Rational Integer Invariants of Regular Cyclic Actions

Robert D. Little

Abstract. Let $g: M^{2 n} \rightarrow M^{2 n}$ be a smooth map of period $m>2$ which preserves orientation. Suppose that the cyclic action defined by g is regular and that the normal bundle of the fixed point set F has a g-equivariant complex structure. Let $F \pitchfork F$ be the transverse self-intersection of F with itself. If the g-signature $\operatorname{Sign}(g, M)$ is a rational integer and $n<\phi(m)$, then there exists a choice of orientations such that $\operatorname{Sign}(g, M)=\operatorname{Sign} F=\operatorname{Sign}(F \pitchfork F)$.

1 Introduction

Let $M^{2 n}$ be a smooth, closed, oriented $2 n$-manifold. Let G_{m} denote the cyclic group of order m. Let $g: M^{2 n} \rightarrow M^{2 n}$ be a diffeomorphism of period m which preserves the preferred orientation of $M^{2 n}$. Suppose that the smooth G_{m} action defined by g has fixed point set F and that ν is the normal bundle of F in $M^{2 n}$. We will assume throughout this paper that ν admits a complex structure compatible with the g-action. This assumption is automatically fulfilled for m odd. We will also assume that the orientation of ν is the one determined by its complex structure. This orientation, together with the preferred orientation of $M^{2 n}$, determines an orientation of F.

Let $\operatorname{Sign}(g, M)$ be the g-signature of the action [2]. The g-signature is an algebraic integer, that is $\operatorname{Sign}(g, M) \in \mathbb{Z}[\lambda]$ where $\lambda=\exp (2 \pi i / m)$. If $\operatorname{Sign}(g, M)$ is a rational integer, that is $\operatorname{Sign}(g, M) \in \mathbb{Z}$, then it is related to the signatures of F and the transverse self-intersection of F with itself, $F \pitchfork F$, if the action is regular. The action is regular if there is a fixed irreducible representation of G_{m} which determines every normal slice type (Definition 2.4). Let $F_{\text {even }}\left(F_{\text {odd }}\right)$ be the union of all components of F where the restriction of ν has even (odd) complex dimension. Let $\phi(m)$ be the number of integers smaller than m and relatively prime to m.

Theorem 1 Suppose that $g: M^{2 n} \rightarrow M^{2 n}$ is an orientation preserving diffeomorphism of period $m>2$. If the G_{m} action defined by g is regular and $\operatorname{Sign}(g, M) \in \mathbb{Z}$ and $n<\phi(m)$, then

$$
\operatorname{Sign}(g, M)=\operatorname{Sign} F_{\text {even }}=\operatorname{Sign}(F \pitchfork F)
$$

and $\operatorname{Sign} F_{\text {odd }}=0$. In particular $\operatorname{Sign}(g, M)=\operatorname{Sign} F$.
Theorem 1 strengthens an earlier result that if $m=p$ an odd prime, $\operatorname{Sign}(g, M) \in$ \mathbb{Z} and $n<p-1$, then $\operatorname{Sign}(g, M)=\operatorname{Sign} F[11$, Theorem A]. The assertion in Theorem 1 about $\operatorname{Sign}(F \pitchfork F)$ is new even in the odd primary case. If $M^{2 n}$ admits an orientation preserving involution $T: M^{2 n} \rightarrow M^{2 n}$, then $\operatorname{Sign}(T, M)=\operatorname{Sign}(F \pitchfork F)$

[^0][7], [2, Proposition 6.15], [8, p. 27]. Theorem 1 shows that for regular actions with $\operatorname{Sign}(g, M) \in \mathbb{Z}$ and $n<\phi(m), \operatorname{Sign}(g, M)$ behaves like the signature of an involution.

If the intersection form underlying the g-signature is definite, then $\operatorname{Sign}(g, M) \in$ \mathbb{Z} [3, Lemma 3.1]. If g^{*} is the identity on $H^{*}(M ;(\mathbb{O})$, then $\operatorname{Sign}(g, M)=\operatorname{Sign} M$ [1, p. 329], [3, Section 1] and so our next result is an immediate consequence of Theorem 1.

Theorem 2 Suppose that $g: M^{2 n} \rightarrow M^{2 n}$ is an orientation preserving diffeomorphism of period $m>2$. If the G_{m} action defined by g is regular and g^{*} is the identity on $H^{n}(M ;(\mathbb{O})$ and $n<\phi(m)$, then

$$
\operatorname{Sign} M=\operatorname{Sign} F_{\text {even }}=\operatorname{Sign}(F \pitchfork F)
$$

and $\operatorname{Sign} F_{\text {odd }}=0$. In particular $\operatorname{Sign} M=\operatorname{Sign} F$.
Theorem 2 is related to results in the literature. If m is odd and $M^{2 n}$ admits any G_{m} action such that g^{*} is the identity on $H^{n}(M ;(\mathbb{O})$, then $\operatorname{Sign} M \equiv \operatorname{Sign} F(\bmod 4)$ and if the action is regular, then $\operatorname{Sign} M \equiv \operatorname{Sign} F\left(\bmod 2^{\phi(m)}\right)[1$, Theorems 1 and 4]. If p is an odd prime and $M^{2 n}$ admits a regular G_{p} action and $n<p-1$, then Sign $M \equiv \operatorname{Sign} F(\bmod p)[9$, Theorem 2.2]. It follows from these last two results that if $M^{2 n}$ admits a regular G_{p} action with g^{*} the identity on $H^{n}(M ;(\mathbb{O})$ and $n<$ $p-1$, then $\operatorname{Sign} M \equiv \operatorname{Sign} F\left(\bmod 2^{p-1} p\right)$. Theorem 2 shows that this congruence is an equality.

Our next theorem is a consequence of Theorems 1 and 2 and properties of the transverse self-intersection.

Theorem 3 Suppose that $g: M^{2 n} \rightarrow M^{2 n}$ is an orientation preserving diffeomorphism of period $m>2$ and that the G_{m} action defined by g is regular. If $\operatorname{Sign}(g, M) \in \mathbb{Z}$ and $\operatorname{Sign}(g, M) \neq 0$ and $n<\phi(m)$, then n is even and F contains a nonempty component of dimension at least n. If g^{*} is the identity on $H^{*}(M ;(\mathbb{O})$ and Sign $M \neq 0$ and $n<\phi(m)$, then n is even and F contains a nonempty component of dimension at least n.

If p is an odd prime and $M^{2 n}$ admits a regular G_{p} action $\operatorname{Sign} M \not \equiv 0(\bmod p)$ and $n<p-1$, then F contains a nonempty component of dimension at least n [9, Corollary 2.7]. Theorem 3 shows that if g^{*} is the identity on $H^{n}(M ; \mathbb{O})$, then $\operatorname{Sign} M \neq$ 0 is enough to imply that F contains a nonempty component of dimension at least n if $n<p-1$. If $I_{2 n}(p)$ is the subgroup of $\Omega_{2 n}$ consisting of classes all of whose Pontrjagin numbers are divisible by p and $[M] \neq 0$ in $\Omega_{2 n} / I_{2 n}(p)$, then F contains a nonempty component of dimension at least n [12, Theorem 1.3].

We offer a congruence for $\operatorname{Sign}(g, M)$ and $\operatorname{Sign} F$ for regular G_{m} actions, $m>2$, and a congruence for $\operatorname{Sign}(g, M)$ and $\operatorname{Sign}(F \pitchfork F)$ for some values of m. The former congruence contains the congruence for m odd described above [1, Theorem 4]. Let $\rho(m)=\phi(m)-1$ if $m=2^{e}$ and $\rho(m)=\phi(m)$ if $m \neq 2^{e}$.

Theorem 4 Suppose that $g: M^{2 n} \rightarrow M^{2 n}$ is an orientation preserving diffeomorphism of period $m>2$. If the G_{m} action defined by g is regular and $\operatorname{Sign}(g, M) \in \mathbb{Z}$, then $\operatorname{Sign}(g, M) \equiv \operatorname{Sign} F_{\text {even }}\left(\bmod 2^{\rho(m)}\right)$ and $\operatorname{Sign} F_{\text {odd }} \equiv 0\left(\bmod 2^{\rho(m)}\right)$ and so

$$
\operatorname{Sign}(g, M) \equiv \operatorname{Sign} F\left(\bmod 2^{\rho(m)}\right)
$$

If p is an odd prime and $m=2 p^{e}$, then $\operatorname{Sign}(g, M) \equiv \operatorname{Sign}(F \pitchfork F)(\bmod p)$.
We will apply our results to cohomology complex projective n-space. We say that $M^{2 n}$ is a cohomology complex projective n-space if there is a class $x \in H^{2}(M ; \mathbb{Z})$ such that $H^{*}(M ; \mathbb{Z})=\mathbb{Z}[x] /\left(x^{n+1}\right)$. These manifolds are good candidates for applications since, for m odd, g^{*} is the identity on $H^{n}(M ;(\mathbb{O})$ and so $\operatorname{Sign}(g, M)=\operatorname{Sign} M$. We say that a submanifold $i: K^{2 n-2 t} \subset M^{2 n}$ has degree d if $i_{*}[K] \in H_{2 n-2 t}(M ; \mathbb{Z})$ is dual to $d x^{t}$.

Theorem 5 Suppose that $M^{4 q}$ is a cohomology complex projective $2 q$-space and that p is an odd prime. If $M^{4 q}$ admits a regular G_{p} action and $2 q<p-1$, then F contains a nonempty connected $2 r$-manifold such that $r \geq q$ and $\operatorname{Sign}\left(F^{2 r} \pitchfork F^{2 r}\right)=1$. If d is the degree of $F^{2 r}$ and $r=2 q-1$, then d^{2} is an odd divisor of $(2 q)$! and if $r=q$, then $d^{2}=1$.

Theorem 6 Suppose that $M^{4 q}$ is a cohomology complex projective $2 q$-space, $q=1$ or 2 , and that $p>5$ is a prime. If $M^{4 q}$ admits a regular G_{p} action, then F has two components. If $q=1$, then F is the union of a point and a 2 -sphere of degree ± 1. If $q=2$, then F is either the union of a point and a 6-manifold of degree ± 1 or the union of a 4-manifold of degree ± 1 and a 2-sphere.

This paper is organized as follows. Section 2 contains a discussion of the AtiyahSinger g-Signature Formula (ASgSF) as formulated by Berend and Katz [3, Theorem 2.2]. This version of the ASgSF expresses $\operatorname{Sign}(g, M)$ explicitly as an element in $\mathbb{Z}\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m-1}\right], \alpha_{j}=\left(\lambda^{i}+1\right)\left(\lambda^{j}-1\right)^{-1}$. The ASgSF for regular actions is also discussed. Section 3 describes the minimal polynomial of α_{j} over $(\mathbb{O}$. We prove Theorems 1, 2, 3, and 4 in Section 4 (Theorems 4.3, 4.12 and 4.19) and Theorems 5 and 6 in Section 5 (Theorem 5.1, Corollary 5.4 and Theorem 5.10).

2 The Atiyah-Singer g-Signature Formula

Suppose that $M^{2 n}$ admits an arbitrary G_{m} action generated by an orientation preserving diffeomorphism $g: M^{2 n} \rightarrow M^{2 n}$. We are not assuming regularity at this point and $m \geq 2$. Let ν be the normal bundle of F in $M^{2 n}$. Over each connected component of F, ν splits into a sum of λ^{j}-eigen bundles ν_{j} where G_{m} acts on ν_{j} as multiplication by $\lambda^{j}, \lambda=\exp (2 \pi i / m)$. Each component of F has a normal slice type $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m-1}\right), \mu_{j}=\operatorname{dim}_{\mathbb{C}} \nu_{j}$. Let F_{μ} be the union of all components of F with slice type μ and ν_{μ} the normal bundle of F_{μ} in $M^{2 n}$. Note that $\operatorname{dim}_{\mathbb{C}} \nu_{\mu}=\sum_{j=1}^{m-1} \mu_{j}$.

Let \mathbb{Z}_{+}be the set of nonnegative integers. If q is a positive integer, let $S(q)$ be the symmetric group on q letters and put $S(\mu)=\prod_{j=1}^{m-1} S\left(\mu_{j}\right)$. Let $\Omega(\mu)=\tilde{\Omega}(\mu) / S(\mu)$ where $\tilde{\Omega}(\mu)=\prod_{j=1}^{m-1} \mathbb{Z}_{+}^{\mu_{j}}$. If $\omega \in \Omega(\mu)$, let $\|\omega\|_{j}$ be the sum of the entries in ω from $\mathbb{Z}_{+}^{\mu_{j}}$ and $|\omega|_{j}$ the number of these entries which are not zero. Put $\|\omega\|=\sum_{j=1}^{m-1}\|\omega\|_{j}$. Let $\alpha_{j}=\left(\lambda^{j}+1\right)\left(\lambda^{j}-1\right)^{-1}, 1 \leq j \leq m-1$ and $\lambda=\exp (2 \pi i / m)$.

Theorem 2.1 (Berend-Katz ASgSF, [3, Theorem 2.2]) Let $M^{2 n}$ be a smooth, closed, oriented $2 n$-manifold and $g: M^{2 n} \rightarrow M^{2 n}$ an orientation preserving diffeomorphism of
period $m \geq 2$. There exist rational integers $S_{\omega}\left(\nu_{\mu}\right) \in \mathbb{Z}$ for each normal slice type μ and $\omega \in \Omega(\mu)$ such that (2.2)

$$
\operatorname{Sign}(g, M)=\sum_{\mu} \sum_{\omega \in \Omega(\mu)}(-1)^{\|\omega\|}\left(\prod_{j} \alpha_{j}^{\mu_{j}+\|\omega\|_{j}-2|\omega|_{j}}\left(\alpha_{j}^{2}-1\right)^{|\omega|_{j}}\right) S_{\omega}\left(\nu_{\mu}\right)
$$

The rational integers $S_{\omega}\left(\nu_{\mu}\right)$ can be described as follows. Let $x_{j, \ell} \in H^{2}\left(F_{\mu} ; \mathbb{Z}\right), 1 \leq$ $\ell \leq \mu_{j}, 1 \leq j \leq m-1$, be classes such that the Chern classes of ν_{j} are the elementary symmetric polynomials in the variables $x_{j, \ell}, 1 \leq \ell \leq \mu_{j}$ and let $Y_{j, \ell} \subset F_{\mu}$ be the Poincaré dual of $x_{j, \ell}$. If $\tilde{\omega}=\left(\omega_{j, \ell}\right) \in \tilde{\Omega}(\mu)$, put $Y^{(\tilde{\omega})}=\pitchfork_{j, \ell} Y_{j, \ell}^{\left(\omega_{j, \ell}\right)}$, where $Y_{j, \ell}^{\left(\omega_{j, \ell}\right)}$ is the transverse self-intersection of $\omega_{j, \ell}$ copies of $Y_{j, \ell}$ with itself. If $\omega \in \Omega(\mu)$ is covered by $\tilde{\omega}$, then

$$
\begin{equation*}
S_{\omega}\left(\nu_{\mu}\right)=\sum_{\sigma \in S(\mu)}\left|\mathrm{St}_{\tilde{\omega}}\right|^{-1} \operatorname{Sign} Y^{(\sigma \tilde{\omega})} \tag{2.3}
\end{equation*}
$$

where $\left|S t_{\tilde{\omega}}\right|$ is the order of the stabilizer of $\tilde{\omega}$ [3, Section 3].
Definition 2.4 A G_{m} action on $M^{2 n}$ is regular if there exists a $j_{0}, 1 \leq j_{0} \leq m-1$, such that j_{0} is relatively prime to m and for every normal slice type $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m-1}\right)$, $\mu_{j}=0$ if $j \neq j_{0}$.

If $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m-1}\right)$ and $\mu_{j}=0$ if $j \neq j_{0}$, then $\mu_{j_{0}}=\operatorname{dim}_{\mathbb{C}} \nu_{\mu}$. The case $\mu_{j_{0}}=0$ corresponds to an action which is trivial on at least one component of $M^{2 n}$. If a regular action has s slice types, each can be identified with a complex codimension $c_{i}, F=\bigcup_{i=1}^{s} F^{2 n-2 c_{i}}$, where $F^{2 n-2 c}$ is the union of all components of F of dimension $2 n-2 c$. Let ν_{c} be the normal bundle of $F^{2 n-2 c}$ in $M^{2 n}$ and note that if a slice type of a regular action μ is such that $c=\operatorname{dim}_{\mathbb{C}} \nu_{\mu}$ and $c \neq 0$, then $\Omega(\mu)=\mathbb{Z}_{+}^{c} / S(c)$ equipped with the norms $\|\cdot\|$ and $|\cdot|$.

Definition 2.5 If $F=\bigcup_{i=1}^{s} F^{2 n-2 c_{i}}$ is the fixed point set of a regular G_{m} action, then for each nonzero $c \in\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}$ and integers j, k with $1 \leq j \leq c$ and $j \leq k \leq n-c$, let $s(c, j, k)=\left\{\omega \in \mathbb{Z}_{+}^{c} / S(c):|\omega|=j,\|\omega\|=k\right\}$ and

$$
\begin{equation*}
S_{c}(j, k)\left(\nu_{c}\right)=\sum_{\omega \in s(c, j, k)} S_{\omega}\left(\nu_{c}\right) . \tag{2.6}
\end{equation*}
$$

Definition 2.7 If $F=\bigcup_{i=1}^{s} F^{2 n-2 c_{i}}$ is the fixed point set of a regular G_{m} action and $c \in\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}$, then the polynomial $p_{c}(x) \in \mathbb{Z}[x]$ is defined by the conditions $p_{0}(x)=0$ and if $c \neq 0$, then

$$
\begin{equation*}
p_{c}(x)=\sum_{j=1}^{c} \sum_{k=1}^{n-c}(-1)^{k} x^{c+k-2 j}\left(x^{2}-1\right)^{j-1} S_{c}(j, k)\left(\nu_{c}\right) . \tag{2.8}
\end{equation*}
$$

The polynomials $p_{c}(x)$ play a role in the ASgSF for regular G_{m} actions. Our next proposition determines an upper bound on the degree of $p_{c}(x)$ and $p_{c}(0)$.

Proposition 2.9 If $c \in\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}$ and $c \neq 0$, then the degree of $p_{c}(x)$ is at most $n-2$ and

$$
\begin{equation*}
p_{c}(0)=-\operatorname{Sign}\left(F^{2 n-2 c} \pitchfork F^{2 n-2 c}\right) \tag{2.10}
\end{equation*}
$$

Proof The remark about the degree of $p_{c}(x)$ follows immediately from (2.8). Formula (2.10) follows by observing that (2.8) implies that

$$
\begin{equation*}
p_{c}(0)=-S_{c}(c, c)\left(\nu_{c}\right) \tag{2.11}
\end{equation*}
$$

and then noting that (2.6) implies that

$$
\begin{equation*}
S_{c}(c, c)\left(\nu_{c}\right)=S_{[(1,1, \ldots, 1)]}\left(\nu_{c}\right), \tag{2.12}
\end{equation*}
$$

where $[(1,1, \ldots, 1)] \in \mathbb{Z}_{+}^{c} / S(c)$ is the equivalence class of $(1,1, \ldots, 1) \in \mathbb{Z}_{+}^{c}$. Formula (2.10) now follows from (2.11), (2.12) and Lemma 2.4 in [3].

Definition 2.13 If $F=\bigcup_{i=1}^{s} F^{2 n-2 c_{i}}$ is the fixed point set of a regular G_{m} action, then the polynomial $p(x) \in \mathbb{Z}[x]$ is defined by

$$
\begin{equation*}
p(x)=\sum_{i=1}^{s} p_{c_{i}}(x) . \tag{2.14}
\end{equation*}
$$

Definition 2.15 If $F=\bigcup_{i=1}^{s} F^{2 n-2 c_{i}}$ is the fixed point set of a G_{m} action, then the polynomial $s(x) \in \mathbb{Z}[x]$ is defined by

$$
\begin{equation*}
s(x)=\sum_{i=1}^{s} \operatorname{Sign} F^{2 n-2 c_{i}} x^{c_{i}} . \tag{2.16}
\end{equation*}
$$

Theorem 2.17 (Berend-Katz ASgSF for Regular G_{m} Actions) Suppose that $g: M^{2 n} \rightarrow$ $M^{2 n}$ is an orientation preserving diffeomorphism of period $m \geq 2$. If the G_{m} action defined by g is regular and $F=\bigcup_{i=1}^{s} F^{2 n-2 c_{i}}$, then there exists an $\alpha \in\left\{\alpha_{j}: 1 \leq j \leq\right.$ $m-1,(j, m)=1\}$ such that

$$
\begin{equation*}
\operatorname{Sign}(g, M)=s(\alpha)+\left(\alpha^{2}-1\right) p(\alpha) \tag{2.18}
\end{equation*}
$$

Proof There exists a j_{0} such that $\left(j_{0}, m\right)=1$ and $\mu_{j}=0, j \neq j_{0}$, for every slice type $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m-1}\right)$. It follows that if $c \in\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}$, then $\mu_{j_{0}}=c$ and if $c \neq 0, \Omega(\mu)=\mathbb{Z}_{+}^{c} / S(c)$ with norms $\|\cdot\|$ and $|\cdot|$. If $\alpha=\alpha_{j_{0}}$, then it follows from (2.2) that

$$
\begin{equation*}
\operatorname{Sign}(g, M)=\operatorname{Sign} F^{2 n}+\sum_{c \neq 0} \sum_{\omega \in \mathbb{Z}_{+}^{c} / S(c)}(-1)^{\|\omega\|} \alpha^{c+\|\omega\|-2|\omega|}\left(\alpha^{2}-1\right)^{|\omega|} S_{\omega}\left(\nu_{c}\right) \tag{2.19}
\end{equation*}
$$

Formula (2.18) follows by putting $|\omega|=j,\|\omega\|=k$, and using (2.8), (2.14) and (2.16) together with $S_{[(0,0, \ldots, 0)]}\left(\nu_{c}\right)=\operatorname{Sign} F^{2 n-2 c}$ [3, Lemma 2.4].

Corollary 2.20 (Hirzebruch ASgSF for Involutions [7]) Suppose that $T: M^{2 n} \rightarrow$ $M^{2 n}$ is an orientation preserving smooth involution. If F is the fixed point set of T, then

$$
\begin{equation*}
\operatorname{Sign}(T, M)=\operatorname{Sign}(F \pitchfork F) \tag{2.21}
\end{equation*}
$$

Proof The G_{2} action defined by T is automatically regular and so it follows from (2.18) with $\alpha=\alpha_{1}=0$ and (2.10) that

$$
\begin{equation*}
\operatorname{Sign}(T, M)=s(0)+\sum_{c \neq 0} \operatorname{Sign}\left(F^{2 n-2 c} \pitchfork F^{2 n-2 c}\right) \tag{2.22}
\end{equation*}
$$

The right hand side of (2.22) is $\operatorname{Sign}(F \pitchfork F)$ and so (2.21) follows.

Next we offer $p_{c}(x)$ for a few values of c. To make our results easier to state, we define the symbol $S_{c}(j, k), j$ and k arbitrary nonnegative integers, to be $S_{c}(j, k)\left(\nu_{c}\right)$ if $1 \leq j \leq c$ and $j \leq k \leq n-c$ and to be zero if j and k are outside of this range.

Lemma 2.23 If $n \geq 3$, then

$$
(-1)^{n-1} p_{1}(x)= \begin{cases}\sum_{k=1}^{[n / 2]} S_{1}(1,2 k-1) x^{2 k-2}, & \text { n even }, \tag{2.24}\\ \sum_{k=1}^{[n / 2]} S_{1}(1,2 k) x^{2 k-1}, & n \text { odd } .\end{cases}
$$

$(-1)^{n} p_{2}(x)= \begin{cases}\sum_{k=1}^{[n / 2]}\left(S_{2}(1,2 k-2)+S_{2}(2,2 k-2)-S_{2}(2,2 k)\right) x^{2 k-2}, & n \text { even, } \\ \sum_{k=1}^{[n / 2]}\left(S_{2}(1,2 k-1)+S_{2}(2,2 k-1)-S_{2}(2,2 k+1)\right) x^{2 k-1}, & n \text { odd. }\end{cases}$

$$
\begin{equation*}
p_{n-1}(x)=-S_{n-1}(1,1) x^{n-2} \tag{2.26}
\end{equation*}
$$

$$
\begin{equation*}
p_{n}(x)=0 . \tag{2.27}
\end{equation*}
$$

Proof Formulas (2.24) and (2.25) follow from (2.8), the definition of $S_{c}(j, k)$, and the fact that $S_{\omega}\left(\nu_{c}\right)$ in (2.6) is zero unless $n-c-\|\omega\|=n-c-k$ is even and $0 \leq k \leq n-c$ ([11], Section 2). Formulas (2.26) and (2.27) follow from (2.8).

3 The Algebraic Numbers α_{j}

This section contains some well known facts about the numbers $\alpha_{j}=\left(\lambda^{j}+1\right) \times$ $\left(\lambda^{j}-1\right)^{-1}, \lambda=\exp (2 \pi i / m)$.

Definition 3.1 If $m \geq 2$ and $\phi(m)=|\{j: j<m,(j, m)=1\}|$ and $\Phi_{m}(x)$ is the m-th cyclotomic polynomial, then the polynomial $M_{m}(x) \in \mathbb{Z}[x]$ is defined by

$$
\begin{equation*}
M_{m}(x)=(x-1)^{\phi(m)} \Phi_{m}\left((x+1)(x-1)^{-1}\right) \tag{3.2}
\end{equation*}
$$

Proposition 3.3 If $m \geq 2$ and $(j, m)=1$, then $M_{m}(x)$ is the minimal polynomial of α_{j} over (\mathbb{O}). The polynomials $M_{m}(x)$ satisfy the equations below where p is an odd prime.

$$
\begin{gather*}
M_{m}(0)= \begin{cases}0, & m=2 \\
2, & m=2^{e}, e>1, \\
p, & m=2 p^{e}, e \geq 1, \\
1, & \text { otherwise }\end{cases} \tag{3.4}\\
M_{m}(\pm 1)=(\pm 1)^{\phi(m)} 2^{\phi(m)} . \tag{3.5}
\end{gather*}
$$

Proof It follows from the identity $\lambda^{j}=\left(\alpha_{j}+1\right)\left(\alpha_{j}-1\right)^{-1}$ that $M_{m}\left(\alpha_{j}\right)=0$. The fact that $\Phi_{m}(x)$ is irreducible over (\mathbb{O}) of degree $\phi(m)$ together with (3.2) implies that $M_{m}(x)$ is irreducible over (\mathbb{O}) of degree $\phi(m)$. Formula (3.4) follows from the values of $\Phi_{m}(-1)$ [3, Lemma 4.1] and (3.5) follows from the facts that the degree of $\Phi_{m}(x)$ is $\phi(m)$ and $\Phi_{m}(0)=1$.

It follows immediately from (3.4) that $M_{m}(x)$ is primitive if $m \neq 2^{e}$ and $m \neq 2 p^{e}$. We will investigate the cases $m=2^{e}$ and $m=2 p^{e}$ after a definition and an elementary proposition stated without proof.

Definition 3.6 If t is a nonnegative integer, then

$$
\begin{equation*}
f_{t}^{ \pm}(x)=\frac{1}{2}\left[(x+1)^{t} \pm(x-1)^{t}\right] . \tag{3.7}
\end{equation*}
$$

Proposition 3.8 If t is a nonnegative integer, then $f_{t}^{+}(x)$ is primitive. If t is odd, then $f_{t}^{-}(x)$ is primitive. The polynomials $f_{t}^{ \pm}(x)$ satisfy the equations below.

$$
\begin{gather*}
f_{t}^{+}(x)=\sum_{k=0}^{[t / 2]}\binom{t}{2 k} x^{t-2 k} . \tag{3.9}\\
f_{t}^{-}(x)=\sum_{k=0}^{[t / 2]}\binom{t}{2 k+1} x^{t-2 k-1} . \tag{3.10}
\end{gather*}
$$

Proposition 3.11 If p is an odd prime and $e \geq 1$, then

$$
M_{m}(x)= \begin{cases}f_{p^{e}}^{-}(x) f_{p^{e-1}}^{-}(x)^{-1}, & m=p^{e} \tag{3.12}\\ 2 f_{2^{e}}^{+} 2^{e-1}(x), & m=2^{e} \\ f_{p^{e}}^{+}(x) f_{p^{e-1}}^{+}(x)^{-1}, & m=2 p^{e}\end{cases}
$$

Proof The first formula in (3.12) follows from (3.2), (3.7) and the fact that $\Phi_{p^{e}}(x)=$ $\left(x^{p^{e}}-1\right)\left(x^{p^{e-1}}-1\right)^{-1}$. The second formula follows from (3.2), (3.7) and the fact that $\Phi_{2^{e}}(x)=x^{2^{e}-2^{e-1}}+1$. The last formula follows from (3.2), (3.7) and the fact that $\Phi_{2 p^{e}}(x)=\left(x^{p^{e}}+1\right)\left(x^{p^{e-1}}+1\right)^{-1}$.

Proposition 3.13 If m is not a power of 2 , then $M_{m}(x)$ is primitive. If $e \geq 1$, then $2^{-1} M_{2^{e}}(x)$ is primitive.

Proof If $m \neq 2^{e}$ and $m \neq 2 p^{e}, p$ an odd prime, then the proposition follows from (3.4). If $m=2^{e}$ or $m=2 p^{e}$, then the proposition follows from Proposition 3.8 and (3.12).

4 Regular Actions with Rational Integer g-Signature

The purpose of this section is to prove Theorems 1, 2, 3 and 4. Throughout this section, we will assume that $M^{2 n}$ admits an orientation preserving diffeomorphism $g: M^{2 n} \rightarrow M^{2 n}$ of period $m \geq 2$. We begin with (2.18) when $\operatorname{Sign}(g, M) \in \mathbb{Z}$.
Proposition 4.1 If the G_{m} action defined by g is regular and $\operatorname{Sign}(g, M) \in \mathbb{Z}$, then there exists a polynomial with rational integer coefficients $a(x) \in \mathbb{Z}[x]$ such that the degree of $a(x)$ is at most n and $a(\alpha)=0$ for some $\alpha \in\left\{\alpha_{j}: 1 \leq j \leq m-1,(j, m)=1\right\}$.

Proof If $p(x)$ and $s(x)$ are as in (2.14) and (2.16), put

$$
\begin{equation*}
a(x)=s(x)+\left(x^{2}-1\right) p(x)-\operatorname{Sign}(g, M) \tag{4.2}
\end{equation*}
$$

If $\operatorname{Sign}(g, M) \in \mathbb{Z}$, then $a(x) \in \mathbb{Z}[x]$ since $p(x)$ and $s(x)$ are in $\mathbb{Z}[x]$. The degree of $s(x)$ is clearly at most n (2.16) and the degree of $p(x)$ is at most $n-2$ (Proposition 2.9 and (2.14)) and so the degree of $a(x)$ is at most n. The fact that there exists $\alpha \in\left\{\alpha_{j}\right.$: $1 \leq j \leq m-1,(j, m)=1\}$ such that $a(x)=0$ is (2.18).

Proposition 4.1 and Section 3 will provide the tools to prove Theorems 1, 2, 3 and 4. We begin with Theorem 4. Recall that $\rho(m)=\phi(m)-1$ if $m=2^{e}$ and $\rho(m)=\phi(m)$ if $m \neq 2^{e}$.
Theorem 4.3 Suppose that $m>2$ and that the G_{m} action defined by g is regular. If $\operatorname{Sign}(g, M) \in \mathbb{Z}$, then $\operatorname{Sign}(g, M) \equiv \operatorname{Sign} F_{\text {even }}\left(\bmod 2^{\rho(m)}\right)$ and $\operatorname{Sign} F_{\text {odd }} \equiv 0$ $\left(\bmod 2^{\rho(m)}\right)$ and so

$$
\begin{equation*}
\operatorname{Sign}(g, M) \equiv \operatorname{Sign} F\left(\bmod 2^{\rho(m)}\right) \tag{4.4}
\end{equation*}
$$

Ifg* g^{*} the identity on $H^{n}\left(M ;(\mathbb{O})\right.$, then $\operatorname{Sign} M \equiv \operatorname{Sign} F_{\text {even }}\left(\bmod 2^{\rho(m)}\right)$ and $\operatorname{Sign} F_{\text {odd }}$ $\equiv 0\left(\bmod 2^{\rho(m)}\right)$ and so

$$
\begin{equation*}
\operatorname{Sign} M \equiv \operatorname{Sign} F\left(\bmod 2^{\rho(m)}\right) \tag{4.5}
\end{equation*}
$$

If $\operatorname{Sign}(g, M) \in \mathbb{Z}$ and $m=2 p^{e}, p$ an odd prime, then

$$
\begin{equation*}
\operatorname{Sign}(g, M) \equiv \operatorname{Sign}(F \pitchfork F)(\bmod p) \tag{4.6}
\end{equation*}
$$

If g^{*} is the identity on $H^{n}\left(M ;(\mathbb{O})\right.$ and $m=2 p^{e}, p$ an odd prime, then

$$
\begin{equation*}
\operatorname{Sign} M \equiv \operatorname{Sign}(F \pitchfork F)(\bmod p) \tag{4.7}
\end{equation*}
$$

Proof Note that if $m>2$, then $M_{m}(x) \in \mathbb{Z}\left[x^{2}\right]$. This follows from the fact that the set $\left\{\alpha_{j}: 1 \leq j \leq m-1,(j, m)=1\right\}$ is a complete set of roots of $M_{m}(x)$ and $\alpha_{j}=-\alpha_{m-j}$. If $a(x)$ is a polynomial in x, let $a(x)_{\text {even }}$ and $a(x)_{\text {odd }}$ be the parts of $a(x)$ with even and odd powers of x, respectively. To prove (4.4), note that if $a(x) \in \mathbb{Z}[x]$ is the polynomial in (4.2), then it follows from Proposition 3.3 that there exists $b(x) \in \mathbb{O}[\{x]$ such that

$$
\begin{equation*}
a(x)_{\text {even }}=M_{m}(x) b(x)_{\text {even }}, \quad a(x)_{\text {odd }}=M_{m}(x) b(x)_{\text {odd }} \tag{4.8}
\end{equation*}
$$

If $m \neq 2^{e}$, then $M_{m}(x)$ is primitive by Proposition 3.13, so $b(x) \in \mathbb{Z}[x]$ since $a(x) \in$ $\mathbb{Z}[x]$ and therefore (3.5) and (4.8) imply that

$$
\begin{equation*}
a(1)_{\mathrm{even}} \equiv 0\left(\bmod 2^{\phi(m)}\right), \quad a(1)_{\mathrm{odd}} \equiv 0\left(\bmod 2^{\phi(m)}\right) \tag{4.9}
\end{equation*}
$$

If $m \neq 2^{e}$, formula (4.9) implies that $\operatorname{Sign}(g, M) \equiv \operatorname{Sign} F_{\text {even }}\left(\bmod 2^{\phi(m)}\right)$ and Sign $F_{\text {odd }} \equiv 0\left(\bmod 2^{\phi(m)}\right)$. If $m=2^{e}$, then $2^{-1} M_{m}(x)$ is primitive by Proposition 3.13 and so $2 b(x) \in \mathbb{Z}[x]$ since $a(x) \in \mathbb{Z}[x]$ and therefore (3.5) and (4.8) imply that

$$
\begin{equation*}
a(1)_{\text {even }} \equiv 0\left(\bmod 2^{\phi(m)-1}\right), \quad a(1)_{\text {odd }} \equiv 0\left(\bmod 2^{\phi(m)-1}\right) \tag{4.10}
\end{equation*}
$$

Formula (4.10) implies that $\operatorname{Sign}(g, M) \equiv \operatorname{Sign} F_{\text {even }}\left(\bmod 2^{\phi(m)-1}\right)$ and $\operatorname{Sign} F_{\text {odd }}$ $\equiv 0\left(\bmod 2^{\phi(m)-1}\right)$ if $m=2^{e}$ and so the proof of the first two assertions in Theorem 4.3 is complete.

The next two assertions in Theorem 4.3 follow $\operatorname{since} \operatorname{Sign}(g, M)=\operatorname{Sign} M$ if g^{*} is the identity on $H^{n}(M ;(\mathbb{O})$.

To prove (4.6), note that if $\operatorname{Sign}(g, M) \in \mathbb{Z}$ and $m=2 p^{e}, p$ an odd prime, then $M_{m}(x)$ is primitive by Proposition 3.13 and so $b(x) \in \mathbb{Z}[x]$, and so (3.4) and (4.8) imply that

$$
\begin{equation*}
a(0) \equiv 0(\bmod p) \tag{4.11}
\end{equation*}
$$

Formula (4.11) is (4.6) in view of (2.10). Formula (4.7) follows immediately from (4.6) since $\operatorname{Sign}(g, M)=\operatorname{Sign} M$ if g^{*} is the identity on $H^{n}(M ;(\mathbb{O})$.

Theorem 4.1 contains Theorem 4 in the introduction. We now turn to Theorems 1 and 2 . We will observe that (4.9) and (4.11) are equalities if $n<\phi(m)$.

Theorem 4.12 Suppose that $m>2$ and that the G_{m} action defined by g is regular. If $\operatorname{Sign}(g, M) \in \mathbb{Z}$ and $n<\phi(m)$, then $\operatorname{Sign} F_{\text {odd }}=0$ and

$$
\begin{equation*}
\operatorname{Sign}(g, M)=\operatorname{Sign} F_{\text {even }}=\operatorname{Sign}(F \pitchfork F) \tag{4.13}
\end{equation*}
$$

If g^{*} is the identity on $H^{n}(M ; \mathbb{O})$) and $n<\phi(m)$, then $\operatorname{Sign} F_{\text {odd }}=0$ and

$$
\begin{equation*}
\operatorname{Sign} M=\operatorname{Sign} F_{\text {even }}=\operatorname{Sign}(F \pitchfork F) \tag{4.14}
\end{equation*}
$$

Proof Note that (3.2) implies that the degree of $M_{m}(x)$ is $\phi(m)$ and so if $\operatorname{Sign}(g, M) \in$ \mathbb{Z} and $a(x) \in \mathbb{Z}[x]$ is as in (4.2), then Proposition 3.3 implies that if $n<\phi(m)$, then because the degree of $a(x)$ is at most $n, a(x)$ is identically zero,

$$
\begin{equation*}
a(x) \equiv 0 \tag{4.15}
\end{equation*}
$$

It follows that Sign $F_{\text {odd }}=a(1)_{\text {odd }}=0$ and that the first equality in (4.13) holds since $a(1)_{\text {even }}=0$. The second equality in (4.13) follows by putting $x=0$ in (4.15) and (2.10), (2.14), (2.16) and (4.2). Formula (4.14) follows immediately from (4.13) because $\operatorname{Sign}(g, M)=\operatorname{Sign} M$ if g^{*} is the identity on $H^{n}(M ;(\mathbb{O})$.

Theorem 4.12 contains Theorems 1 and 2. Theorem 2 was stated separately to highlight its relationship to the literature [1, Theorem 4], [9, Theorem 2.2]. Our next task is to note that (4.15) implies that $p(x)(2.14)$ has a special form if the hypotheses of Theorem 4.12 are enforced.

Proposition 4.16 Suppose that $m>2$ and that the G_{m} action defined by g is regular. If $\operatorname{Sign}(g, M) \in \mathbb{Z}, n<\phi(m)$, and p_{k} is the coefficient of x^{k} in $p(x)(2.14), 0 \leq k \leq n-2$, then

$$
p_{k}= \begin{cases}\sum_{j=0}^{\ell} \operatorname{Sign} F^{2 n-4 j}-\operatorname{Sign}(g, M), & k=2 \ell \tag{4.17}\\ \sum_{j=0}^{\ell} \operatorname{Sign} F^{2 n-4 j-2}, & k=2 \ell+1\end{cases}
$$

Proof The hypotheses guarantee the identity (4.15) and so (4.2) implies that for $0 \leq$ $k \leq n-2$, the derivatives of $s(x)$ and $p(x)$ satisfy

$$
\begin{equation*}
s^{(k)}(x)+k(k-1) p^{(k-2)}(x)+2 k x p^{(k-1)}(x)+\left(x^{2}-1\right) p^{(k)}(x)=0 \tag{4.18}
\end{equation*}
$$

The derivatives of $s(x)$ are easily determined (2.16) and (4.17) then follows easily from (4.18).

We now prove Theorem 3. Let $\operatorname{dim} F$ denote the largest dimension of the components of F.

Theorem 4.19 Suppose that $m>2$ and that the G_{m} action defined by g is regular. If $\operatorname{Sign}(g, M) \in \mathbb{Z}, n<\phi(m)$, and $\operatorname{dim} F<n$, then $\operatorname{Sign}(g, M)=\operatorname{Sign} F=$ $\operatorname{Sign}(F \pitchfork F)=0$. If $\operatorname{Sign}(g, M) \in \mathbb{Z}-\{0\}$ and $n<\phi(m)$, then n is even and $\operatorname{dim} F \geq n$. If g^{*} is the identity on $H^{n}(M ;(\mathbb{O}), n<\phi(m)$, and $\operatorname{dim} F<n$, then $\operatorname{Sign} M=\operatorname{Sign} F=\operatorname{Sign}(F \pitchfork F)=0$. If g^{*} is the identity on $H^{n}(M ; \mathbb{O})$), $\operatorname{Sign} M \neq 0$, and $n<\phi(m)$, then n is even and $\operatorname{dim} F \geq n$.

Proof If $\operatorname{dim} F<n$, then $\operatorname{Sign}(F \pitchfork F)=0$, and so the first assertion in the theorem follows from (4.13). The second assertion follows from the first and the observation that n must be even because $\operatorname{Sign}(g, M)=\operatorname{Sign} F_{\text {even }} \neq 0$. The third and fourth statements follow because $\operatorname{Sign}(g, M)=\operatorname{Sign} M$ if g^{*} is the identity on $H^{n}(M ;(\mathbb{O})$.

5 Regular G_{p} Actions on Cohomology Complex Projective Space

In this section, we apply our results to G_{p} action on cohomology complex projective n-space.
Theorem 5.1 Suppose that $M^{4 q}$ is a cohomology complex projective $2 q$-space admitting a diffeomorphism $g: M^{4 q} \rightarrow M^{4 q}$ of odd prime period p. If the G_{p} action defined by g is regular and $2 q<p-1$, then F contains a nonempty connected $2 r$-manifold $F^{2 r}$ such that $r \geq q$. All other components of F have dimension less than $2 q$ and $\operatorname{Sign}\left(F^{2 r} \pitchfork F^{2 r}\right)=1$. If d is the degree of $F^{2 r}$ and $r=2 q-1$, then d^{2} is an odd divisor of $(2 q)$! and if $r=q$, then $d^{2}=1$.

Proof We choose as preferred orientation of $M^{4 q}$ the one such that Sign $M=1$. It follows from (4.14) that

$$
\begin{equation*}
\operatorname{Sign}(F \pitchfork F)=1 \tag{5.2}
\end{equation*}
$$

and so Theorem 4.19 implies that $\operatorname{dim} F \geq 2 q$ and so F contains a connected manifold $F^{2 r}$ with $r \geq q$. Since $M^{4 q}$ is a cohomology complex projective $2 q$-space, all other components of F have dimension strictly less than $2 q$ [4, p. 378] and so (5.2) becomes

$$
\begin{equation*}
\operatorname{Sign}\left(F^{2 r} \pitchfork F^{2 r}\right)=1 \tag{5.3}
\end{equation*}
$$

If d is the degree of $F^{2 r}$ and $r=2 q-1$, then (5.3) implies that d^{2} is an odd divisor of $(2 q)!\left[10\right.$, Theorem 1.1] and if $r=q$, then $F^{2 q} \pitchfork F^{2 q}$ is the union of d^{2} points with a common orientation and so (5.3) implies that $d^{2}=1$.
Corollary 5.4 Suppose that M^{4} is a cohomology complex projective 2-space and that $p>3$ is a prime. If M^{4} admits a regular G_{p} action, then F is the union of a 2-sphere of degree ± 1 and a point.

Proof It follows from Theorem 5.1 that F contains a 2 -sphere of degree $\pm 1, S^{2}$ and so F is the union of S^{2} and a point [4, p.378].

Theorem 5.1 is Theorem 5 and Corollary 5.4 is the assertion in Theorem 6 about cohomology complex projective 2 -space. Theorem 6 will be proved when we establish the assertions about cohomology complex projective 4 -space.

Lemma 5.5 Suppose that $M^{4 q}$ is a cohomology projective $2 q$-space and that p is an odd prime. If $M^{4 q}$ admits a regular G_{p} action and $2 q<p-1$, then F has at most $q+1$ components.

Proof We know that $F=\bigcup_{i=1}^{s} F^{2 n_{i}}, F^{2 n_{i}}$ connected, $s \leq p$ and $\sum_{i=1}^{s}\left(n_{i}+1\right)=2 q+1$ [4, p. 378]. By Theorem 5.1 there is an i_{0} such that $n_{i_{0}} \geq q$ and so $s \leq q+1$.
Lemma 5.6 Suppose that M^{8} is a cohomology complex projective 4-space and that $p>5$ is a prime. If M^{8} admits a regular G_{p} action, then F has two components.

Proof By Lemma 5.5, it is enough to show that F can not have three components. If F has three components, then F is the union of a 4-manifold F^{4} and two points [4, p. 378]. It follows from (2.14), (2.25), and (2.27) together with the fact that $p>5$ and (4.17), that

$$
\begin{align*}
S_{2}(2,2) & =1 \tag{5.7}\\
S_{2}(1,2)+S_{2}(2,2) & =\operatorname{Sign} F^{4}-1 \tag{5.8}
\end{align*}
$$

Since F^{4} is a cohomology complex projective 2 -space $\bmod p$ [4, p. 378], Sign $F^{4}=$ ± 1, and so (5.7) and (5.8) imply that $S_{2}(1,2)=-1,-3$. If ν is the normal bundle of F^{4} in M^{8}, that is, $\nu=\nu_{2}$ in the notation of Section 2, then (2.3) and (2.6) imply that

$$
\begin{equation*}
S_{2}(1,2)=\left(c_{1}^{2}(\nu)-2 c_{2}(\nu)\right)\left[F^{4}\right] \tag{5.9}
\end{equation*}
$$

If d is the degree of F^{4}, then $d^{2}=1$ by Theorem 5.1 and so $c_{2}(\nu)\left[F^{4}\right]=1$. If follows from (5.9) that $c_{1}^{2}(\nu)\left[F^{4}\right]= \pm 1$. This leads to a contradiction.

If $H^{*}(M ; \mathbb{Z})=\mathbb{Z}[x] /\left(x^{5}\right), x \in H^{2}(M ; \mathbb{Z})$, let $\hat{x}=x \mid F^{4}$. If $x_{i} \in H^{2}\left(F^{4} ; \mathbb{Z}\right), i=1,2$, are classes such that $c_{1}(\nu)=x_{1}+x_{2}$ and $c_{2}(\nu)=x_{1} x_{2}$, then $x_{i}=a_{i} \hat{x}$ (mod torsion), $a_{i} \in \mathbb{Z}, i=1,2$ [5, Lemma 3.1]. Since $c_{2}(\nu)\left[F^{4}\right]=1, a_{i}= \pm 1, i=1,2$, and so $c_{1}^{2}(\nu)\left[F^{4}\right] \equiv 0(\bmod 2)$. This contradicts $c_{1}^{2}(\nu)\left[F^{4}\right]= \pm 1$ and so F has two components.

Theorem 5.10 Suppose that M^{8} is a cohomology complex projective 4-space and that $p>5$ is a prime. If M^{8} admits a regular G_{p} action, then F has two components and either F is the union of a 6-manifold of degree ± 1 and a point or F is the union of a 4-manifold of degree ± 1 and a 2-sphere.

Proof Lemma 5.6 says that F has two components and so either $F=F^{6} \cup\{$ point \} or $F=F^{4} \cup S^{2}\left[4\right.$, p. 378]. In either case, if d is the degree of $F^{2 r}, r=2$ or 3 , then Theorem 5.1 implies that $d^{2}=1$.

Theorem 6 is the sum of Corollary 5.4 and Theorem 5.10. Strengthened versions of parts of Theorem 6 can be found in the literature. Any G_{p} action on M^{8} such that $F=F^{6} \cup\{$ point $\}$ must be regular and, if d is the degree of F^{6}, then $d^{2}=1[5$, Theorem 4(ii), $p \geq 5$], [6 , Theorem E, $p=3$]. Theorems 5.1 and 5.10 show that if it is assumed that the action is regular and $p>5$, then the ASgSF can be used to retrieve the fact that a fixed F^{6} has degree one and establish the two results that F has two components and that a fixed F^{4} has degree one.

References

[1] J. P. Alexander, G. C. Hamrick and J. W. Vick, The signature of the fixed set of odd period. Proc. Amer. Math. Soc. 57(1976), 327-331.
[2] M. F. Atiyah and I. M. Singer, The index of elliptic operators III. Ann. of Math. 87(1968), 546-604.
[3] D. Berend and G. Katz, Separating number theory and topology in the Atiyah-Singer g-signature formula. Duke J. Math. 61(1990), 939-971.
[4] G. E. Bredon, Introduction to Compact Transformation Groups. Academic Press, London, 1972.
[5] K. H. Dovermann, Rigid cyclic group actions on cohomology complex projective space. Math. Proc. Cambridge Philos. Soc. 101(1987), 487-507.
[6] K. H. Dovermann and R. D. Little, Involutions of cohomology complex projective space with codimension-two fixed points. Indiana J. Math. 41(1992), 197-211.
[7] F. Hirzebruch, Involutionen auf Mannigfaltigkeiten. Proc. Conf. on Trans. Groups, New Orleans, Springer Verlag, 1967, 148-167.
[8] K. Jänich and E. Ossa, On the signature of an involution. Topology 8(1969), 27-30.
[9] K. Kawakubo, The index and generalized Todd genus of \mathbb{Z}_{p} actions. Amer. J. Math. 97(1975), 182-204.
[10] R. D. Little, Self-intersection of fixed manifolds and relations for the multisignature. Math. Scand. 69(1991), 167-178
[11] \longrightarrow The stable signature of a regular cyclic action. Proc. Amer. Math. Soc. 130(2002), 259-266.
[12] D. C. Royster, An analogue of the stabilization map for regular \mathbb{Z}_{p} actions. Rocky Mountain J. Math. 24(1994), 689-708.

Department of Mathematics
University of Hawaii at Manoa
2565 The Mall
Honolulu, HI 96822
USA
e-mail: little@math.hawaii.edu

[^0]: Received by the editors April 4, 2002.
 AMS subject classification: 57S17.
 (C)Canadian Mathematical Society 2004.

