OPEN RIEMANN SURFACE WITH NULL BOUNDARY

KIYOSHI NOSHIRO

1. Recently the writer has obtained some results concerning meromorphic or algebroidal functions with the set of essential singularities of capacity zero,¹⁾ with an aid of a theorem of Evans.²⁾ In the present paper, suggested from recent interesting papers of Sario³⁾ and Pfluger,⁴⁾ the writer will extend his results to single-valued analytic functions defined on open abstract Riemann surfaces with null boundary in the sense of Nevanlinna,⁵⁾ using a lemma instead of Evans' theorem.

2. Let F be an arbitrary open Riemann surface of finite or infinite genus and $\{F_n\}$ (n=0, 1, ...) be a sequence of compact domains of F which satisfies the following conditions:

i) F_0 is simply connected,

ii) the boundary Γ_n of F_n consists of a finite number of simple closed analytic curves,

iii) $\overline{F}_n \subset F_{n+1}$ (n=0, 1, ...) where \overline{F}_n denotes the closure of F_n ,

iv) every component of the open set $F - \overline{F}_n$ consists of a finite number of non-compact domains,

 $\mathbf{v}) \, \bigcup_{n=0}^{\infty} F_n = F.$

Received April 23, 1951.

- ¹⁾ K. Noshiro: [1] Contributions to the theory of the singularities of analytic functions, Jap. Journ. of Math. 19 (1948), pp. 299-327; [2] Note on the cluster sets of analytic functions, Journ. Math. Soc. Japan, 1 (1950), pp. 275-281; [3] A theorem on the cluster sets of pseudo-analytic functions, Nagoya Math. Journ. 1 (1950), pp. 83-89.
- ²⁾ G. C. Evans: Potentials and positively infinite singularities of harmonic functions, Monatshefte für Math. und Phys. 48 (1936), pp. 419-424.
- ³⁾ Leo Sario : [1] Über Riemannsche Flächen mit hebbarem Rand, Ann. Acad. Sci. Fenn. A. I. 50 (1948), 79 pp.; [2] Sur les problèmes du type des surfaces de Riemann, Comptes Rendus, Paris, 229 (1949), pp. 1109-1111; [3] Questions d'existence au voisinage de la frontière d'une surface de Riemann, Comptes Rendus, Paris, 230 (1950), pp. 269-271.
- ⁴⁾ A. Pfluger: Über das Anwachsen eindeutiger analytischer Funktion auf offenen Riemannschen Fläche, Ann. Acad. Sci. Fenn. A. I. 64 (1949), 18 pp.
- ⁵⁾ R. Nevanlinna: Quadratisch integrierbare Differentiale auf einer Riemannschen Mannigfaltigkeit, Ann. Acad. Sci. Fenn. A. I. 1 (1941), 34 pp.

KIYOSHI NOSHIRO

Then the sequence $\{F_n\}$ is said to be an exhaustion of F.

Consider the open set $F_n - \overline{F}_{n-1}$ which consists of a finite number of connected components and the harmonic measure

(1)
$$\omega_n = \omega(p, \Gamma_n, F_n - \overline{F}_{n-1}) \quad (n = 1, 2, \ldots)$$

of $F_n - \overline{F}_{n-1}$ with boundary values 1 on Γ_n and 0 on Γ_{n-1} . We denote by d_n the total variation of the conjugate harmonic function $\overline{\omega}_n$ along Γ_n :

(2)
$$\int_{\Gamma_n} d\bar{\omega}_n = d_n,$$

where the sense of Γ_n is positive with respect to $F_n - \overline{F}_{n-1}$.

We define the modulus μ_n of $F_n - \overline{F}_{n-1}$ by the quantity⁶⁾

$$\mu_n = 2\pi/d_n.$$

Select suitably an additive constant of $\overline{\omega}_n$ for each connected component of $F_n - \overline{F}_{n-1}$, then the function

(4)
$$z_n = \frac{2\pi}{d_n} (\omega_n + i\overline{\omega}_n) + r_{n-1} = x_n + iy_n,$$

where

(5)
$$r_n = \sum_{\nu=1}^n \mu_{\nu} \quad (n \ge 1), \quad r_0 = 0,$$

maps the open set $F_n - \overline{F}_{n-1}$ with a finite number of suitable slits onto a slitrectangle $K_n: r_{n-1} < x_n < r_n$, $0 < y_n < 2\pi$ in a one-one conformal manner.⁷ Accordingly, the function z = x + iy defined by z_n for each $F_n - \overline{F}_{n-1}$ (n=1, 2, ...) maps the subsurface $F - \overline{F}_0$ with a finite or enumerable number of suitable slits onto a union of slit-rectangles: $K = \bigcup_{n=1}^{\infty} K_n$, lying in the domain $0 < x < R = \lim_{n \to \infty} r_n = \sum_{\nu=1}^{\infty} \mu_{\nu}$, $0 < y < 2\pi$, in a one-one conformal manner. For convenience, we shall call the figure K a graph of $F - \overline{F}_0$ by the exhaustion $\{F_n\}$. Similarly we can also define the graph of $F_n - \overline{F}_0$.

We first prove the following

LEMMA. Let $\{F_n\}$ be an exhaustion of a Riemann surface F with null boundary and k_v (v=1, 2, ...) be an arbitrary sequence of positive numbers. Then there exists a subsequence $\{F_{n_v}\}$ (v=0, 1, ...) which is an exhaustion such that

$$\mu_{n_{\nu}} \geq k_{\nu} \quad (\nu = 1, 2, \ldots),$$

where $F_{n_0} = F_0$ and μ_{n_v} denotes the modulus of the open set $F_{n_v} - \overline{F}_{n_{v-1}}$.

74

⁶⁾ For the definition of modulus, cf. Sario: loc. cit. [3]; Pfluger: loc. cit.

⁷⁾ Cf. Sario: loc. cit. [1], p. 11.

Proof. It is obvious that

 $F_n - \overline{F}_j \subset F_n - \overline{F}_0$ for 0 < j < n.

Consider two harmonic measures

(6)
$$\omega_n^{(j)} = \omega(p, \Gamma_n, F_n - \overline{F}_j) \text{ and } \omega_n^{(0)} = \omega(p, \Gamma'_n, F_n - \overline{F}_0).$$

Then, by the maximum principle, we have

(7)
$$\omega_n^{(j)}(\not p) < \omega_n^{(0)}(\not p).$$

Since F has a null boundary, $\omega_n^{(0)}$ (n=1, 2, ...) converges to a constant zero on F. Consequently, for fixed j, $\omega_n^{(j)} \to 0$ as $n \to \infty$. Denote by $\overline{\omega}_n^{(j)}$ the conjugate harmonic function of $\omega_n^{(j)}$ and put

(8)
$$\int_{\Gamma j} d\overline{\omega}_n^{(j)} = d_n^{(j)} > 0.$$

Then, it is easily seen that the modulus $\mu_n^{(j)} = 2\pi/d_n^{(j)}$ of the open set $F_n - \overline{F}_j$ tends to infinity as $n \to \infty$. Accordingly, for any positive number k, we can find a number n such that $\mu_n^{(j)} \ge k$. Repeating the same argument, our assertion is proved.

As an application of the graph of $F_n - \overline{F}_0$ by an exhaustion $\{F_n\}$, we can state

THEOREM 1. Let μ_n^* and μ_n be the moduli of $F_n - \overline{F}_0$ and $F_n - \overline{F}_{n-1}$ respectively. Then, there exists

(9)
$$\mu_n^* \ge \mu_1 + \mu_2 + \ldots + \mu_n.$$

Proof. Consider $w = \omega_n^{(0)} + i\overline{\omega}_n^{(0)}$ (cf. (6)) as a function of z = x + iy in the graph of $F_n - \overline{F}_0$. Then, it is clear that

$$d_n^{(0)} = \int_{x=\lambda} d\overline{\omega}_n^{(0)} \leq \int_{x=\lambda} |dw| \quad (0 < \lambda < r_n = \sum_{\nu=1}^n \mu_{\nu}).$$

Schwarz's inequality gives

$$\left[d_n^{(0)}\right]^2 \leq \left(\int_{x=\lambda} \left|\frac{dw}{dz}\right|^2 dy\right) \cdot \left(\int_{x=\lambda} dy\right) = 2\pi \int_{x=\lambda} \left|\frac{dw}{dz}\right|^2 dy,$$

whence, by integration

$$r_n [d_n^{(0)}]^2 \leq 2\pi \int_0^{r_n} \int_{x=\lambda} \left| \frac{dw}{dz} \right|^2 dy d\lambda = 2\pi \int_{\Gamma_0} d\overline{\omega}_n^{(0)} = 2\pi d_n^{(0)}.$$

Therefore

$$r_n \leq 2\pi/d_n^{(0)} = \mu_n^*.$$

Combining Lemma with Sario's theorem which is easily deduced from (9) by Nevanlinna's theorem, we can complete Sario's result in the following

KIYOSHI NOSHIRO

THEOREM 2. In order that an open Riemann surface F has a null boundary it is necessary and sufficient that there exists an exhaustion $\{F_n\}$ such that $\sum_{n=1}^{\infty} \mu_n = \infty$ where μ_n denotes the modulus of the open set $F_n - \overline{F}_{n-1}$.⁸⁾

3. Let F be an open Riemann surface with null boundary. Then, by Theorem 2, we can select an exhaustion $\{F_n\}$ of F such that $\sum_{n=1}^{\infty} \mu_n = \infty$, μ_n denoting the modulus of $F_n - \overline{F}_{n-1}$. Suppose that w = f(p) is non-constant, single-valued and meromorphic on the surface F. Then, the space formed by the elements q = [p, f(p)], where p varies on F, defines a conformally equivalent covering surface φ of the w-plane. Clearly the mapping $p \leftrightarrow q$, where q = [p, f(p)], is topological and conformal.

We first give a proof for Yûjôbô's theorem which is an extension of a theorem of Tsuji.⁹⁾

THEOREM 3 (Yûjôbô). The covering surface Φ has Gross' property.¹⁰

Proof. Let $q_0 = [p_0, f(p_0)]$ be an arbitrary point on \emptyset with projection $w_0 = f(p_0)$. Consider the star-region H formed by the segments from q_0 to singular points (algebraic branch-points or accessible boundary points of \emptyset) along all rays: $\arg(w-w_0) = \varphi$ ($0 \le \varphi < 2\pi$) on \emptyset . We shall show that the linear measure of the set E of arguments φ of singular rays (by which we understand rays meeting singular points in finite distances) is equal to zero. Denote by H_ρ the part of H above a circular disc $|w-w_0| < \rho$ and by \mathcal{L}_ρ the image of H_ρ by the mapping $p \leftrightarrow q$. Then \mathcal{L}_ρ is a simply connected domain on the surface F. We select as F_0 the image of a small circular disc with centre q_0 .

Now, we shall use the graph K, lying in the half-strip: $0 < x < \infty$, $0 < y < 2\pi$, of the subsurface $F - \overline{F}_0$ by the exhaustion $\{F_n\}$ with $\sum_{n=1}^{\infty} \mu_n = \infty$. In the graph K we consider the image $\widetilde{\Delta_p}$ of $\Delta_p - \overline{F}_0$ by the function z(p) = x(p) + iy(p), defined in 2, and the composed function w = w(z) = f(p(z)) defined on $\widetilde{\Delta_p}$. Let $\widetilde{\Theta_\lambda}$ be the image of the intersection Θ_λ of the niveau curve C_λ : $x(p) = \lambda \ (0 < \lambda < \infty)^{11}$ and

⁸⁾ Sario stated only the sufficient condition. Cf. loc. cit. [3]; R. Nevanlinna: loc. cit. Moreover, Sario remarked that a graph K of finite length can be constructed by a suitable choice of an exhaustion of F, in the case when F is simply connected and of parabolic type. Cf. loc. cit. [2].

⁹⁾ Z. Yûjôbô reported this result at the annual meeting of the Math. Soc. of Japan in 1948. However, his proof has been published nowhere. M. Tsuji: On the behaviour of a meromorphic function in the neighbourhood of a closed set of capacity zero, Proc. Imp. Acad. 18 (1942), pp. 213-219.

¹⁰⁾ W. Gross: Über die Singularitäten analytischer Funktionen, Monatshefte für Math. und Phys. 29 (1918), pp. 1-47.

¹¹) Evidently the niveau curve C_{λ} coincides with Γ_n when $\lambda = r_n$ (n=0, 1, ...).

 Δ_{ρ} by the function z(p) = x(p) + iy(p). We denote by $\theta(\lambda)$ the total length of $\widetilde{\Theta}_{\lambda}$ and $L(\lambda)$ that of the image of $\widetilde{\Theta}_{\lambda}$ by w = w(z). Then we can apply the method in proving a well-known theorem of Gross. It is clear that

$$L(\lambda) = \int_{\widetilde{\Theta}_{\lambda}} |w'(z)| dy.$$

By Schwarz's inequality

$$[L(\lambda)]^{2} \leq \int_{\widetilde{\Theta}_{\lambda}} |w'(z)|^{2} dy \cdot \int_{\widetilde{\Theta}_{\lambda}} dy = \theta(\lambda) \int_{\widetilde{\Theta}_{\lambda}} |w'(z)|^{2} dy = \theta(\lambda) \frac{dA(\lambda)}{d\lambda},$$

where

$$A(\lambda) = \int_0^\lambda \int_{\widetilde{\Theta}_\lambda} |w'(z)|^2 dx dy.$$

Hence

$$\int_{\lambda_0}^{\lambda} \frac{[L(\lambda)]^2}{\theta(\lambda)} d\lambda \leq A(\lambda) - A(\lambda_0) \leq \pi \rho^2 d\lambda$$

Since $\theta(\lambda) \leq 2\pi$,

$$\int_{\lambda_0}^{\lambda} [L(\lambda)]^2 d\lambda \leq 2\pi^2 \rho^2,$$

whence follows $\lim_{\lambda \to \infty} L(\lambda) = 0$. Accordingly we easily see that our assertion is true.

Remark. It is well-known that Iversen's property is a direct result from Gross' property. Thus Theorem 3 includes a theorem due to Stoïlow.¹²) Next consider a connected piece Φ_{ρ} of Φ above any circular disc $(c) : |w-w_0| < \rho$. Denote by n(w) the number of sheets above w inside (c) and put $N = \sup_{w \in (\sigma)} n(w)$, $(0 < N \le \infty)$. Then, the set E of points w such that n(w) < N, $w \in (c)$ is of capacity zero.¹³) Consequently, the spherical area of Φ is infinite, provided that Φ has an infinite number of sheets. It is also known that a Riemann surface on which no Green's function exists coincides with a Riemann surface with null bounbary.¹⁴)

¹²⁾ S. Stoïlow: Sur les singularités des fonctions analytiques multiformes dont la surface de Riemann a sa frontière de mesure harmonique null, Mathematica, 19 (1943), pp. 126-138.

¹³⁾ Y. Nagai: On the behaviour of the boundary of Riemann surfaces, II, Proc. Jap. Acad. 26 (1950). pp. 10-16; M. Tsuji: Some metrical theorems on Fuchsian groups, Kôdai Math. Sem. Rep. Nos. 4-5 (1950), pp. 89-93; A. Mori: On Riemann surfaces, on which no bounded harmonic function exists, which will appear in Journ. Math. Soc. Japan.

¹⁴⁾ K. I. Virtanen: Über die Existenz von beschränkten harmonischen Funktionen auf offenen Riemannschen Flächen, Ann. Acad. Sci. Fenn. A. I. 75 (1950), 8 pp.

KIYOSHI NOSHIRO

If we use the Lemma instead of Evans' theorem, in the same way in proving Theorem 3, and apply Ahlfors' theory of covering surfaces,¹⁵⁾ the arguments in a previous paper of the writer (loc. cit. [1]) will give the following theorems.

THEOREM 4. Ø is regularly exhaustible in the sense of Ahlfors.¹⁶⁾

THEOREM 5. Denote by Δ_{λ} the compact domain of F bounded by the niveau curve: $x(p) = \lambda$ ($0 < \lambda < \infty$) and by Φ_{λ} the image of Δ_{λ} on Φ by the mapping $p \leftrightarrow q$. Let D_1, D_2, \ldots, D_m ($m \ge 2$) be m closed disjoint circular discs on the Riemann w-sphere. We define the defect $\delta(D_j)$, the ramification index $\vartheta(D_j)$ and a quantity ξ by

$$\delta(D_j) = \lim_{\lambda \to \infty} \left[1 - \frac{n(\lambda, D_j)}{S(\lambda)} \right], \quad \vartheta(D_j) = \lim_{\lambda \to \infty} \frac{n_1(\lambda, D_j)}{S(\lambda)}, \quad \xi = \lim_{\lambda \to \infty} \frac{\rho^+(\Delta_\lambda)}{S(\lambda)},$$

where $n(\lambda, D_j)$ denotes the number of sheets of all islands above D_j , $n_1(\lambda, D_j)$ the number of orders of the branch-points of the islands above D_j , $S(\lambda)$ the average number of sheets of Φ_{λ} with respect to the w-sphere, $\rho(\Delta_{\lambda})$ the Euler characteristic of Δ_{λ} and $\rho^+ = \max(0, \rho)$. Then, there exists

$$\sum_{j=1}^{m} \delta(D_j) + \sum_{j=1}^{m} \vartheta(D_j) \leq 2 + \xi.^{17}$$

THEOREM 6. Suppose that the covering surface θ has an accessible boundary point Ω with projection w_0 . Denote by θ_p the ρ -neighbourhood of Ω which is a covering surface of the circular disc (c) : $|w-w_0| < \rho$. We suppose further that θ_p is simply connected. Then θ_p covers every point infinitely often inside (c) with one possible exception.¹⁸⁾

To prove Theorem 6, it is necessary to notice that Φ_{ρ} has an infinite number of sheets. Denote by n(w) the number of sheets of above w inside (c) and put $\sup_{w \in (o)} n(w) = N$. Then we have necessarily $N = \infty$. It is known that the set E of points w such that n(w) < N, $w \in (c)$ is of capacity zero (cf. Remark). Accordingly, we can draw a circle $c_1 : |w - w_0| = \rho_1$ ($0 < \rho_1 < \rho$) such that $c_1 \cap E = 0$ and Φ_{ρ} has no algebraic branch-point above the circle c_1 . Suppose that $N < \infty$, contrary to the assertion, and consider all loop-cuts of Φ_{ρ} above c_1 . Then there would exist at least one loop-cut by which Φ_{ρ} is decomposed into two multiply con-

78

¹⁵⁾ L. Ahlfors: Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), pp. 157-194.

¹⁶⁾ Cf. Noshiro: loc. cit. [1], p. 307. A. Mori kindly remarked that in the case when has a finite number of sheets, the assertion is directly proved by the fact that a bounded closed set of capacity zero is of linear measure zero.

¹⁷⁾ Cf. Noshiro: loc. cit. [1], p. 310,

¹⁸⁾ Compare with Noshiro: loc. cit. [1], Theorem 3, p. 315 and Theorem 4, p. 327.

nected pieces. This contradicts to the assumption that Φ_{P} is simply connected.

Now, we shall use Pfluger's theorm¹⁹⁾: Suppose that there is a quasi-conformal mapping between two open Riemann surfaces F and F'. Then F' has a null boundary if and only if F has a null boundary.

As an immediate consequence, we obtain

THEOREM 7. Theorem 3, 4, 5, 6 remain true in the case when w=f(p) is a quasi analytic function on an open Riemann surface F with null boundary.

4. Finally we shall give a remark and propose a problem. Let F be an open abstract Riemann surface. Suppose that there exists a function u(p) harmonic at every point on F except a single point p_0 such that

(1)' $u = \log |t| + a$ harmonic function

in a neighbourhood of p_0 , t being a local parameter at p_0 , and

(2)' u(p) tends to $+\infty$, as p converges to the ideal boundary Γ of F.

Then it is easily concluded that F has a null boundary. To prove this, denote F_{λ} the compact domain bounded by the niveau curve C_{λ} : $u(p) = \lambda$ $(-\infty < \lambda < +\infty)$. Then, the harmonic measure $\omega_{\lambda}(p) = \omega(p, C_{\lambda}, F_{\lambda} - \overline{F}_{\lambda_0}), (-\infty < \lambda_0 < \lambda < +\infty)$, will be written in the form:

$$\omega_{\lambda}(p) = \frac{u(p) - \lambda_0}{\lambda - \lambda_0}.$$

Therefore, keeping λ_0 fixed and letting λ tend to $+\infty$, we see that $\omega_{\lambda}(p) \rightarrow 0$ on $F - \overline{F}_{\lambda_0}$.

Problem. Is the converse true? More precisely: Does there exist a function which is harmonic at every point on F except a single point p_0 and satisfies (1)' and (2)' when F is an open Riemann surface with null boundary? (An extension of Evans' theorem).

Mathematical Institute, Nagoya University

¹⁹⁾ A. Pfluger : Sur une propriété de l'application quasi-conforme d'une surface de Riemar n ouverte, Comptes Rendus, Paris, **227** (1948), pp. 25-26.