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Rational Integer Invariants
of Regular Cyclic Actions

Robert D. Little

Abstract. Let g : M2n → M2n be a smooth map of period m > 2 which preserves orientation. Suppose

that the cyclic action defined by g is regular and that the normal bundle of the fixed point set F has a

g-equivariant complex structure. Let F t F be the transverse self-intersection of F with itself. If the

g-signature Sign(g, M) is a rational integer and n < φ(m), then there exists a choice of orientations

such that Sign(g, M) = Sign F = Sign(F t F).

1 Introduction

Let M2n be a smooth, closed, oriented 2n-manifold. Let Gm denote the cyclic group

of order m. Let g : M2n → M2n be a diffeomorphism of period m which preserves

the preferred orientation of M2n. Suppose that the smooth Gm action defined by g

has fixed point set F and that ν is the normal bundle of F in M2n. We will assume

throughout this paper that ν admits a complex structure compatible with the g-action.

This assumption is automatically fulfilled for m odd. We will also assume that the

orientation of ν is the one determined by its complex structure. This orientation, together

with the preferred orientation of M2n, determines an orientation of F.

Let Sign(g, M) be the g-signature of the action [2]. The g-signature is an algebraic

integer, that is Sign(g, M) ∈ Z[λ] where λ = exp(2πi/m). If Sign(g, M) is a ratio-

nal integer, that is Sign(g, M) ∈ Z, then it is related to the signatures of F and the

transverse self-intersection of F with itself, F t F, if the action is regular. The action

is regular if there is a fixed irreducible representation of Gm which determines every

normal slice type (Definition 2.4). Let Feven (Fodd ) be the union of all components

of F where the restriction of ν has even (odd) complex dimension. Let φ(m) be the

number of integers smaller than m and relatively prime to m.

Theorem 1 Suppose that g : M2n → M2n is an orientation preserving diffeomorphism

of period m > 2. If the Gm action defined by g is regular and Sign(g, M) ∈ Z and

n < φ(m), then

Sign(g, M) = Sign Feven = Sign(F t F)

and Sign Fodd = 0. In particular Sign(g, M) = Sign F.

Theorem 1 strengthens an earlier result that if m = p an odd prime, Sign(g, M) ∈
Z and n < p − 1, then Sign(g, M) = Sign F [11, Theorem A]. The assertion in The-

orem 1 about Sign(F t F) is new even in the odd primary case. If M2n admits an

orientation preserving involution T : M2n → M2n, then Sign(T, M) = Sign(F t F)
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[7], [2, Proposition 6.15], [8, p. 27]. Theorem 1 shows that for regular actions with

Sign(g, M) ∈ Z and n < φ(m), Sign(g, M) behaves like the signature of an involu-

tion.

If the intersection form underlying the g-signature is definite, then Sign(g, M) ∈
Z [3, Lemma 3.1]. If g∗ is the identity on H∗(M; Q), then Sign(g, M) = Sign M

[1, p. 329], [3, Section 1] and so our next result is an immediate consequence of

Theorem 1.

Theorem 2 Suppose that g : M2n → M2n is an orientation preserving diffeomorphism

of period m > 2. If the Gm action defined by g is regular and g∗ is the identity on

Hn(M; Q) and n < φ(m), then

Sign M = Sign Feven = Sign(F t F)

and Sign Fodd = 0. In particular Sign M = Sign F.

Theorem 2 is related to results in the literature. If m is odd and M2n admits any

Gm action such that g∗ is the identity on Hn(M; Q), then Sign M ≡ Sign F (mod 4)

and if the action is regular, then Sign M ≡ Sign F (mod 2φ(m)) [1, Theorems 1 and

4]. If p is an odd prime and M2n admits a regular Gp action and n < p − 1, then

Sign M ≡ Sign F (mod p) [9, Theorem 2.2]. It follows from these last two results

that if M2n admits a regular Gp action with g∗ the identity on Hn(M; Q) and n <
p − 1, then Sign M ≡ Sign F (mod 2p−1 p). Theorem 2 shows that this congruence is

an equality.

Our next theorem is a consequence of Theorems 1 and 2 and properties of the

transverse self-intersection.

Theorem 3 Suppose that g : M2n → M2n is an orientation preserving diffeomorphism

of period m > 2 and that the Gm action defined by g is regular. If Sign(g, M) ∈ Z and

Sign(g, M) 6= 0 and n < φ(m), then n is even and F contains a nonempty component of

dimension at least n. If g∗ is the identity on H∗(M; Q) and Sign M 6= 0 and n < φ(m),

then n is even and F contains a nonempty component of dimension at least n.

If p is an odd prime and M2n admits a regular Gp action Sign M 6≡ 0 (mod p)

and n < p − 1, then F contains a nonempty component of dimension at least n [9,

Corollary 2.7]. Theorem 3 shows that if g∗ is the identity on Hn(M; Q), then Sign M 6=
0 is enough to imply that F contains a nonempty component of dimension at least n if

n < p−1. If I2n(p) is the subgroup of Ω2n consisting of classes all of whose Pontrjagin

numbers are divisible by p and [M] 6= 0 in Ω2n/I2n(p), then F contains a nonempty

component of dimension at least n [12, Theorem 1.3].

We offer a congruence for Sign(g, M) and Sign F for regular Gm actions, m > 2,

and a congruence for Sign(g, M) and Sign(F t F) for some values of m. The former

congruence contains the congruence for m odd described above [1, Theorem 4]. Let

ρ(m) = φ(m) − 1 if m = 2e and ρ(m) = φ(m) if m 6= 2e.

Theorem 4 Suppose that g : M2n → M2n is an orientation preserving diffeomorphism

of period m > 2. If the Gm action defined by g is regular and Sign(g, M) ∈ Z, then

Sign(g, M) ≡ Sign Feven (mod 2ρ(m)) and Sign Fodd ≡ 0 (mod 2ρ(m)) and so

Sign(g, M) ≡ Sign F (mod 2ρ(m)).
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If p is an odd prime and m = 2pe, then Sign(g, M) ≡ Sign(F t F) (mod p).

We will apply our results to cohomology complex projective n-space. We say that

M2n is a cohomology complex projective n-space if there is a class x ∈ H2(M; Z) such

that H∗(M; Z) = Z[x]/(xn+1). These manifolds are good candidates for applications

since, for m odd, g∗ is the identity on Hn(M; Q) and so Sign(g, M) = Sign M. We

say that a submanifold i : K2n−2t ⊂ M2n has degree d if i∗[K] ∈ H2n−2t (M; Z) is dual

to dxt .

Theorem 5 Suppose that M4q is a cohomology complex projective 2q-space and that p

is an odd prime. If M4q admits a regular Gp action and 2q < p − 1, then F contains

a nonempty connected 2r-manifold such that r ≥ q and Sign(F2r t F2r) = 1. If d is

the degree of F2r and r = 2q − 1, then d2 is an odd divisor of (2q)! and if r = q, then

d2
= 1.

Theorem 6 Suppose that M4q is a cohomology complex projective 2q-space, q = 1

or 2, and that p > 5 is a prime. If M4q admits a regular Gp action, then F has two

components. If q = 1, then F is the union of a point and a 2-sphere of degree ±1. If

q = 2, then F is either the union of a point and a 6-manifold of degree ±1 or the union

of a 4-manifold of degree ±1 and a 2-sphere.

This paper is organized as follows. Section 2 contains a discussion of the Atiyah-

Singer g-Signature Formula (ASgSF) as formulated by Berend and Katz [3, Theo-

rem 2.2]. This version of the ASgSF expresses Sign(g, M) explicitly as an element

in Z[α1, α2, . . . , αm−1], α j = (λi + 1)(λ j − 1)−1. The ASgSF for regular actions is

also discussed. Section 3 describes the minimal polynomial of α j over Q . We prove

Theorems 1, 2, 3, and 4 in Section 4 (Theorems 4.3, 4.12 and 4.19) and Theorems 5

and 6 in Section 5 (Theorem 5.1, Corollary 5.4 and Theorem 5.10).

2 The Atiyah-Singer g-Signature Formula

Suppose that M2n admits an arbitrary Gm action generated by an orientation pre-

serving diffeomorphism g : M2n → M2n. We are not assuming regularity at this

point and m ≥ 2. Let ν be the normal bundle of F in M2n. Over each connected

component of F, ν splits into a sum of λ j-eigen bundles ν j where Gm acts on ν j as

multiplication by λ j , λ = exp(2πi/m). Each component of F has a normal slice

type µ = (µ1, µ2, . . . , µm−1), µ j = dimC ν j . Let Fµ be the union of all compo-

nents of F with slice type µ and νµ the normal bundle of Fµ in M2n. Note that

dimC νµ =
∑m−1

j=1 µ j .

Let Z+ be the set of nonnegative integers. If q is a positive integer, let S(q) be the

symmetric group on q letters and put S(µ) =
∏m−1

j=1 S(µ j). Let Ω(µ) = Ω̃(µ)/S(µ)

where Ω̃(µ) =
∏m−1

j=1 Z
µ j

+ . If ω ∈ Ω(µ), let ‖ω‖ j be the sum of the entries in ω from

Z
µ j

+ and |ω| j the number of these entries which are not zero. Put ‖ω‖ =
∑m−1

j=1 ‖ω‖ j .

Let α j = (λ j + 1)(λ j − 1)−1, 1 ≤ j ≤ m − 1 and λ = exp(2πi/m).

Theorem 2.1 (Berend-Katz ASgSF, [3, Theorem 2.2]) Let M2n be a smooth, closed,

oriented 2n-manifold and g : M2n → M2n an orientation preserving diffeomorphism of
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period m ≥ 2. There exist rational integers Sω(νµ) ∈ Z for each normal slice type µ and

ω ∈ Ω(µ) such that (2.2)

Sign(g, M) =

∑

µ

∑

ω∈Ω(µ)

(−1)‖ω‖
(

∏

j

α
µ j +‖ω‖ j−2|ω| j

j (α2
j − 1)|ω| j

)

Sω(νµ).

The rational integers Sω(νµ) can be described as follows. Let x j,` ∈ H2(Fµ; Z), 1 ≤
` ≤ µ j , 1 ≤ j ≤ m−1, be classes such that the Chern classes of ν j are the elementary

symmetric polynomials in the variables x j,`, 1 ≤ ` ≤ µ j and let Y j,` ⊂ Fµ be the

Poincaré dual of x j,`. If ω̃ = (ω j,`) ∈ Ω̃(µ), put Y (ω̃)
=t j,` Y

(ω j,`)

j,` , where Y
(ω j,`)

j,` is the

transverse self-intersection of ω j,` copies of Y j,` with itself. If ω ∈ Ω(µ) is covered by

ω̃, then

(2.3) Sω(νµ) =

∑

σ∈S(µ)

| Stω̃ |
−1 Sign Y (σω̃),

where | Stω̃ | is the order of the stabilizer of ω̃ [3, Section 3].

Definition 2.4 A Gm action on M2n is regular if there exists a j0, 1 ≤ j0 ≤ m−1, such

that j0 is relatively prime to m and for every normal slice type µ = (µ1, µ2, . . . , µm−1),

µ j = 0 if j 6= j0.

If µ = (µ1, µ2, . . . , µm−1) and µ j = 0 if j 6= j0, then µ j0
= dimC νµ. The case

µ j0
= 0 corresponds to an action which is trivial on at least one component of M2n. If

a regular action has s slice types, each can be identified with a complex codimension

ci , F =
⋃s

i=1 F2n−2ci , where F2n−2c is the union of all components of F of dimension

2n−2c. Let νc be the normal bundle of F2n−2c in M2n and note that if a slice type of a

regular action µ is such that c = dimC νµ and c 6= 0, then Ω(µ) = Zc
+/S(c) equipped

with the norms ‖ · ‖ and | · |.

Definition 2.5 If F =
⋃s

i=1 F2n−2ci is the fixed point set of a regular Gm action,

then for each nonzero c ∈ {c1, c2, . . . , cs} and integers j, k with 1 ≤ j ≤ c and

j ≤ k ≤ n − c, let s(c, j, k) = {ω ∈ Zc
+/S(c) : |ω| = j, ‖ω‖ = k} and

(2.6) Sc( j, k)(νc) =

∑

ω∈s(c, j,k)

Sω(νc).

Definition 2.7 If F =
⋃s

i=1 F2n−2ci is the fixed point set of a regular Gm action and

c ∈ {c1, c2, . . . , cs}, then the polynomial pc(x) ∈ Z[x] is defined by the conditions

p0(x) = 0 and if c 6= 0, then

(2.8) pc(x) =

c
∑

j=1

n−c
∑

k=1

(−1)kxc+k−2 j (x2 − 1) j−1Sc( j, k)(νc).

The polynomials pc(x) play a role in the ASgSF for regular Gm actions. Our next

proposition determines an upper bound on the degree of pc(x) and pc(0).
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Proposition 2.9 If c ∈ {c1, c2, . . . , cs} and c 6= 0, then the degree of pc(x) is at most

n − 2 and

(2.10) pc(0) = − Sign(F2n−2c
t F2n−2c).

Proof The remark about the degree of pc(x) follows immediately from (2.8). For-

mula (2.10) follows by observing that (2.8) implies that

(2.11) pc(0) = −Sc(c, c)(νc),

and then noting that (2.6) implies that

(2.12) Sc(c, c)(νc) = S[(1,1,...,1)](νc),

where [(1, 1, . . . , 1)] ∈ Zc
+/S(c) is the equivalence class of (1, 1, . . . , 1) ∈ Zc

+. For-

mula (2.10) now follows from (2.11), (2.12) and Lemma 2.4 in [3].

Definition 2.13 If F =
⋃s

i=1 F2n−2ci is the fixed point set of a regular Gm action, then

the polynomial p(x) ∈ Z[x] is defined by

(2.14) p(x) =

s
∑

i=1

pci
(x).

Definition 2.15 If F =
⋃s

i=1 F2n−2ci is the fixed point set of a Gm action, then the

polynomial s(x) ∈ Z[x] is defined by

(2.16) s(x) =

s
∑

i=1

Sign F2n−2ci xci .

Theorem 2.17 (Berend-Katz ASgSF for Regular Gm Actions) Suppose that g : M2n →
M2n is an orientation preserving diffeomorphism of period m ≥ 2. If the Gm action de-

fined by g is regular and F =
⋃s

i=1 F2n−2ci , then there exists an α ∈ {α j : 1 ≤ j ≤
m − 1, ( j, m) = 1} such that

(2.18) Sign(g, M) = s(α) + (α2 − 1)p(α).

Proof There exists a j0 such that ( j0, m) = 1 and µ j = 0, j 6= j0, for every slice type

µ = (µ1, µ2, . . . , µm−1). It follows that if c ∈ {c1, c2, . . . , cs}, then µ j0
= c and if

c 6= 0, Ω(µ) = Zc
+/S(c) with norms ‖ · ‖ and | · |. If α = α j0

, then it follows from

(2.2) that

(2.19) Sign(g, M) = Sign F2n +
∑

c 6=0

∑

ω∈Zc
+/S(c)

(−1)‖ω‖αc+‖ω‖−2|ω|(α2 − 1)|ω|Sω(νc).
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Formula (2.18) follows by putting |ω| = j, ‖ω‖ = k, and using (2.8), (2.14) and

(2.16) together with S[(0,0,...,0)](νc) = Sign F2n−2c [3, Lemma 2.4].

Corollary 2.20 (Hirzebruch ASgSF for Involutions [7]) Suppose that T : M2n →
M2n is an orientation preserving smooth involution. If F is the fixed point set of T, then

(2.21) Sign(T, M) = Sign(F t F).

Proof The G2 action defined by T is automatically regular and so it follows from

(2.18) with α = α1 = 0 and (2.10) that

(2.22) Sign(T, M) = s(0) +
∑

c 6=0

Sign(F2n−2c
t F2n−2c).

The right hand side of (2.22) is Sign(F t F) and so (2.21) follows.

Next we offer pc(x) for a few values of c. To make our results easier to state, we

define the symbol Sc( j, k), j and k arbitrary nonnegative integers, to be Sc( j, k)(νc) if

1 ≤ j ≤ c and j ≤ k ≤ n − c and to be zero if j and k are outside of this range.

Lemma 2.23 If n ≥ 3, then

(2.24) (−1)n−1 p1(x) =

{

∑[n/2]
k=1 S1(1, 2k − 1)x2k−2, n even,

∑[n/2]
k=1 S1(1, 2k)x2k−1, n odd.

(−1)n p2(x) =



























[n/2]
∑

k=1

(

S2(1, 2k − 2) + S2(2, 2k − 2) − S2(2, 2k)
)

x2k−2, n even,

[n/2]
∑

k=1

(

S2(1, 2k − 1) + S2(2, 2k − 1) − S2(2, 2k + 1)
)

x2k−1, n odd.

(2.25)

pn−1(x) = −Sn−1(1, 1)xn−2.(2.26)

pn(x) = 0.(2.27)

Proof Formulas (2.24) and (2.25) follow from (2.8), the definition of Sc( j, k), and

the fact that Sω(νc) in (2.6) is zero unless n − c − ‖ω‖ = n − c − k is even and

0 ≤ k ≤ n − c ([11], Section 2). Formulas (2.26) and (2.27) follow from (2.8).

3 The Algebraic Numbers α j

This section contains some well known facts about the numbers α j = (λ j + 1) ×
(λ j − 1)−1, λ = exp(2πi/m).
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Definition 3.1 If m ≥ 2 and φ(m) = |{ j : j < m, ( j, m) = 1}| and Φm(x) is the

m-th cyclotomic polynomial, then the polynomial Mm(x) ∈ Z[x] is defined by

(3.2) Mm(x) = (x − 1)φ(m)
Φm

(

(x + 1)(x − 1)−1
)

.

Proposition 3.3 If m ≥ 2 and ( j, m) = 1, then Mm(x) is the minimal polynomial of

α j over Q . The polynomials Mm(x) satisfy the equations below where p is an odd prime.

Mm(0) =



















0, m = 2,

2, m = 2e, e > 1,

p, m = 2pe, e ≥ 1,

1, otherwise.

(3.4)

Mm(±1) = (±1)φ(m)2φ(m).(3.5)

Proof It follows from the identity λ j
= (α j + 1)(α j − 1)−1 that Mm(α j) = 0. The

fact that Φm(x) is irreducible over Q of degree φ(m) together with (3.2) implies that

Mm(x) is irreducible over Q of degree φ(m). Formula (3.4) follows from the values

of Φm(−1) [3, Lemma 4.1] and (3.5) follows from the facts that the degree of Φm(x)

is φ(m) and Φm(0) = 1.

It follows immediately from (3.4) that Mm(x) is primitive if m 6= 2e and m 6= 2pe.

We will investigate the cases m = 2e and m = 2pe after a definition and an elementary

proposition stated without proof.

Definition 3.6 If t is a nonnegative integer, then

(3.7) f ±t (x) =
1

2
[(x + 1)t ± (x − 1)t ].

Proposition 3.8 If t is a nonnegative integer, then f +
t (x) is primitive. If t is odd, then

f −t (x) is primitive. The polynomials f ±t (x) satisfy the equations below.

f +
t (x) =

[t/2]
∑

k=0

(

t

2k

)

xt−2k.(3.9)

f −t (x) =

[t/2]
∑

k=0

(

t

2k + 1

)

xt−2k−1.(3.10)

Proposition 3.11 If p is an odd prime and e ≥ 1, then

(3.12) Mm(x) =











f −pe (x) f −
pe−1 (x)−1, m = pe,

2 f +
2e−2e−1 (x), m = 2e,

f +
pe (x) f +

pe−1 (x)−1, m = 2pe,
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Proof The first formula in (3.12) follows from (3.2), (3.7) and the fact that Φpe (x) =

(xpe

−1)(xpe−1

−1)−1. The second formula follows from (3.2), (3.7) and the fact that

Φ2e (x) = x2e−2e−1

+ 1. The last formula follows from (3.2), (3.7) and the fact that

Φ2pe (x) = (xpe

+ 1)(xpe−1

+ 1)−1.

Proposition 3.13 If m is not a power of 2, then Mm(x) is primitive. If e ≥ 1, then

2−1M2e (x) is primitive.

Proof If m 6= 2e and m 6= 2pe, p an odd prime, then the proposition follows from

(3.4). If m = 2e or m = 2pe, then the proposition follows from Proposition 3.8 and

(3.12).

4 Regular Actions with Rational Integer g-Signature

The purpose of this section is to prove Theorems 1, 2, 3 and 4. Throughout this

section, we will assume that M2n admits an orientation preserving diffeomorphism

g : M2n → M2n of period m ≥ 2. We begin with (2.18) when Sign(g, M) ∈ Z.

Proposition 4.1 If the Gm action defined by g is regular and Sign(g, M) ∈ Z, then there

exists a polynomial with rational integer coefficients a(x) ∈ Z[x] such that the degree of

a(x) is at most n and a(α) = 0 for some α ∈ {α j : 1 ≤ j ≤ m − 1, ( j, m) = 1}.

Proof If p(x) and s(x) are as in (2.14) and (2.16), put

(4.2) a(x) = s(x) + (x2 − 1)p(x) − Sign(g, M).

If Sign(g, M) ∈ Z, then a(x) ∈ Z[x] since p(x) and s(x) are in Z[x]. The degree of

s(x) is clearly at most n (2.16) and the degree of p(x) is at most n−2 (Proposition 2.9

and (2.14)) and so the degree of a(x) is at most n. The fact that there exists α ∈ {α j :

1 ≤ j ≤ m − 1, ( j, m) = 1} such that a(x) = 0 is (2.18).

Proposition 4.1 and Section 3 will provide the tools to prove Theorems 1, 2, 3

and 4. We begin with Theorem 4. Recall that ρ(m) = φ(m) − 1 if m = 2e and

ρ(m) = φ(m) if m 6= 2e.

Theorem 4.3 Suppose that m > 2 and that the Gm action defined by g is regular.

If Sign(g, M) ∈ Z, then Sign(g, M) ≡ Sign Feven (mod 2ρ(m)) and Sign Fodd ≡ 0

(mod 2ρ(m)) and so

(4.4) Sign(g, M) ≡ Sign F (mod 2ρ(m)).

If g∗ is the identity on Hn(M; Q), then Sign M ≡ Sign Feven (mod 2ρ(m)) and Sign Fodd

≡ 0 (mod 2ρ(m)) and so

(4.5) Sign M ≡ Sign F (mod 2ρ(m)).
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If Sign(g, M) ∈ Z and m = 2pe, p an odd prime, then

(4.6) Sign(g, M) ≡ Sign(F t F) (mod p).

If g∗ is the identity on Hn(M; Q) and m = 2pe, p an odd prime, then

(4.7) Sign M ≡ Sign(F t F) (mod p).

Proof Note that if m > 2, then Mm(x) ∈ Z[x2]. This follows from the fact that

the set {α j : 1 ≤ j ≤ m − 1, ( j, m) = 1} is a complete set of roots of Mm(x)

and α j = −αm− j . If a(x) is a polynomial in x, let a(x)even and a(x)odd be the parts

of a(x) with even and odd powers of x, respectively. To prove (4.4), note that if

a(x) ∈ Z[x] is the polynomial in (4.2), then it follows from Proposition 3.3 that there

exists b(x) ∈ Q[x] such that

(4.8) a(x)even = Mm(x)b(x)even , a(x)odd = Mm(x)b(x)odd .

If m 6= 2e, then Mm(x) is primitive by Proposition 3.13, so b(x) ∈ Z[x] since a(x) ∈
Z[x] and therefore (3.5) and (4.8) imply that

(4.9) a(1)even ≡ 0 (mod 2φ(m)), a(1)odd ≡ 0 (mod 2φ(m)).

If m 6= 2e, formula (4.9) implies that Sign(g, M) ≡ Sign Feven (mod 2φ(m)) and

Sign Fodd ≡ 0 (mod 2φ(m)). If m = 2e, then 2−1Mm(x) is primitive by Proposi-

tion 3.13 and so 2b(x) ∈ Z[x] since a(x) ∈ Z[x] and therefore (3.5) and (4.8) imply

that

(4.10) a(1)even ≡ 0 (mod 2φ(m)−1), a(1)odd ≡ 0 (mod 2φ(m)−1).

Formula (4.10) implies that Sign(g, M) ≡ Sign Feven (mod 2φ(m)−1) and Sign Fodd

≡ 0 (mod 2φ(m)−1) if m = 2e and so the proof of the first two assertions in Theo-

rem 4.3 is complete.

The next two assertions in Theorem 4.3 follow since Sign(g, M) = Sign M if g∗ is

the identity on Hn(M; Q).

To prove (4.6), note that if Sign(g, M) ∈ Z and m = 2pe, p an odd prime, then

Mm(x) is primitive by Proposition 3.13 and so b(x) ∈ Z[x], and so (3.4) and (4.8)

imply that

(4.11) a(0) ≡ 0 (mod p).

Formula (4.11) is (4.6) in view of (2.10). Formula (4.7) follows immediately from

(4.6) since Sign(g, M) = Sign M if g∗ is the identity on Hn(M; Q).

Theorem 4.1 contains Theorem 4 in the introduction. We now turn to Theorems 1

and 2. We will observe that (4.9) and (4.11) are equalities if n < φ(m).

Theorem 4.12 Suppose that m > 2 and that the Gm action defined by g is regular. If

Sign(g, M) ∈ Z and n < φ(m), then Sign Fodd = 0 and

(4.13) Sign(g, M) = Sign Feven = Sign(F t F).
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If g∗ is the identity on Hn(M; Q) and n < φ(m), then Sign Fodd = 0 and

(4.14) Sign M = Sign Feven = Sign(F t F).

Proof Note that (3.2) implies that the degree of Mm(x) is φ(m) and so if Sign(g, M) ∈
Z and a(x) ∈ Z[x] is as in (4.2), then Proposition 3.3 implies that if n < φ(m), then

because the degree of a(x) is at most n, a(x) is identically zero,

(4.15) a(x) ≡ 0.

It follows that Sign Fodd = a(1)odd = 0 and that the first equality in (4.13) holds

since a(1)even = 0. The second equality in (4.13) follows by putting x = 0 in (4.15)

and (2.10), (2.14), (2.16) and (4.2). Formula (4.14) follows immediately from (4.13)

because Sign(g, M) = Sign M if g∗ is the identity on Hn(M; Q).

Theorem 4.12 contains Theorems 1 and 2. Theorem 2 was stated separately to

highlight its relationship to the literature [1, Theorem 4], [9, Theorem 2.2]. Our next

task is to note that (4.15) implies that p(x) (2.14) has a special form if the hypotheses

of Theorem 4.12 are enforced.

Proposition 4.16 Suppose that m > 2 and that the Gm action defined by g is regular. If

Sign(g, M) ∈ Z, n < φ(m), and pk is the coefficient of xk in p(x) (2.14), 0 ≤ k ≤ n−2,

then

(4.17) pk =

{

∑`
j=0 Sign F2n−4 j − Sign(g, M), k = 2`,

∑`
j=0 Sign F2n−4 j−2, k = 2` + 1.

Proof The hypotheses guarantee the identity (4.15) and so (4.2) implies that for 0 ≤
k ≤ n − 2, the derivatives of s(x) and p(x) satisfy

(4.18) s(k)(x) + k(k − 1)p(k−2)(x) + 2kxp(k−1)(x) + (x2 − 1)p(k)(x) = 0.

The derivatives of s(x) are easily determined (2.16) and (4.17) then follows easily

from (4.18).

We now prove Theorem 3. Let dim F denote the largest dimension of the compo-

nents of F.

Theorem 4.19 Suppose that m > 2 and that the Gm action defined by g is regular.

If Sign(g, M) ∈ Z, n < φ(m), and dim F < n, then Sign(g, M) = Sign F =

Sign(F t F) = 0. If Sign(g, M) ∈ Z − {0} and n < φ(m), then n is even and

dim F ≥ n. If g∗ is the identity on Hn(M; Q), n < φ(m), and dim F < n, then

Sign M = Sign F = Sign(F t F) = 0. If g∗ is the identity on Hn(M; Q), Sign M 6= 0,

and n < φ(m), then n is even and dim F ≥ n.

Proof If dim F < n, then Sign(F t F) = 0, and so the first assertion in the theorem

follows from (4.13). The second assertion follows from the first and the observation

that n must be even because Sign(g, M) = Sign Feven 6= 0. The third and fourth

statements follow because Sign(g, M) = Sign M if g∗ is the identity on Hn(M; Q).
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5 Regular Gp Actions on Cohomology Complex Projective Space

In this section, we apply our results to Gp action on cohomology complex projective

n-space.

Theorem 5.1 Suppose that M4q is a cohomology complex projective 2q-space admitting

a diffeomorphism g : M4q → M4q of odd prime period p. If the Gp action defined by g is

regular and 2q < p−1, then F contains a nonempty connected 2r-manifold F2r such that

r ≥ q. All other components of F have dimension less than 2q and Sign(F2r t F2r) = 1.

If d is the degree of F2r and r = 2q − 1, then d2 is an odd divisor of (2q)! and if r = q,

then d2
= 1.

Proof We choose as preferred orientation of M4q the one such that Sign M = 1. It

follows from (4.14) that

(5.2) Sign(F t F) = 1

and so Theorem 4.19 implies that dim F ≥ 2q and so F contains a connected man-

ifold F2r with r ≥ q. Since M4q is a cohomology complex projective 2q-space, all

other components of F have dimension strictly less than 2q [4, p. 378] and so (5.2)

becomes

(5.3) Sign(F2r
t F2r) = 1.

If d is the degree of F2r and r = 2q − 1, then (5.3) implies that d2 is an odd divisor of

(2q)! [10, Theorem 1.1] and if r = q, then F2q t F2q is the union of d2 points with a

common orientation and so (5.3) implies that d2
= 1.

Corollary 5.4 Suppose that M4 is a cohomology complex projective 2-space and that

p > 3 is a prime. If M4 admits a regular Gp action, then F is the union of a 2-sphere of

degree ±1 and a point.

Proof It follows from Theorem 5.1 that F contains a 2-sphere of degree ±1, S2 and

so F is the union of S2 and a point [4, p. 378].

Theorem 5.1 is Theorem 5 and Corollary 5.4 is the assertion in Theorem 6 about

cohomology complex projective 2-space. Theorem 6 will be proved when we estab-

lish the assertions about cohomology complex projective 4-space.

Lemma 5.5 Suppose that M4q is a cohomology projective 2q-space and that p is an odd

prime. If M4q admits a regular Gp action and 2q < p − 1, then F has at most q + 1

components.

Proof We know that F =
⋃s

i=1 F2ni , F2ni connected, s ≤ p and
∑s

i=1(ni +1) = 2q+1

[4, p. 378]. By Theorem 5.1 there is an i0 such that ni0
≥ q and so s ≤ q + 1.

Lemma 5.6 Suppose that M8 is a cohomology complex projective 4-space and that

p > 5 is a prime. If M8 admits a regular Gp action, then F has two components.
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Proof By Lemma 5.5, it is enough to show that F can not have three components. If

F has three components, then F is the union of a 4-manifold F4 and two points [4,

p. 378]. It follows from (2.14), (2.25), and (2.27) together with the fact that p > 5

and (4.17), that

S2(2, 2) = 1,(5.7)

S2(1, 2) + S2(2, 2) = Sign F4 − 1.(5.8)

Since F4 is a cohomology complex projective 2-space mod p [4, p. 378], Sign F4
=

±1, and so (5.7) and (5.8) imply that S2(1, 2) = −1, −3. If ν is the normal bundle of

F4 in M8, that is, ν = ν2 in the notation of Section 2, then (2.3) and (2.6) imply that

(5.9) S2(1, 2) =
(

c2
1(ν) − 2c2(ν)

)

[F4].

If d is the degree of F4, then d2
= 1 by Theorem 5.1 and so c2(ν)[F4] = 1. If follows

from (5.9) that c2
1(ν)[F4] = ±1. This leads to a contradiction.

If H∗(M; Z) = Z[x]/(x5), x ∈ H2(M; Z), let x̂ = x|F4. If xi ∈ H2(F4; Z), i = 1, 2,

are classes such that c1(ν) = x1 + x2 and c2(ν) = x1x2, then xi = ai x̂ (mod torsion),

ai ∈ Z, i = 1, 2 [5, Lemma 3.1]. Since c2(ν)[F4] = 1, ai = ±1, i = 1, 2, and

so c2
1(ν)[F4] ≡ 0 (mod 2). This contradicts c2

1(ν)[F4] = ±1 and so F has two

components.

Theorem 5.10 Suppose that M8 is a cohomology complex projective 4-space and that

p > 5 is a prime. If M8 admits a regular Gp action, then F has two components and

either F is the union of a 6-manifold of degree ±1 and a point or F is the union of a

4-manifold of degree ±1 and a 2-sphere.

Proof Lemma 5.6 says that F has two components and so either F = F6 ∪ {point}
or F = F4 ∪ S2 [4, p. 378]. In either case, if d is the degree of F2r , r = 2 or 3, then

Theorem 5.1 implies that d2
= 1.

Theorem 6 is the sum of Corollary 5.4 and Theorem 5.10. Strengthened versions

of parts of Theorem 6 can be found in the literature. Any Gp action on M8 such that

F = F6 ∪ {point} must be regular and, if d is the degree of F6, then d2
= 1 [5,

Theorem 4(ii), p ≥ 5], [6, Theorem E, p = 3]. Theorems 5.1 and 5.10 show that

if it is assumed that the action is regular and p > 5, then the ASgSF can be used to

retrieve the fact that a fixed F6 has degree one and establish the two results that F has

two components and that a fixed F4 has degree one.
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