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Abstract

The self-interaction spin-2 approach to general relativity (GR) has been extremely influential
in the particle physics community. Leaving no doubt regarding its heuristic value, we argue
that a view of the metric field of GR as nothing but a stand-in for a self-coupling field in flat
spacetime runs into a dilemma: either the view is physically incomplete in so far as it
requires recourse to GR after all, or it leads to an absurd multiplication of alternative
viewpoints on GR rendering any understanding of the metric field as nothing but a spin-2
field in flat spacetime unjustified.

1. Introduction
Starting in the 1950s, several physicists explored the possibility that general relativity
(GR) follows—in one way or another—as the unique extension of a linear field theory
for gravity. With such approaches, gravitational degrees of freedom are described as
massless spin-2 particles, or “gravitons”, propagating against a background
spacetime. Within physics, this appealing line of work has contributed to making
the case for the inevitability of GR, and to assimilating GR with other field theories.
This assimilation has helped launch attempts to formulate quantum gravity in the
covariant approach: a perturbative treatment of GR, as a non-linear extension of a
free field theory in Minkowski spacetime, opened up the possibility of applying
techniques like those used for other quantum field theories. Later work established
that GR is perturbatively non-renormalizable, but this derivation is still cited as
support for the claim that string theory incorporates gravity because it contains a
graviton in its particle spectrum.1 With regard to inevitability, Weinberg and others
have emphasized that via this line of work strikingly modest assumptions yield the
full complexities of GR.

These so-called spin-2 approaches to GR promise to repay more careful scrutiny for
several reasons. A successful unique extendibility of spin-2 to GR would, for instance,
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1 It is unclear to us exactly why it is cited in this context, as the derivation of GR fromWeyl symmetry
of the worldsheet lends stronger support for this claim (Huggett and Vistarini 2015).
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establish that GR has an appealingly “rigid” structure, in that it cannot easily be
modified or tweaked, and GR would be forced on us by mathematical consistency,
given a few facts about gravity in conjunction with general physical principles. This
line of work also suggests a novel take on foundational questions. Ideas familiar from
careful reconstructions of Einstein’s own path to GR, such as the equivalence
principle, appear to be consequences rather than assumptions. Over and above these
pragmatic reasons, spin-2 approaches to GR suggest that GR can be treated like just
another field theory within a special relativistic framework. This is grist to the mill
for philosophers, such as proponents of the dynamical approach, who take the
interpretative principles from (parts of) special relativity (SR) to play a central role in
interpreting GR. Salimkhani (2020) has, for instance, argued that the original
dynamical account of special relativity can be “fully resurrected” based on spin-2
derivations for GR.

We will focus on a spin-2 approach based on self-interaction, which is typically
taken to show that consistently coupling the (classical) spin-2 field to itself non-
linearly, or to other matter fields, leads directly to the field equations of GR. This
suggests that GR’s metric field is merely a stand-in for a self-coupling (classical) spin-2
field in flat spacetime: the metric field is seen as entirely captured by the spin-2 field
in flat spacetime (and only by it). (Note that such a view contrasts with the more
modest view that the spin-2 field in flat spacetime is an approximation to the metric
within a small region.) In this paper, we argue that any view of the metric field as a
mere stand-in for a self-coupling spin-2 field in flat spacetime—in the sense just
explicated—runs into a dilemma: either the view is physically incomplete in so far as
it requires recourse to GR after all, or it leads to an absurd multiplication of
alternative viewpoints on GR rendering any understanding of the metric field as
nothing but the spin-2 field in flat spacetime unjustified.2

We will proceed as follows: in section 2 we present general concerns about the
scope of the self-interaction spin-2 approach and whether it yields a derivation of GR.
Both points make an interpretation of GR based on the self-interaction somewhat less
attractive, but not necessarily untenable. In section 3 we then turn to the mentioned
dilemma for any self-interaction spin-2 view of GR. This does pose a strong challenge
to taking the self-interaction spin-2 approach as clarifying the foundations of GR. We
conclude with a brief discussion regarding how the self-interaction spin-2 derivation
has had concrete heuristic use for rigorous restrictionist results.

2. General concerns
In this section we consider two general concerns with the idea of a “derivation” of
general relativity from a self-coupling classical spin-2 field: the supposed derivation
suffers both from severe ambiguities and an unsatisfactorily limited scope.

2.1. Ambiguities in derivation
We begin with a brief review of how to arrive at GR as the only consistent way of
including self-interaction in the dynamics of a classical spin-2 field, formulated on a

2 For spin-2 views other than the self-interaction approach in flat spacetime, see e.g. Pitts (2022).
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Lorentzian manifold M; η� � (where η is the Minkowski metric), in order to pinpoint
several ambiguities.

1. Stipulate a classical spin-2 field h, i.e., a tensor field representing exactly two
polarizations, together with a free equation of motion.

2. Include universal coupling to matter: the energy–momentum tensor of all fields
other than the spin-2 field itself (denoted by T) source the free spin-2 equation
of motion:

G 0� �
βγ � Tβγ (EOM (0))

Assuming that T is conserved on-shell by virtue of the matter equations of
motion alone, a consistency problem arises: a coupling between the matter
fields and the h field means that T will no longer be conserved on-shell, i.e.,
@T �on�shell

0 no longer holds for the novel matter equations of motion that
include coupling to h. Yet G 0� �

βγ in the free equation of motion is identically zero
when hit with the partial derivative which, via (EOM(0)), implies @T � 0 (not
just on-shell)

3. Attempt to remedy the consistency problem by including a contribution to the
energy–momentum tensor from h itself (denoted by t 0� �).

4. Adding an energy–momentum tensor contribution from h, t 0� �, leads to a new
spin-2 equation of motion sourced by the matter term T:

G 1� �
βγ :� G 0� �

βγ � t 0� �
βγ � Tβγ : (EOM (1))

But it would be inconsistent to stop at this point: we can iterate the argument above,
which leads to adding the energy–momentum tensor for h associated to the left-hand
side of EOM(1), which we will denote t 1� �.

This problem arises for all steps n > 0: Let G n� �
βγ be the n-EOM-term for h, sourced

by Tβγ . Once corrected by t n� �
βγ , the (n� 1)-EOM is:

G n�1� �
βγ :� G n� �

βγ � t n� �
βγ � Tβγ : (EOM (n + 1))

5. Upon taking the limit n ! ∞ , and redefining η� h as g, the resulting field
equation containing all required self-interactions is the Einstein field equation.

The ambiguities of this procedure are so problematic as to undermine any plausible
claim of a derivation of GR from classical spin-2 theory.

Step 1 is ambiguous in choice of spin-2 field representation: A classical spin-2
field can be represented in various fashions (Barceló et al. 2014, section 2). This is
noteworthy in that the choice of spin-2 field representation demonstrably makes a
difference in the self-interaction approach even if various representations may be
physically equivalent in the standard flat spacetime context. Most proposals, with the
exception of Barceló et al. (2014), tacitly presuppose a Fierz–Pauli representation—
the h field is taken as a second-rank, symmetric Lorentz tensor field. An alternative,
however, is the spin-2 field representation that involves a trace-free condition on
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h (hµµ � 0). This can be realized as a specific (partial) gauge-fix of the Fierz–Pauli spin-
2 representation. The trace-free representation but not the Fierz–Pauli representa-
tion always implies that the volume element linked to a composite metric g :� η� h
is that of Minkowski spacetime (cf. Barceló et al. 2014, section 5). Moreover, step 1 is
ambiguous in the choice of spin-2 equation of motion: The Fierz–Pauli spin-2
equation of motion is a contingent but arguably preferable choice in so far as it is the
unique gauge-invariant second-order equation for a free spin-2 field in the Fierz–Pauli
representation.3 We will assume the Fierz–Pauli equation in the following.

With step 2 we face the choice of matter coupling: on what grounds is h taken to
be sourced by T and not in a matter-field-specific manner?

The most severe ambiguity arises in step 3, the choice of energy–momentum
tensor(s) associated to a spin-2 equation of motion.4 There is just no good heuristic
available to guide this choice, nor can it easily be regarded as a starting assumption
(by contrast with the first two steps). We will defer discussion until section 3.1. Step 3
suffers from a further ambiguity in choice of h-self-energy–momentum tensor
interaction in the sense that it is not clear why no forms of coupling of h to matter in
a different sense of universality (for instance, as not mediated via the energy–
momentum tensor) or of no universal nature at all (interaction with h differs in form
frommatter type to matter type) should be considered (in analogy with the ambiguity
of step 2). Arguably more severely though, and specific to the self-interaction term, it
is unclear whether the interaction of h with an energy–momentum tensor is to be
primarily described as self-sourcing at the level of the equations of motion in
analogy to the sourcing notion in electrodynamics, or as self-coupling at the level of
action (schematically: h � T) in reference to modern particle physics parlance (unlike
for a conventional energy–momentum tensor which does not contain h itself, self-
interaction and self-coupling are not equivalent in the context of a self-energy–
momentum tensor for h).

Even setting aside all these ambiguities in setting up the self-interaction problem,
the spin-2 construction of GR faces yet further hurdles in actually delivering GR. Most
importantly, the construction is only really feasible if the self-sourcing relation leads
to the Einstein field equations (or to an action equivalent to the Einstein–
Hilbert action). Butcher (2012) obtains, through a procedure similar to that above,
that the gravitational action at each respective step n is given by

Pn
i�1 Si,

where S1 γ; h� 	 � 1
λ

R
d4x

��������γp
Gµνhµν, S2 γ; h� 	 � 1

2

R
d4xhρσ δS1

δγρσ
, and δSi γ;h� 	

δhµν � δSi�1 γ;h� 	
δγµν

(recursively). Now, S1, S2, Si are the first-, second-, ith-order terms obtained from
(formally) expanding the Einstein–Hilbert action S � 1

λ

R
d4x

�������gp
R with respect to g

around η in terms of orders of h. But from only knowing the sequence prescription
and the starting terms, can one indeed find that

P∞
i�1 Si converges to S?

We refrain from claiming to see how convergence to the Einstein–Hilbert action
(with η� h to be replaced by g) can in any sense be guessed rather than just tested; in

3 The Fierz–Pauli action yields the spin-2 equation of motion mentioned above, which is equivalent to
that obtained by linearizing Einstein’s field equations with g ! η� h. This equation of motion is
invariant under the gauge transformation which is equivalent to the linearized diffeomorphisms of GR.

4 Numerous different expressions for this energy–momentum tensor exist in the literature, yet it is
not clear which one to use for the self-coupling procedure. All of these expressions are conserved on-
shell using the spin-2 equation of motion, thus uniqueness criteria are difficult to specify.
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particular, a direct guess based on visual inspection of a finite number of elements of
the sequence fails. Even if it were for instance discovered that the “sequence within

the series”, i.e. �Si�i2N1
, is explicitly given by Si γ; h� 	 � 2

i!

R
d4xhµν δ

δγµν

h i
i�2

S2 γ; h� 	, it is
not at all clear from the mere sequence rule what the overall series

Pn
i�1 Si would

converge to. A common feature of this and other derivation attempts is that
background knowledge of GR provides guidance at crucial steps; none are able to
uniquely recover GR starting from only concepts available in special relativistic field
theory. Notably, the exact details of the attempted derivation varies in the literature,
even in the most recent attempts (e.g., Butcher 2012; Barceló et al. 2014)—an
inconsistency which in itself points to the imprecise nature of the current state of the
derivation. The ambiguities discussed in this section stand in sharp contrast to any
claim that one can uniquely derive GR from spin-2 theory.

2.2. Limited sector
How much of GR can we expect to recover through the self-interaction approach? It is
understandably appealing to treat gravitons as perturbations around a flat spacetime
as a prelude to quantization, and to expect curved spacetime geometry to emerge
from interactions among the gravitons. From the point of view of heuristics and
theory construction, it is natural to start from a case of limited scope and hope that it
generates insight into the full theory, leaving global issues, and the complexities of
full non-linear interactions, to be treated at a later stage. However, if we take
seriously the idea that the spin-2 approach gives us a kind of theoretical reduction of
GR (cf. Salimkhani 2020), the question of how much can be reproduced is much more
pressing. Here we highlight two well-known limitations of the self-interaction
approach that hold even if the ambiguities above were resolved.

First, there are certain surface terms which a spin-2 derivation (no matter which
energy–momentum tensor scheme is chosen) can never reproduce (Padmanabhan
2008, section III).5

The second, and more pressing, concern regards how to make a transition from
gravitons propagating against a background metric η to a generic curved spacetime
metric g (e.g., Barceló et al. 2014). In general, η and g are not definable on
homeomorphic manifolds, and the local symmetries and other structures of
Minkowski spacetime (or other spacetimes with fixed curvature) cannot be
extrapolated globally. It is also not clear when local perturbative treatments can
be patched together. Riemannian normal coordinates can be applied in “local”
patches on a manifold, clarifying the sense in which a solution “looks locally flat,” but
the requirement that these patches can be stitched together imposes limits on the
topology and global features of the manifold.

5 This is not a general problem—the surface terms do not affect Einstein’s field equations (Butcher
2012). But adding a surface term in the Fierz–Pauli action does change the resulting spin-2 energy–
momentum tensor, undermining the specific attempt to uniquely specify one for the self-coupling
procedure.
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3. The dilemma
We now turn to presenting what we take to be the central issue with any classical
spin-2 view of GR, i.e., the view that the general relativistic metric is a stand-in for a
self-coupling classical spin-2 field in flat spacetime. The self-interaction statements of
h are first of all merely formal without some physical interpretation; however, the
attempt to provide such an interpretation leads to an immediate dilemma: (i) Either one
buys into the usual narrative of there being a self-coupling of h with its energy–
momentum tensor, or (ii) one accepts that there is a physical self-coupling of h
simpliciter, not to be understood in terms of coupling to energy–momentum tensor
(in other words, this option entails dropping the usual motivational narrative for the
self-consistency relation in terms of energy–momentum coupling). On the first horn,
we will argue that the self-interaction relation can only be interpreted through
recourse to a general relativistic viewpoint, which renders the self-interaction spin-2
approach parasitic on GR after all. On the second horn, there is no longer any reason
why the self-interaction relation is not simply one out of infinitely many self-coupling
relations corresponding to different perturbative expansions of any given spacetime.
There is then no unique way of interpreting GR in terms of perturbative expansions,
and we criticize this interpretative stance on general grounds.

3.1. The first horn
The self-sourcing procedure rests on the identification of a concrete spin-2 energy–
momentum tensor. The choice of an energy–momentum tensor is ambiguous in
several senses. First of all, the choice of an energy–momentum tensor is generally
considered to be ambiguous with respect to the addition of a superpotential
@αΨ

ρα� 	σ , where Ψρα� 	σ is a third-rank tensor that is anti-symmetric in its first two
indices (thereby, @ρ@αΨ ρα� 	σ � 0). The most general possible energy–momentum
tensor found from the superpotential method for the case of the Fierz–Pauli action
was derived in Baker (2021), which demonstrated that there are not only infinitely
many possible superpotential additions, but that even for specific superpotentials
there are infinitely many off-shell possibilities; therefore the superpotential method
further complicates the selection of a unique energy–momentum tensor for self
coupling.

Secondly, there is an ambiguity linked to the fact that the standard definition
usually adhered to in special relativity to obtain the energy–momentum tensor
relative to an action A/Langrangian density L—the canonical Noether energy–
momentum tensor TµνC —does not lead to a symmetric energy–momentum tensor,
which is, however, required for the self-interaction approach.6 Given the unique
energy–momentum definition for the canonical Noether energy–momentum tensor

TµνC � ηµνL� @L
@ @µhαβ
� � @νhαβ �

@L
@ @µ@ωhαβ
� � @ω@νhαβ � @ω

@L
@ @µ@ωhαβ
� �

 !
@νhαβ � � � �

6 The Poincaré symmetries associated with η (in particular, the four-parameter translation) are used
in Noether’s first theorem to derive an energy–momentum tensor, but in general, other background
spacetimes may lack these symmetries, thereby lacking the conventional Noether definition of an
energy–momentum tensor altogether.
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for a spin-2 field hαβ, one obtains TρσC � ηρσLFP � @LFP
@ @ρhµν� � @

σhµν for the Fierz–Pauli

Lagrangian density LFP. Using the freedom to add a superpotential @αΨ ρα� 	σ , the
symmetric energy–momentum tensor for the spin-2 field will be given (on-shell) by
the canonical Noether TµνC on the Fierz–Pauli Lagrangian LFP and the divergence of a
superpotential as

Tρσ � TρσC � @αΨ
ρα� 	σ : (1)

As shown in Baker (2021), however, there are infinitely many solutions to the specific
problem of finding a symmetric energy–momentum tensor using this procedure. This
approach alone fails to deliver a unique answer. The usual proposal to determine a
unique answer employed in the spin-2-to-GR literature is to pick out a preferred
symmetric energy–momentum tensor through the Hilbert definition:

Tγρ � 2�������gp δL
δgγρ

����
g�η

:

Notably, having some prescriptive definition for energy–momentum tensor like the
Hilbert one is required to make the self-interaction spin-2 approach feasible to begin
with: at each iterative step it is required to actually pick an energy–momentum tensor
relative to the spin-2 field equation obtained in the previous step.7 This needs to be
done in a systematic fashion if the self-sourcing is really to count as a performable
procedure, which in turn seems to make a unique definition necessary—otherwise we
would have to choose in principle infinitely many times between infinitely many
possible (symmetric) energy–momentum sources.

That is, the Hilbert definition is claimed to select one out of the infinitely many
possibilities in equation (1);8 however, this claim is not true in general—the result of
the Hilbert definition does not generally correspond to the symmetric Noether
energy–momentum tensor for flat (Minkowski) spacetime theories (Baker et al. 2021),
and in the example provided, only the Noether method was able to recover the
accepted energy–momentum tensor of the theory.9 But even if the methods do align
as in the case of Fierz–Pauli (Fierz–Pauli is one of a small number of models where on-
shell improvements can be used to reconcile the results of the Hilbert and Noether
methods) understanding why the Hilbert definition should be chosen to select the
right symmetric energy–momentum tensor still requires understanding the concept
of Hilbert definition itself—which as such, again, comes from GR and other curved
spacetime settings. Since the Hilbert definition relies on the notion of curved
spacetime, using it undermines the notion that the curved spacetime of GR is being

7 Alternatives to the Hilbert prescriptive definition do exist, such as the closely related definition in
Padmanabhan 2008).

8 Importantly, the Hilbert definition of energy–momentum involves at least two ambiguities itself,
namely how to generalize the coupling between spin-2 field and background metric from a flat to a
generic curved metric, and to what action to apply the coupling scheme. The two ambiguities are,
however, intertranslatable (Barceló et al. 2014). So, unless it is specified which options are taken here, the
Hilbert method does not pick out just one candidate.

9 One basic reason for the discrepancy in the Noether and Hilbert approaches is that, once models with
higher rank potentials and orders of derivatives are considered, the terms proportional to the Minkowski
metric diverge; no symmetrization superpotential “improvement” can impact this part of the expression.

Philosophy of Science 1369

https://doi.org/10.1017/psa.2023.56 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2023.56


introduced purely through some iterative procedure starting from spin-2 theory. At
the purely practical level, it also needs to be pointed out that if we considered only
the Noether approach without a priori knowledge of the Hilbert definition, it would
be impossible to determine which one of the infinitely many superpotentials recovers
(on-shell) the Hilbert expression.

With the relevance of the flat spacetime Hilbert definition called into question, and
without an alternative to it, we have no reason to think that there is a coherent sense
of energy–momentum sourcing at play in the self-interaction program.

3.2. The second horn
If one accepts that the identification of a dynamical coupling to self-energy is blocked,
one might remain unimpressed and take the mere existence of a defining recursive
relation, say for the action, as sufficient to establish that the g-field arises from the
h-field relative to flat spacetime. This leads to the second horn of the dilemma.

Consider, following Butcher (2012, section 2.3), how one can expand a gravitational
action S g

� �
such as the Einstein–Hilbert action SEH for g � γ � κh in orders of κ

around some arbitrary static background metric γ such that
S g
� � � S γ � κh� 	 �P∞

i�0 κ
iSi γ; h� 	, where the ith partial action is given by

Si γ; h� 	 � 1
i! @

i
κS γ � κh� 	� �jκ�0. It straightforwardly follows that

δSi γ; h� 	
δhµν

� δSi�1 γ; h� 	
δγµν

: (recursive relation)

We are interested in the case where S � SEH is the Einstein–Hilbert action and γ � η

the Minkowski background. As worked out before, it is not clear then that
δSi�1 γ;h� 	
δγµν

� 	
jγ�η can be associated with any sort of special relativistic concept of energy–

momentum tensors (as usually done via Noether’s theorem for the special relativistic
context, i.e., in relation to the Poincaré symmetries)—and thus regarded as clearly
physically sensible contributions to h’s self-energy. (As long as there is no sensible
notion of energy–momentum tensor defended here, there is no clear sense in which
the energy-self-sourcing interaction can literally be taken as a physical mechanism.)

What we want to bring to attention now is that the mere fact that the relation
between a few terms of a perturbative series of a function(al) can be used to define the
whole function(al) if suitable operations are allowed is nothing special as such; in
particular, this fact alone cannot render the perturbative picture physically more
fundamental than the non-perturbative one. For instance, the sequence elements
�fi�i2N0

in the series expansion of exp x� � � 1 as
P∞

i�0 fi can be re-expressed recursively

as fi�1 � xfi
�maxfjj@j fi ≠ 0g�1� with f0�x� � x analogously to how the Einstein–Hilbert action

is fixed by a recursive relation in equation (recursive relation). All of this suggests
that the self-interaction spin-2 approach involves interpreting a perturbative
expansion to look like a physical energy-sourcing relation instead of simply seeing it as
part of a standard mathematical procedure.

Perhaps a perturbative spin-2 view could still be seen to offer a decompositional
picture of the metric field as composed of some background metric and an h field with
corresponding dynamics. Given the arbitrariness in background metric (in particular,
the Minkowski metric is neither the only, nor a preferred, option in such a classical
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decompositional picture), the question arises then why any perturbative picture of GR
should be more fundamental than the non-perturbative picture. Arguably, the
converse question(s) as to why the non-perturbative picture is more fundamental
than the perturbative one (or, at least, all perturbative pictures taken together) is also
possible. If so, we seem to be left with many possible ways to identify the fundamental
dynamical degrees of freedom of the gravitational field, without sufficiently clear
grounds for privileging one. The existence of multiple viable ways of understanding a
theory should come as no surprise. Philosophers often turn to super-empirical virtues
to provide new grounds to single out a preferred reading. Now, the standard non-
perturbative picture offers an transparent path to the spin-2 equations of motion/
actions; the converse, as we have seen with all the involved ambiguities, is not equally
true (section 2.1). Secondly, the standard non-perturbative picture has a wider scope
since it requires only very weak restrictions on the background manifold (section 2.2).
If at all, all perturbative pictures taken together have the same explanatory scope
as the non-perturbative picture alone. But more than that: the myriad possible
perturbations are even explained by assuming a non-perturbative picture as
fundamental.

But what if one takes into account the special status of flat spacetime in quantum
theory? Admittedly special relativistic field theory is a powerful framework. One
might object then that that spin-2 theory cannot dynamically reduce GR should really not
bother us; rather, what should be stressed is that it is the (specific) perturbative
picture of flat spin-2 theory (and only that) which is continuous with all of our other
best other physical theories. The flat-spacetime-based perturbative picture offers
prospects of a unified account of all field theories within one framework. This kind of
unificationist argument is much less appealing now than in the 1950s, however:
quantized perturbative gravity is generally seen as a non-renormalizable theory while
it is non-perturbatively quantized GR—so exactly not the quantization of gravity
around flat spacetime—that is generally expected to be UV complete (for an
overview, see Crowther and Linnemann 2019).10 More precisely, the general
expectation within the quantum gravity community seems by now to be that the
(Minkowski-based) spin-2 view is, again, only one out of a myriad complementary
effective field theory views on general relativity—including the de Sitter- and anti-de
Sitter-based spin-2 views (Huggett and Wüthrich forthcoming, chapter 9) but more
generally perturbative quantizations around arbitrary background spacetimes.11

Unification with quantum field theory seems simply to get immediately trumped by
renormalizable quantization, the posit that gravity should lead to a renormalizable
quantum theory—an explanatory standard with more relevance than unification for
its own sake.

4. Conclusion
We have shown that not only are there serious concerns to be had about the scope
and derivational nature of the spin-2 approach to GR, but also that a devastating

10 See Ashtekar (1991) for a heuristic argument that quantizing non-perturbative gravity provides
additional insights over perturbative approaches.

11 The possible lack of a particle representation (because the background spacetime does not have
symmetries) does not impede the possibility of a sensible quantum field theory.

Philosophy of Science 1371

https://doi.org/10.1017/psa.2023.56 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2023.56


dilemma arises for any understanding of the metric of GR as a self-interacting spin-
2 field.

None of this undermines the heuristic use of the self-interaction picture. One
often-ignored achievement of the self-interaction approach from a pragmatic point of
view is the by now common reformulation of the self-interaction problem as a
problem of gauge deformation (see, in particular, Fang and Fronsdal 1979, as well as
Wald 1986; Boulanger et al. 2001). Notably, once the transition has been carried out,
there is no need to explicitly define the energy–momentum tensor associated to the h
field. Consequently, the ambiguity problem with respect to the self-interaction
energy–momentum tensor may be evaded when the gauge deformation perspective is
taken up from the start (and not merely treated as clarifying the self-interaction
problem). However, the gauge-theoretic and the self-interaction approaches are de
facto linked to two very different projects in the literature: while the self-interaction
problem qua physical sourcing mechanism is typically presented as a step-by-step
“derivation” of the field equations (and, given the ambiguities, only at first sight
sensibly so), proponents of the gauge deformation approach do not convey an image
of the spin-2 equations as leading to the Einstein field equations in the sense of a
derivation.12 Rather, the idea is to make precise a sense in which the former fix the
latter uniquely under sufficiently further mild conditions (something one may refer
to as a restrictionist approach, as for instance familiar from the Lovelock theorems).
In some sense the difference in strategy is inevitable if the self-interaction approach
is considered to be a failure qua derivational approach. After all: if the gauge-
theoretic approach was just as well cast as a “derivation,” would one not immediately
wonder why one has practically only managed to arrive at it through the self-
interaction approach? The failure of the self-interaction approach qua “derivation”
undermines any wider “derivational” project the self-interaction approach itself is a
part of. But, notably, gauge deformationists have treated—or, in any case, can treat—
the self-interaction picture simply as a heuristic ladder which can be used despite
its flaws.
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