfrl,
0
this is, by e®.

Next, groups of two. By (2), any 2 requires a 2! in the
denominator for each time it occurs, and if it occurs r times it
requires an r! as well. The generating function for groups of two is

therefore
ei 2t
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In the same way the generating function for groups of r is
el
Combining in multiplication all such generating functions, since

groups of any size may be associated with groups of any other size,
we have the required generating function for P (n), namely
T T2+ 2Bt ... — ee’—l’ (4)
and we derive the interesting fact that P (n) is the coefficient of
2”/n! in this expansion, that is, by Maclaurin’s theorem,
P(n)=[Dre-1,_,;, where D = di . (5)
z

4, This result is connected with the procedure of repeatedly
differentiating a function of a function. For example we have

d , du
=1 @ —,
d 2 11 du 2 ’ d2u
<d—5> Fw) =1 @ (d—x> 1w o
d \8 , 3 . 2 d , 3
<dx> Flw) = () <%> + 3f (u)% ] (u>§~;§, (6)

and so on, and we notice that the coefficients 1, 3, 1 in the third of
these relations are the same as the numbers of subgroups in our first
example.
n
In the expression for <di> f(u), let us put f(u)=e*, u=e=.
x
Then the left hand side of the general relation of type (6) becomes

<i nel
dz) ¢’

while the right hand side is a sum of terms involving
X x
evel, eln—Nege’ T

Putting z = 0, we see that the sum of the numerical coeflicients in

the expansion of <Jd;>nf(u) is

[e_1<dix->n eex—_L = P (n). (7

=0
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5. Another set of relations, involving the operator :z:di or xD which
x

occurs in the theory of homogeneous differential equations, has the
same coefficients as the set (6). For example we have

(zD)2 = 22D? + 2D,

(xD)® = x®D? 4 322D? 4 zD, ete. (8)
Indeed, if u =e” the comparison between relations (6) and (8)
becomes exact. For example the expression for D*f(e?) is derived
by term by term differentiation from that for D3 f(e?) by exactly the

same formal operations as the expression for (xD)*is derived from
that for (xD)®; and so in general.

Inserting the operand e” in the expression for (xD)” corresponding
to (8), and then putting x = 1, we derive a new expression for P (n),
P (n) = [(&D) &1, (9)
comparison of which with (5) yields the rather peculiar identity
[Dr e ~1,_0 =[(z + 1D)" €*], 0. (10)
6. Since
e 1= e=1(1 4-€* + €*/2! + €3¢/3) + .. ..),

and P (n) is the coefficient of z"/n! in the expansion of this, we
derive yet another expression,

P(n) = et i(s"/s!). (11)

7. Next, let us write s* in terms of factorials s, s (s — 1), and so on.
To do this, let a table of differences be formed from 07, 1%, .. .., »n»,
the differences of 0" being denoted by A70". By the Gregory-Newton
interpolation formula we have

s(s—1)

&= 0n s A0" 4 2

AZO™ 1 .. .. +<s>mon.
n
Substituting this in (11) fors =0, 1, 2, ...., we obtain

Pn)=e1 % [ £0A'O”,/(s—r!r!)]. (12)

s=0 r=
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On summation of expressions like 1/(s — r)! we obtain e in each
case, and so (12) gives

P(n)=e! z e AT0Yr!
r=1
= 5 Arovrl, (13)
r=1

which exhibits P (n) as the sum of the ¢ divided differences’’ of 0.
As an equivalent for (11) this was given by Herschel.

7. The numbers of subgroups also crop up in these divided differences
of zero. For example, if n = 3, the table of divided differences is

0
1
1 3
7 1
8 6
19
27

the 1, 3, 1 for this case appearing again. The theorem indicated here
ig a general one. To prove it we may operate on z* with (zD)" and its
equivalent in (8), the result being an interpolation formula for »" in
terms of 07 and the differences of 0”.

8. One of the easiest ways of finding the first dozen or so numerical
values of P (n) is by means of the recurrence relation which P (n)
satisfies. This relation is

P (n+1)=P (n)+nP (n—1) +< 2>P (n—2)+....4+nP (1)4+P(0) (14)
= (P + 1) \ (15)

symbolically if, after expansion, exponents of P are written as
arguments. To prove this, we write

P, . =e 1 Drtl(ef)y =e-1 D" [e*. '], x=0.
Expanding the derivative of the product by Leibniz’s theorem and
then putting x = 0, we have the result (14) at once.

Now the right side of (14) is in shape simply a Gregory-
Newton interpolation formula. Hence, since P(0) =P (1) =1, we
see that if we construct a difference table from P (1), P (2), P(3),....,
then the values of P (1), AP(1), A2P (1), .... thereby given are
simply P (0), P(1), P(2), ...., and so on. This gives perhaps the
easiest way of all for finding the first several values of P (n), namely
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to build up the table, entering each P (r), when found, as a fresh
difference A" P (1) with which to begin a new line of differences.
For example we have, for the first few values,

P A A? A3 At AS

1
1
2 2
3 5
5 7 15
10 20 52,
15 27 67
37 87
52 114
151
203

which puts in evidence the property mentioned.

9. The first ten values of P(n) are
n 1 2 3 4 5 6 7 8 9 10
P(n) 1 2 5 15 52 203 877 4140 21147 115975.

Inspection shows that if » is a prime number > 1, p say, then
P (p) — 2 is divisible by p. For example 877 — 2 is divisible by 7.
This is a result easily proved. For A 0?7 =1, and A?P0? = p!, so
that the p™ divided difference of 07 is also 1. As for the differences
of 07 of order r, where 1 <r < p, it is an instant deduction from
Fermat’s theorem that
Ar0? = A7 o1 mod p,
=0, l<r<op.
To obtain the divided differences, which must be integers, we divide
the ordinary differences A”0? by r!, which does not contain p, since p
is a prime greater than r. Hence the divided differences for 1 <r < p
are also divisible by p. On summing these divided differences in
(18), we obtain for P (p) a multiple of p, plus 1 from each end term.
Hence, as stated, P (p) — 2 is divisible by p.

10. After these various diversions, it would have been pleasing to
find an asymplotic expression to represent P (n) for large values of #,
but this has not so far materialized. The function »!* gives a fair
representation for small values, up to n = 8; for example P(8)=4140,
while 8¢ = 4096. For higher values P (n) increases more rapidly; for
example P (10) = 115975, while 10> =.100000.
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