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A single-field-period quasi-isodynamic stellarator configuration is presented. This
configuration, which resembles a twisted strip, is obtained by the method of direct
construction, that is, it is found via an expansion in the distance from the magnetic axis.
Its discovery, however, relied on an additional step involving numerical optimization,
performed within the space of near-axis configurations defined by a set of adjustable
magnetic field parameters. This optimization, completed in 30 s on a single CPU core
using the SIMSOPT code, yields a solution with excellent confinement, as measured by
the conventional figure of merit for neoclassical transport, effective ripple, at a modest
aspect ratio of eight. The optimization parameters that led to this configuration are
described, its confinement properties are assessed and a set of magnetic field coils is
found. The resulting transport at low collisionality is much smaller than that of W7-X,
and the device needs significantly fewer coils because of the reduced number of field
periods.

Key words: fusion plasma, plasma confinement

1. Introduction

In 1951, Lyman Spitzer proposed the stellarator concept, where magnetic field lines are
twisted by deforming a torus to break axisymmetry (Spitzer 1958). Spitzer’s idea involved
the shape of a figure eight, where he was able to calculate its corresponding rotational
transform, and was realized experimentally with the Model A, B and C stellarators
(Stix 1998). During the next several decades, the stellarator concept saw important
developments in the calculation of magnetohydrodynamic (MHD) equilibria with good
nested flux surfaces, high-β stability properties, coil optimization, reduced neoclassical
transport and other improvements (Gates et al. 2017). More recently, the figure-eight
configuration proposed by Spitzer has continued to inspire advancements in the design
of stellarators and linked mirrors (Feng et al. 2021).
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There are currently three types of optimized stellarator configurations that appear to
have the potential to become future fusion reactors: (1) quasi-isodynamic (QI) (Gori, Lotz
& Nuhrenberg 1994), (2) quasi-axisymmetric (QA) and (3) quasi-helically symmetric
(QH) ones (Boozer 2015). In these configurations, termed omnigenous, the second (or
longitudinal) adiabatic invariant, J, is a function of the toroidal magnetic flux only,
J = J(ψ), which can be shown to lead to confined guiding-centre orbits (Helander
2014). The difference between the three cases lies mainly in the way that the contours
of constant magnetic field strength |B| close when plotted on magnetic flux surfaces:
in QI they close poloidally, in QA toroidally and in QH helically. Additionally, while
QA and QH belong to the class of quasi-symmetric stellarators, where all contours of
|B| are straight in Boozer and Hamada coordinates (D’haeseleer et al. 1991), in QI
only the contours of the maxima of |B| are required to be straight. All three types of
configurations can be ‘directly constructed’ using the near-axis expansion, based on an
approach using Boozer coordinates (Garren & Boozer 1991; Landreman, Sengupta &
Plunk 2019; Plunk, Landreman & Helander 2019), while only quasi-symmetric stellarators
have been obtained using an approach based on Mercier coordinates (Jorge, Sengupta
& Landreman 2020b, a). The largest stellarator in operation, Wendelstein 7-X (Grieger
et al. 1992), is of the QI type, though only very approximately given the fact that the
magnetic field strength at local maxima and minima varies substantially over the flux
surface, there is substantial neoclassical transport and losses of fast ions and the bootstrap
current are non-negligible. This type of configuration is relatively insensitive to the plasma
pressure since the Shafranov shift is small (Gori et al. 1994; Nührenberg et al. 1995; Cary
& Shasharina 1997; Nührenberg 2010) and the bootstrap current vanishes identically at
low collisionality (Helander & Nuhrenberg 2009; Helander, Geiger & Maaßberg 2011;
Landreman & Catto 2012). Unlike quasi-symmetric configurations, QI ones may thus be
operated with essentially no net toroidal current experimentally, even with finite plasma
pressure.

In this work, we construct a QI configuration using a near-axis expansion framework
based on Boozer coordinates, which reduces the computational effort considerably
compared with other approaches (the advantages and limitations of the near-axis
expansion framework are detailed in the next section). Unlike nearly all previous stellarator
designs, our configuration only has a single field period and a racetrack shape that
resembles Spitzer’s original idea. In contrast to the latter, however, it has carefully shaped
flux surfaces in order to satisfy the stringent requirements of quasi-isodynamicity. As
shown recently (Landreman & Sengupta 2019; Jorge et al. 2020a; Landreman 2021;
Landreman & Jorge 2020), the near-axis expansion not only can be used as a tool to
find configurations with enhanced particle confinement, but it also has the potential to
find configurations that are Mercier stable, if the expansion is carried to second order. Our
approach, based on a first-order near-axis expansion, relies on a careful choice of these
parameters such that good flux surfaces are found even for low to medium aspect ratios,
i.e. for R/a between 6 and 10, which are within the realm of the near-axis expansion
framework. In the past, QI stellarators have usually had aspect ratios of at least 10 (as for
example the W7-X A configuration of Geiger et al. (2015) at β = 0).

The QI configuration found here is obtained by varying the input parameters for the
near-axis expansion, namely the magnetic axis and the zeroth- and first-order magnetic
fields, and optimizing the resulting output such that a given objective function is
minimized. This optimization is performed using the SIMSOPT code (Landreman et al.
2021a; Landreman, Medasani & Zhu 2021b), which is able to perform gradient-based
optimizations with MPI parallelization of a finite-difference method and can easily be
generalized to a Variational Moments Equilibrium Code (VMEC)-based optimization
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approach that uses near-axis configurations as initial conditions. After a suitable set of
parameters is found, a finite-aspect-ratio configuration is constructed and its properties are
assessed using several numerical tools commonly used in stellarator optimization studies:
the VMEC (Hirshman, van RIJ & Merkel 1986), the BOOZ_XFORM code (Sanchez et al.
2000), the NEO code (Nemov et al. 1999), the Stepped Pressure Equilibrium Code (SPEC)
(Qu et al. 2020; Hudson et al. 2012), the coil optimization suite ONSET (Drevlak 1998)
and the SIMPLE code (Albert, Kasilov & Kernbichler 2020). Their main functions and
results are described in the following sections. The method used to construct near-axis
QI fields is that of Plunk et al. (2019), although we choose different forms of some
of the free functions that parametrize the solution space. The most notable example is
a function that controls the deviation from omnigenity near maxima of the magnetic
field strength (see (2.8)); this change, which improves the smoothness of solutions,
will be explained in more detail in an upcoming publication (Camacho Mata, Plunk &
Jorge 2022).

This paper is organized as follows. In § 2 the near-axis expansion formalism is outlined,
in particular its application to QI fields and the corresponding numerical implementation.
In § 3 the physics-based figures of merit are described and their analytical expressions
in the near-axis expansion formalism are shown. The resulting optimized configuration is
shown in § 4, and our conclusions follow in the final section.

2. The near-axis expansion

The near-axis expansion solves the equilibrium MHD equations by performing an
expansion in the inverse aspect ratio ε:

ε = a
R

� 1, (2.1)

where a and R are measures of the minor and major radius of the device, respectively. We
note that, although the construction is based on an expansion on ε, it is able to describe
the core region of any configuration, including those with low aspect ratio. We employ the
near-axis expansion using Boozer coordinates (ψ, θ, ϕ) (Boozer 1981), withψ the toroidal
magnetic flux divided by 2π, θ the poloidal angle and ϕ the toroidal angle, writing the
magnetic field vector as

B = ∇ψ × ∇θ + ι(ψ)∇ϕ × ∇ψ (2.2)

= β(ψ, θ, ϕ)∇ψ + I(ψ)∇θ + G(ψ)∇ϕ, (2.3)

where ι = ι(ψ) is the rotational transform, I(ψ) is μ0/(2π) times the toroidal current
enclosed by the flux surface, G(ψ) is μ0/(2π) times the poloidal current outside the flux
surface and β is related to the Pfirsch–Schlüter current.

In the near-axis expansion method for QI configurations, the position vector r is written
as

r(r, θ, ϕ) = r0(ϕ)+ X(r, θ, ϕ)ns(ϕ)+ Y(r, θ, ϕ)bs(ϕ)+ Z(r, θ, ϕ)ts(ϕ), (2.4)

where r =
√

2ψ/B̄ is a radial-like variable, B̄ is a constant reference field strength
and r0(ϕ) is the magnetic axis curve parametrized using ϕ. We employ a modified
Frenet–Serret frame (Carroll, Kose & Sterling 2013) where the curvature is replaced by the
signed curvature κ s = sκ , where s(ϕ) takes values of ±1 and switches at locations of zero
axis curvature (a characteristic of QI configurations). The normal and binormal vectors
are also multiplied by s. Note that the Frenet–Serret formulas are invariant under such
substitution. We therefore write the signed Frenet–Serret frame as (t,ns = sn, bs = sb),
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where (t,n, b) are the tangent, normal and binormal unit vectors of the Frenet–Serret
frame of the magnetic axis. In the following, the arc length along the axis is denoted by
	 with 0 ≤ 	 < L, the axis curvature by κ(ϕ) and the axis torsion by τ(ϕ) with the sign
convention of Landreman (2019).

We expand the magnetic field and the position vector only up to first order in r as (Garren
& Boozer 1991)

B = B0[1 + rd cos(θ − α)], (2.5)

where B0 = B0(ϕ) is the magnetic field on axis, d = d(ϕ) is a free function describing the
first-order magnetic field strength, while α = α(ϕ) is an angle-like variable also describing
the first-order magnetic field strength. This yields (Landreman & Sengupta 2019)

X = rd
κ s

cos(θ − α), Y = rκ s

d
B̄
B0

[sin(θ − α)+ σ cos(θ − α)] , Z = 0, (2.6)

where G = G0 = L/
∫ 2π

0 (dϕ/B0) and σ is a solution of

dσ
dϕ

+ γ

(
1 + σ 2 + B2

0

B̄2

d4

(κ s)4

)
− 2

(
I2

B̄
− τ

)
G0d2

B̄(κ s)2
= 0, (2.7)

with I = r2I2 and γ = ι− α′(ϕ). As the plasma pressure only appears at second order in
the expansion, the configurations considered here are effectively force-free configurations.
Incidentally, the fact that the axis curvature should vanish at points where B′

0(ϕ) = 0 stems
from the fact that QI fields need to have d = 0 at all local extrema combined with Y being
proportional to rκ/d (Plunk et al. 2019).

As shown by Cary & Shasharina (1997), QI fields are necessarily non-analytic.
Furthermore, for the near-axis expansion case, the omnigenity condition leads to the
relation α(2π)− α(0) = 2πι, while periodicity of the magnetic field in (2.5) requires
α(2π)− α(0) = 2πN (Plunk et al. 2019). To alleviate this conflict between omnigenity
and periodicity, we choose the function α such that omnigenity is violated in a controlled
way, by writing it as

α = ι

(
ϕ − π

Nfp

)[
1 + π

ι

(
N − ι/Nfp

(π/Nfp)2k+1

)(
ϕ − π

Nfp

)2k
]

+ π

(
2N + 1

2

)
, (2.8)

where Nfp is the number of field periods of the device. The integer k in (2.8) effectively
controls the spatial distribution along ϕ of the deviation from omnigenity. For a
more detailed discussion and a comparison with other forms of α including the exact
omnigenous form, see Camacho Mata et al. (2022).

We consider magnetic fields with a single minimum along the magnetic axis of the form

B0 = B00 + B01 cos(Nfpϕ), (2.9)

and parametrize the axis curve r0 as

r0(φ) =
∑

l

Rl cos(Nfplφ)eR +
∑

l

Zl sin(Nfplφ)eZ, (2.10)
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where φ is the standard cylindrical toroidal angle, eR and eZ are the standard cylindrical
coordinate unit vectors and stellarator symmetry is assumed. The form for d chosen here
is similar to the approach taken by Plunk et al. (2019), with an added term proportional to
the curvature of the magnetic axis:

d = dκκ +
∑

l

d̄l sin(Nfplϕ), (2.11)

where dκ and d̄i are constants.
The equation for σ , (2.7), is solved using Newton iteration with a pseudo-spectral

collocation discretization together with the constraint σ(φ = 0) = σ0. In the following,
the parameter σ0 is set to 0 in order to enforce stellarator symmetry. If φ = 0 is not one
of the grid points, this condition is imposed by interpolating σ using pseudo-spectral
interpolation. A uniform grid of Nφ points is used, with φj = (j + jshift − 1)2π/(NφNfp)
for j = 1 . . .Nφ and jshift = 0 and 1/3 in the quasi-symmetric and QI cases, respectively.
The value of jshift = 1/3 is used to avoid points along the axis where the curvature reaches
zero but different values of jshift could be used to achieve the same effect. The discrete
unknowns include the values of σ on the φ grid and ι0. As a boundary condition, we
impose periodicity in σ , with σ(0) = σ(2π) = σ0, yielding a single value of ι0 and the
function σ(φ) as solution. Finally, a conversion to cylindrical coordinates is performed
in order to create VMEC and SPEC input files and for visualization purposes using the
nonlinear method described in Landreman et al. (2019) and by choosing a particular value
for the radius r.

3. Optimization method

The optimization is performed with the SIMSOPT code, using the trust region reflective
algorithm for nonlinear least squares problems from the scipy package using the Python
programming language. The input parameters for the optimization are the axis shape
coefficients (Ri,Zi) except R0 = 1, which is fixed, the magnetic field on axis, where we
fix B00 = 1 and vary B01, and the scalars dκ and d̄i present in the first-order magnetic field
function d in (2.11). The additional parameters Nfp, the number of field periods, and the
exponent k in (2.8) were varied manually. As it was seen that values of k = 3 and Nfp = 1
yielded configurations with consistently lower elongation and neoclassical transport (as
measured by εeff; see below), these parameters were then held fixed during the construction
of the configuration presented here.

The optimization is performed in a series of steps. As an initial condition, we
employ R0 = 1, R2 = −0.2, Z2 = 0.35, (R1,Z1) = 0.0, B01 = 0.16 (a value used later
as reference), dκ = 0.5, d̄0 = 0 and d̄1 = 0.01. The values of R0,R2 and Z2 are those of
the configuration in Plunk et al. (2019). Then, SIMSOPT is called inside a loop over the
number of axis coefficients, starting at only two coefficients up to 12 sequentially, that is,
there are a total of 12 free axis coefficients, R2,R4,R6,R8,R10,R12,Z2,Z4,Z6,Z8,Z10,Z12,
and therefore there are 6 steps, where first R2,Z2 is allowed to vary, then R4,Z4, then
R6,Z6 and so forth. We note that, as more axis coefficients are introduced, the previous
axis coefficients are still varied within the optimization. By choosing even mode numbers
only, we obtain a two-field-period axis shape with two points of zero curvature at the
points of the extrema of |B| (ϕ = 0 and ϕ = π), as required by the omnigenity condition
(Plunk et al. 2019). The grid resolution is Nφ = 131 and is increased by 20 each time the
number of axis coefficients increases. Each iteration inside the loop is run until the change
of the cost function is smaller than 10−4, which usually takes between 10 and 40 steps to
be achieved. The optimization process takes less than 30 s using a single CPU core.
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The objective function has the following form:

fQI = wL∇B

L2
∇B

+ wE|E|2 + wR0 [min(Raxis)− Rmin]2 + wZ0 [max(Zaxis)− Zmax]2

+ wd|d|2 + wd̄s

∑
i

|d̄i|2 + wB̄01
|B̄01 − B̄ref

01 |2 + wd′(0)|d′(0)|2 + wα|α − α0|2. (3.1)

In (3.1), L∇B is the scale length associated with the Frobenius norm |∇B| of the ∇B
tensor (equation (3.11) in Landreman (2021)), given by L∇B = B0

√
2/|∇B|, min(Raxis)

and max(Zaxis) are the value of the minimum cylindrical radial and maximum vertical
coordinates, respectively, of the axis curve r0, |d| and |E| are the L2 norm of the
discretized functions d and the elongation E = a/b associated with the first-order
magnetic field in (2.5) where a and b are the semi-major and semi-minor axes of
the elliptical flux surface cross-section, respectively, and α0 = ι(ϕ − π) is an exactly
omnigenous version of the function α in (2.8). The terms in (3.1) have three main
goals: (1) select configurations with small deviations from QI (min of α − α0, d̄, d
and d′(0)); (2) select axis shapes with small elongation and aspect ratio (reduction of
1/L∇B, min(Raxis), max(Zaxis) and E); and (3) penalize high mirror ratios (reduction of
B̄01 − B̄ref

01 ). For a more in-depth assessment of the relation between axis shapes and
the resulting elongation and the difficulty of obtaining solutions with low elongation in
the near-axis expansion framework, we refer the reader to Camacho Mata et al. (2022).
As parameters in (3.1) we choose Rmin = Zmax = 0.4 and B̄ref

01 = 0.16. The weights used
in the optimization process are the following: wL∇B = 0.03,we = 0.4/Nφ,wR0 = wZ0 =
30,wd = 20/Nφ,wd̄s

= 100,wB̄01
= 200,wd′(0) = 2,wα = 60. Such values were found by

first scaling the weights such that every term in the objective function has an order of
magnitude of unity when a reasonable equilibrium is found and then they are fine tuned to
ensure the three main goals described before.

4. Results

The optimization procedure resulted in the following parameters:

R0(φ) [m] = 1 − 0.40566229 cos(2φ)+ 0.07747378 cos(4φ)− 0.00780386 cos(6φ),
(4.1)

Z0(φ) [m] = −0.24769666 sin(2φ)+ 0.06767352 sin(4φ)− 0.00698062 sin(6φ)

− 6.8162 × 10−4 sin(8φ)− 1.451 × 10−5 sin(10φ)− 2.83 × 10−6 sin(12φ),
(4.2)

B0(φ) [T] = 1 + 0.16915531 cos(ϕ), (4.3)

d(φ) = 0.00356311 sin(2ϕ)+ 0.00020159 sin(4ϕ)− 0.00121786 sin(6ϕ)

− 0.00011629 sin(8ϕ)− 8.3 × 10−7 sin(10ϕ)+ 3.20 × 10−6 sin(12ϕ)

+ 0.51837838κ. (4.4)

This configuration has a rotational transform on axis of ι0 = 0.680, a maximum elongation
of E = 5.100, a derivative of d on axis of d′(0) = 0.094 and a total value of the objective
function of fQI = 32.618. The coefficients R8, R10 and R12 are smaller than 10−8 and
were therefore set to zero as they have a negligible contribution to the properties of the
equilibrium.

Data for the magnetic configurations are available at Jorge (2022).
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(a) (b)

FIGURE 1. Shape of the idealized constructed configuration from the near-axis expansion. (a)
Bird’s eye and side views of the boundary shape in three dimensions with an aspect ratio of 8.
(b) Cross-sections of the configuration at eight values of toroidal angle φ.

(a)
(b)

FIGURE 2. Elements of the near-axis construction. (a) Magnetic field on the boundary using
(2.5). (b) Shape of the magnetic axis with white spheres in the locations of zero curvature. In red
we depict the signed normal vector, in blue the signed binormal vector and in green the tangent
vector.

To create a plasma boundary, we chose the radial near-axis coordinate as r = 1/9, which
leads to a calculated minor and major radius of Aminor_p = 0.125 (corresponding VMEC
output parameter) and Rmajor_p = 0.993 (corresponding VMEC output parameter),
respectively, leading to an aspect ratio of ε = 7.944. The resulting boundary can be seen
in figure 1, while the magnetic field and the magnetic axis can be seen in figure 2. While
the axis shape is similar that found in Plunk et al. (2019), namely a racetrack oval with
the points of vanishing curvature at the middle of each straight section and the surfaces
resembling a twisted strip, there is no sudden twist near the region of maximum field
strength. This not only results in better convergence of the VMEC at lower aspect ratios,
but has a practical consequence of simplifying the coil shapes needed to produce such a
configuration. As is evident from figure 2, not all contours of |B| close poloidally, but as
we shall see below, the neoclassical transport is nevertheless very small.
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(a) (b)

(c) (d )

FIGURE 3. (a) Profile of the rotational transform ι from VMEC (blue) and ι on axis from the
near-axis expansion (red). Contours of constant magnetic field strength in Boozer coordinates at
s = 0.17 (b), s = 0.5367 (c) and s = 0.9033 (d).

We then use this boundary shape as input to VMEC, a magnetic field equilibrium code.
The VMEC uses an inverse moment method where the cylindrical coordinates R (radial)
and Z (vertical) are expanded in a double Fourier series involving a poloidal angle and the
cylindrical toroidal angle. The resulting rotational transform profile is shown in figure 3(a).
The rotational transform predicted by the near-axis expansion is ι = 0.680 while VMEC
finds a relatively linear rotational transform with an on-axis value of ι = 0.671 and a value
of ι = 0.685 at the edge. We note that, while the rotational transform from the near-axis
expansion is fixed to the on-axis value in figure 3, the inclusion of magnetic shear is
possible by performing an expansion to third order as shown in Rodríguez, Sengupta &
Bhattacharjee (2022).

Based on the VMEC result, we use the BOOZ_XFORM code to find the magnetic
field strength |B| as a function of Boozer coordinates. This allows us to draw contours of
constant |B| and compare with the predicted contours in figure 2. The resulting properties
of |B| computed with BOOZ_XFORM are shown in figure 3. In figure 3(b–d), contours
of constant |B| are shown at s = 0.17, 0.5367 and 0.9033, where s = ψ/ψb with ψb the
toroidal magnetic flux at the boundary.

Next, we calculate the effective helical ripple εeff (Beidler et al. 1990; Nemov et al.
1999), which quantifies the direct effect of the radial magnetic drift of trapped-particle
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FIGURE 4. The magnitude εeff of the 1/ν transport for the constructed configuration (labelled
as QI NFP = 1) and for the standard configuration of W7-X in fixed boundary mode.

orbits on neoclassical transport in the so-called 1/ν transport regime. This parameter
vanishes for perfectly omnigeneous configurations and is a function of the radial position
r2. In figure 4, the profile of εeff is shown for the present configuration, calculated using the
NEO code. The εeff found here is substantially lower than that for W7-X, even for the lower
aspect ratio employed here. For such levels of εeff, the collisional transport is expected to
almost certainly be weaker than the turbulent transport for this configuration.

While VMEC can be used to analyse the approximate magnetic field inside a given
boundary, it cannot be used to directly examine magnetic islands. As discussed by
Reiman et al. (2007), low-aspect-ratio configurations are particularly prone to have
magnetic islands, which are caused by undesirable radial field components at surfaces with
rational rotational transform. As the presence of island chains and chaotic field regions
in the core significantly degrades confinement, practically useful MHD equilibria should
avoid or limit this phenomenon (Yamazaki et al. 1993; Neilson et al. 2010). In contrast
to VMEC, the SPEC is able to compute magnetic islands (Hudson et al. 2012). It does so
using the formalism of multi-region relaxed MHD to divide the computational domain into
a number of nested annular regions. While the magnetic field is required to be tangential
to the boundary of each region, there is no requirement that magnetic surfaces exist within
them. The SPEC can thus be used to assess the presence of magnetic islands in the interior
of such regions. For the optimized configurations found here, this procedure is particularly
simple since the pressure vanishes and only a single region needs to be considered, which
corresponds to the vacuum problem exactly (in the numerical sense). The Poincaré plot
of such a calculation using SPEC is shown in figure 5, where it is seen that no major
resonances are encountered and that flux surfaces are smoothly nested from the magnetic
axis to the computational boundary.

Next, we assess the confinement of 3.5 MeV alpha particles, which would be generated
in a fusion reactor. The fraction of lost particles is evaluated using the drift-orbit code
SIMPLE. For this study, we scale our magnetic configuration to a reactor size with minor
radius of 1.7 m and an average on-axis magnetic field strength of B0,0 = 5.7 T. Figure 6
shows the loss fraction of fast particles following collisionless guiding-centre drift orbits.
A total of 5000 test particles, equally distributed on each flux surface, were launched
with uniformly distributed pitch angles and traced for 0.2 s, typical for the collisional
slowing-down time in a fusion reactor, or until they cross the s = 1 boundary surface and
are considered lost. As shown in figure 6, the loss fraction is approximately 3.8 % for the
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FIGURE 5. Poincaré plot computed from the SPEC solution at φ = 0.

(a) (b)

FIGURE 6. The fast particle loss fraction at flux surfaces between s = 0.06 and s = 0.9 for a
scaled configuration to a minor radius of 1.7 m and a magnetic field B0,0 = 5.7 T. (a) Present
one-field-period QI configuration. (b) W7-X.

particles starting at a flux surface with s = 0.06 and for the ones starting at a flux surface
with s = 0.25 (approximately half the radius) it is approximately 7.2 %. For comparison,
figure 6 also shows the loss fraction in a W7-X configuration scaled to the same minor
radius and magnetic field. For this study, the vacuum W7-X standard configuration is
used, which corresponds to the A configuration of Geiger et al. (2015) at β = 0. Its loss
fraction is higher than the single-field-period QI for all particles at t = 0.2 s except those
that are started at s = 0.9. We note, however, that at such long time scales, collisional
effects might start to play a role, making collisionless simulations less reliable. Indeed,
for times t smaller than 0.01 s, the single-field-period configuration provides a higher loss
fraction mainly due to prompt losses. The source mechanism for such prompt losses will
be the subject of future studies.

Finally, a set of 30 coils that approximately reproduces the toroidal magnetic surface
in figure 1 was obtained. The goal here is to show that simple coils can be found
for the proposed one-field-period configuration. This was done by first scanning the
space of current potentials that approximate the target magnetic field. Their distance to
the plasma boundary as well as the number of Fourier modes describing the analytic
current can be varied. Then, the contours of the current potential, found using the
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FIGURE 7. Coil shapes for the magnetic configuration obtained here.

NESCOIL code (Merkel 1987), with four toroidal and three poloidal modes that lie
on a current-carrying surface 30 cm away from the plasma were transformed into 15
modular coils per half-period and optimized using the ONSET code (Drevlak 1998) into a
constructable shape shown in figure 7. The coils are parametrized with three-dimensional
splines independent of any constraining surface. The coil optimization technique used
is similar to that of Lobsien, Drevlak & Sunn (2018) with the difference that a starting
point was chosen that originates from a solution with higher Fourier modes. This makes
the approximation of the target magnetic field better but the complexity of the starting coil
configuration is prohibitive. Therefore, a first design step of the nonlinear coil optimization
focused on reducing the coil complexity as well as lowering the field error was taken.
This procedure is also described in Lobsien et al. (2020), which uses the same notation
for the penalty values as described below. In the optimization, the average and maximal
curvatures were reduced and the distance between adjacent coils was increased as well
as the distance between coils and the plasma boundary. The minimum distance between
coil centrelines is 0.338 m. The final optimization step focused on properties of the vacuum
magnetic field, ensuring that no low-order rational values of ι are present inside the plasma
boundary and that ι increases with minor radius. The shapes of the magnetic surfaces
defined by following field lines are highly sensitive to the iota profile due to the low shear
nature of this configuration. We show in figure 8 a Poincaré plot resulting from the coil
configuration in figure 7, which produces an island chain surrounding the last closed flux
surface and could potentially be used for an island divertor. We note that the appearance
of an island chain outside the plasma boundary was not targeted directly. As seen in
figure 9, the approximation of the target magnetic field defined by the VMEC solution
converges to a normalized maximum field error of 2 % and a normalized average field
error below 1 % after multiple optimization steps. The normalized field error is defined
locally as

qle(x) = |B · n|
|B| , (4.5)
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FIGURE 8. Poincaré plot obtained with the coils shown in figure 7 at the location φ = 0.

FIGURE 9. Relative field error qae between the magnetic field produced by the coil shapes and
the VMEC boundary shape (vertical axis) as a function of the optimization step (horizontal axis).

where n is the normal unit vector perpendicular to the plasma boundary and the maximum
local field error is max qle. The average field error is defined globally as

qae(x) =
∫

A qle dA
A

, (4.6)

where A is the area of the plasma boundary.

5. Conclusion

In summary, a new QI configuration that exhibits a number of favourable properties has
been found using a first-order near-axis expansion approach. It has relatively weak shaping
(implying relatively simple geometry) other than strong elongation, one field period, has
low neoclassical transport and can be realized with relatively simple coils. No attempt
was made to ensure favourable MHD properties, such as stability and small Shafranov
shift at finite plasma pressure. In contrast to standard optimization procedures where a
plasma boundary is varied, this design was found by varying the degrees of freedom of
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the near-axis expansion, namely the magnetic axis and the lowest-order magnetic field
strength. This procedure builds on the work of Plunk et al. (2019) and Camacho Mata
et al. (2022), using a newly developed approach to perform a controlled approximation to
omnigenity.

In future work, we intend to reduce the neoclassical transport further and improve its
fast-particle confinement properties by extending the optimization procedure to second
order in the inverse aspect ratio ε. Carrying the expansion to this order will allow us
to study configurations with finite plasma pressure and to optimize for other relevant
quantities such as magnetic well and the maximum-J property (Helander, Proll & Plunk
2013). Indeed, this configuration is characterized by having a magnetic hill instead of a
magnetic well as such measure is not available as an explicit target for the optimization at
first order in the expansion. The particular optimization procedure outlined here can also
be applied to other types of omnigenous configurations such as QA and QH ones, and will
be the subject of future work.
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