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Abstract This paper introduces a generalization of the ddc-condition for complex manifolds. Like the
ddc-condition, it admits a diverse collection of characterizations, and is hereditary under various geometric
constructions. Most notably, it is an open property with respect to small deformations. The condition is
satisfied by a wide range of complex manifolds, including all compact complex surfaces, and all compact
Vaisman manifolds. We show there are computable invariants of a real homotopy type which in many
cases prohibit it from containing any complex manifold satisfying such ddc-type conditions in low degrees.
This gives rise to numerous examples of almost complex manifolds which cannot be homotopy equivalent
to any of these complex manifolds.
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1. Introduction

Well-formulated algebraic conditions can reveal deep connections within geometry and
topology. This is epitomized in the work of Deligne et al. [DGMS75], which introduces

the ddc-condition for complex manifolds. This seemingly simple algebraic condition is a

versatile tool in the study of compact complex manifolds for at least the following reasons:

(1) It admits characterizations of rather distinct nature (using elements, indecom-
posable bicomplexes, the Frölicher spectral sequence and pure Hodge structures,

numerical inequalities).

(2) It passes to other manifolds in many geometric situations, such as holomorphic
domination, projective bundles, small deformations, blow-ups (along ddc-centres),

etc.

(3) It holds on a fairly large class of manifolds, in particular, on compact Kähler

manifolds.

(4) It implies topological restrictions on the underlying manifold: odd Betti numbers

are even, and formality holds, in the sense of rational homotopy theory.

In this paper, we present a generalization of the ddc-condition, termed the ddc + 3-

condition, for which we obtain full analogues of Conditions (1)–(3) above. In the last
section, we broaden our scope and provide a general framework for studying the real

homotopy type of complex manifolds. This yields topological obstructions to the existence

of complex structures satisfying a low-degree variant of the ddc+3-condition.
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A ddc-type condition beyond the Kähler realm 3

Definition and equivalent characterizations

Let M be a compact complex manifold and A := A(M) its bicomplex of C-valued

differential forms. One knows from [DGMS75] that the ddc-condition has several

equivalent formulations (c.f. Theorem 3.1 below). One such statement is that the following

diagram induces an isomorphism in cohomology:

(Kerdc,d)

i

�����
��
��
��

π

����
���

���
���

(A,d) (Hdc,d= 0)

.

We perform a pushout on this diagram to reveal a new long exact sequence, valid for all
complex manifolds, which is used in one formulation of our first main result:

Theorem A (The ddc+3-condition). Let (M,J) be a compact complex manifold. The

following are equivalent:

(1) If x ∈ A with x= dy, and x= dcz, then x= dw with w ∈Kerdc.

(2) The bicomplex (A,∂,∂̄) decomposes as a direct sum of dots, squares, and length 3
zigzags, that is:

Cp,q, Cp,q+1
∂ �� Cp+1,q+1

Cp,q
∂ ��

∂̄

��

Cp+1,q,

∂̄

��
Cp,q+1

Cp,q
∂ ��

∂̄

��

Cp+1,q,

Cp,q+1
∂ �� Cp+1,q+1

Cp+1,q

∂̄

��
.

(3) The Frölicher spectral sequence degenerates at E1, and the total purity defect is at
most 1.

(4) The connecting homomorphism in the long exact sequence

· · · �� Hk
d ⊕Hk

dc

p−j �� Hk (A/Imdc)
δk �� Hk+1 (Kerdc)

i+π �� Hk
d ⊕Hk

dc
�� · · ·

is zero for all k.

(5) The following numerical equality holds:∑
k

dimHk(Kerdc)+dimHk(A/Imdc) = 2
∑
k

dimHk
dR(M).

Every property above has a more restrictive counterpart that characterizes the usual

ddc-condition. In view of Condition (2), we call a complex manifold satisfying these

conditions a ddc + 3-manifold. To make Condition (3) above precise, we introduce a
nonnegative integer that measures the extent to which the pure Hodge condition fails,

called the purity defect. While it can be defined in terms of filtrations, as in Definition 3.15,

it is easily (and equivalently) understood in terms of lengths of the odd zigzags appearing
in any decomposition of (A,∂,∂̄) into indecomposable bicomplexes, Proposition 3.18.

The Conditions (2) and (3) have a natural generalization to higher length odd zigzags

(respectively, higher purity defect), and some of the results in this paper will hold for
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the resulting more general classes of manifolds. The spaces H∗(Kerdc) and H∗(A/Imdc)

in condition (4) are closely related to the well-studied Bott-Chern and Aeppli groups,

H∗
BC(M) and H∗

A(M), respectively. In fact, these are pairwise isomorphic if and only
if H∗

dR(M) inherits a pure Hodge structure, Theorem 3.28. This is deduced from a

natural diagram, respecting Poincaré duality, that contains all these groups, the long

exact sequence, and certain purity obstruction groups (see Section 3.4).
The numerical characterization in Condition (5) follows from a more general set of

inequalities

hBC +hA ≥ hKerdc +hA/Imdc ≥ h∂̄ +h∂ ≥ 2
∑
k

bk,

where bk =dimHk
dR(M), and the suggestive notation hBC =dimHBC , h∂̄ =dimH∂̄ , etc.,

is used. This includes the case considered in [AT13]. All possible equalities above are

characterized in Proposition 3.29 in terms of various degeneration and purity conditions,

including the ddc+3 condition.

Inheritance of the ddc+3-condition

Just as for the ddc-condition, the validity of the ddc+3-condition is quite robust under

many geometric constructions. In fact:

Theorem B. The ddc+3-condition satisfies:

(1) A blow-up of a manifold M along a smooth centre Z ⊆M is ddc+3 if and only if
both M and Z are ddc+3.

(2) A product is ddc +3 if and only if one factor is a ddc +3-manifold and one is a

ddc-manifold.

(3) The target of a holomorphic surjection f :M →N with M a ddc+3-manifold and
dimM = dimN is, again, a ddc+3-manifold.

(4) Projectivized holomorphic vector bundles are ddc +3-manifolds if and only if the

base of the bundle is a ddc+3-manifold.

(5) Any sufficiently small deformation of a ddc + 3-manifold is, again, a ddc + 3-
manifold.

All of these statements have exact analogues replacing ddc+3 by ddc. Note, however,

that ddc +3-manifolds behave like a module over ddc-manifolds, rather than as a ring

themselves. In fact, the purity defect behaves additively under products.
By means of the weak factorization theorem, one can extract statements about

bimeromorphic invariants from Condition (1). For example:

Corollary B.1. The ddc + 3-condition is a bimeromorphism invariant of compact
complex manifolds in complex dimension at most four.

The deformation property in Condition (5) above is a consequence of the following more

general statement:
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A ddc-type condition beyond the Kähler realm 5

Theorem C. The condition “E1-degeneration and purity defect at most k” is preserved
under small deformations of compact complex manifolds.

In the ddc-case, small deformations have exactly the same cohomological invariants

(Hodge numbers, Bott-Chern numbers, etc.). This is, in general, not true in the setting of

Theorem C. However, under a slight technical strengthening of the ddc +3-condition
on the central fibre, satisfied by compact surfaces and Vaisman manifolds, the E1-

isomorphism type of the bicomplex of forms is constant under small deformations (see

Corollary 5.10). In particular, under this condition, the Hodge and Bott-Chern numbers

of nearby fibres agree with that of the central one.

Vaisman manifolds and the ddc+3-condition

Beyond ddc-manifolds, there is an abundance of complex manifolds satisfying the ddc+3-

condition of Theorem 3.9, including all compact complex surfaces (Corollary 4.1), certain
twistor spaces (Proposition 4.2), and many nilmanifolds. Our main examples, however,

are compact Vaisman manifolds [Vai79], [Vai82]. Recall that a complex manifold is

called Vaisman if it carries a Hermitian metric, such that the fundamental form satisfies
dω = θ∧ω, with θ parallel. These form a large class of manifolds. For instance, given any

projective manifold M embedded as the zero section into a negative line bundle L, the

quotient of L \M by the cyclic group generated by any complex number λ ∈ C× \S1

acting by translation in the fibres, carries a Vaisman metric [Vai80]. This construction

generalizes the familiar examples of the Hopf manifolds.

Theorem D. Compact Vaisman manifolds satisfy the ddc+3-condition.

It was previously known for Vaisman manifolds that the Frölicher spectral sequence

degenerates at E1, [Tsu94, Theorem 3.5], so in view of Theorem A, the new contribution

here is the control over the lack of purity in the cohomology. In fact, the theorem as
stated is a consequence of a more general computation that precisely identifies which

zigzags appear in which positions within the bicomplex of forms of a Vaisman manifold,

Theorem 5.3.
This complete calculation allows one to draw many other conclusions, some of them

yielding new and simple proofs of known results, like the fact that no Oeljeklaus-Toma

manifold of type (s,t) with s≥ 2 can be Vaisman [Kas13], or the very recent calculation
of the Bott-Chern cohomology of a Vaisman manifold [IO23]. Others are, to the best of

our knowledge, new:

Corollary D.1. The middle cohomology of a compact Vaisman manifold of complex

dimension n+1 carries a pure Hodge structure of weight n+1.

Corollary D.2. Every small deformation Vt of a compact Vaisman manifold V0 has the
same E1-isomorphism type, that is for all t sufficiently small:

(1) the bicomplex A(Vt) has the same zigzag multiplicities as A(V0),

(2) for any cohomological functor H (e.g. HBC,HA,H∂̄,..), H(Vt)∼=H(V0).
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In Section 5.2, we record some results on the vanishing of higher operations and
Massey products on Vaisman manifolds, in analogy with the case of Sasakian manifolds,

established in [BFMnT16]. Together with the formality of ddc-manifolds, this suggests

a further study of the interplay between the ddc-type conditions and the real homotopy
type, which is carried out in the last section of the paper.

Homotopical restrictions imposed by ddc-type conditions

There are two ways to prove formality for ddc-manifolds [DGMS75]: One consists in

building a highly structured minimal model having a certain compatibility with the

bigrading. The other, very quick one, consists in noting that the diagram A←Kerdc →
H(A) connects A to its cohomology by quasi-isomorphisms. The second approach may

at first seem to be very particular to the ddc-setting. However, in the last section of

the article, we turn it into a general technique to study the homotopy type of a complex
manifold. Namely, we observe that the existence of a diagram A←B→H(A) with certain

extra properties (e.g. fixed ranks of the induced maps in cohomology) only depends on the

homotopy type of A. On the other hand, for any complex manifold M, one obtains such a
diagram for A=A(M), and cohomological conditions on M translate into conditions on

the ranks of the induced maps in cohomology. Applying this kind of reasoning, we obtain:

Theorem E. Let M be a compact manifold of dimension 2n, with j-minimal model ψ :

Mj →A(M), such that

(1) the map H2n(ψ) is surjective (i.e. the j-minimal model sees the fundamental class),

(2) the algebra 〈H≤j(M)〉 generated by cohomology classes in degree ≤ j has trivial

intersection with Hj+1(M) and H2n(M).

If there is a complex manifold N in the homotopy type of M, such that

(3) the natural map Kerdc →A(N) induces isomorphisms in Hs for s≤ j, and

(4) the natural map Kerdc →A(N)⊕H(N) induces an injection in Hj+1,

then n= 0.

The last condition is the ddc +3-condition in degree j +1. The combination of the

last two conditions can be recast in terms of which indecomposable bicomplexes can
occur in A(M), and also in terms of classical invariants like Hodge numbers and Hodge

filtrations. The result as stated above is a less general (and less technical) version of

the result in the main body of the text, which gives a topological lower bound on the
complexity of the bicomplex of complex structures satisfying these ddc-type conditions

in low degrees, Theorem 6.18. That inequality is combined with a complex-analytic

refinement of Poincaré duality, allowing one to relax the top-degree conditions above,

Corollary 6.20. Applying the Theorem with j = 1, one obtains

Corollary E.1. The filiform nilmanifolds G/Γ, associated with the cdga of left invariant

forms given by η1,...,η2n, such that dηk = η1 ∧ ηk−1 cannot support a complex structure

which satisfies the ddc+3-condition with pure H1.

https://doi.org/10.1017/S1474748023000312 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000312


A ddc-type condition beyond the Kähler realm 7

It is known that the filiform nilmanifolds cannot admit left-invariant complex structures,
and it is unknown whether they admit any complex structures at all (for n ≥ 3). We

stress that the conclusion of the Corollary holds for any manifold rationally homotopy

equivalent (or even R-homotopy equivalent) to a filiform nilmanifold, and for connected
sums of these with any 1-connected manifold. Further, since the conditions are only in

very low degree, the result rules out many complex structures, including many which are

not ddc+3. On the other hand, we give examples of 6-dimensional manifolds which are

complex but are never ddc+3 with pure H1. We also give many nonnilmanifold examples,
in particular, rationally highly connected ones.

In the almost half-century since its appearance, the pioneering work of Deligne,

Griffiths, Morgan, and Sullivan, has inspired a great number of applications related to
Kähler geometry and rational homotopy theory. As we hope to demonstrate in this article,

a return to these ideas sheds further light on complex geometry and its interaction with

homotopy theory, far beyond the Kähler realm.

2. Preliminaries

We recall some definitions and results that will be used below.

A bicomplex (or double complex ) is a bigraded C-vector space, A =
⊕

p,q∈Z
Ap,q,

together with endomorphisms ∂ and ∂̄, of bidegrees (1,0) and (0,1), respectively, such
that d= ∂+ ∂̄ satisfies d2 = 0. Most of our bicomplexes will have a real structure, that is

a complex antilinear involution σ :A→A, such that σ(Ap,q) =Aq,p and σdσ = d, hence,

we use the suggestive overline notation, but in general, no real structure is stipulated.
Unless explicitly stated otherwise, we will always deal with bounded bicomplexes, that is

those satisfying Ap,q = 0 for all but finitely many p,q ∈ Z.

Our principal example is the space A =A(M) of complex-valued forms on a complex

manifold M, which further carries the structure of a graded-commutative differential
graded algebra (cdga) and a real structure because it is the complexification of the space

of real forms. For any bicomplex A, one can form the column and row cohomology, known

as the Dolbeault and conjugate Dolbeault cohomologies, defined by H∂̄ = Ker ∂̄
Im ∂̄

and H∂ =
Ker∂
Im∂ . The column and row filtrations F pA =

⊕
r≥pA

r,s and F̄ q =
⊕

s≥qA
r,s induce

spectral sequences converging from these to the total cohomology Hd =
Kerd
Imd . The total

cohomology has an induced pure Hodge structure (of weight k in degree k) if the two

induced filtrations

F pHk
d (A) = {[a] | a ∈ F pAk} and F̄ qHk

d (A) = {[a] | a ∈ F̄ qAk}

on Hk are k -opposed, that is satisfy

Hk
d (A) =

⊕
p+q=k

F pHk
d (A)∩ F̄ qHk

d (A).

This is equivalent to the condition that, for all k,

F pHk
d (A)∩ F̄ k+1−pHk

d (A) =Hk
d (A)

for all p, c.f. [Del71].
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A bicomplex is called indecomposable if it cannot be written as a direct sum of two
nontrivial subbicomplexes. Every indecomposable subcomplex is isomorphic to either a

square or a zigzag. The structures of these are recalled and indicated in diagrams below,

when first needed in the proof of Theorem 3.9. The length of a zigzag is its dimension as
a vector space (i.e. the number of nonzero corners). Zigzags of length 1 or 2 will be called

‘dots’ and ‘lines’, respectively. Zigzags of length 3 with outgoing arrows will be called

‘L’s’, zigzags of length 3 with incoming arrows will be called ‘reverse L’s’. Any bicomplex

can be written as a direct sum of indecomposable subcomplexes

A=
⊕
I

I⊕multI(A),

where I runs over all squares and zigzags, and the multiplicity multI(A) of every

isomorphism type of indecomposable bicomplex is the same in any such decomposition
(c.f. [KQ20], [Ste21b]).

A map f :A→B of bounded bicomplexes is called an E1-isomorphism, or bigraded weak

equivalence, if it induces an isomorphism in both row and column cohomology. If both

A and B have real structures, σA and σB , and σBf = fσA, then f is an E1-isomorphism
if and only if it induces an isomorphism in Dolbeault cohomology. This is the case,

for example, for A=A(M),B =A(N) for complex manifolds M,N and f = ϕ∗ for some

holomorphic map ϕ :N →M . We write A�1 B if there exists a chain of E1-isomorphisms
connecting A and B. One has multZ(A) = multZ(B) for any zigzag if and only if A�1 B

(c.f. [Ste21b]). For any bicomplex, one can introduce the operator dc = I−1 dI, where I

acts on Ap,q as multiplication by ip−q. If (A(M),d) are the differential forms of a complex
manifold (M,J), then I equals the extension of J as an algebra automorphism, and

dc = i(∂̄−∂) is also a derivation. Let Hdc = Kerdc

Imdc denote the cohomology of (A(M),dc),

which is isomorphic to de Rham cohomology. Unless explicitly stated otherwise, we will

assume all manifolds to be compact and connected.

3. The ddc+3-condition

The results of this section are primarily algebraic and apply to any bounded bicomplex,

while the main example of interest is the complex of C-valued smooth differential forms
on a complex manifold. We’ll use the abbreviated notation A for either case and highlight

certain cases as appropriate.

3.1. A long exact sequence

In this subsection, we derive a new long exact sequence and observe that the vanishing
of the connecting homomorphism in this sequence is a mild weakening of the so-called

ddc-condition. First we recall:

Theorem 3.1 (The ddc-condition, [DGMS75], Theorem 5.7). For any bounded bicomplex

(A,∂,∂̄), the following are equivalent:

(1) For all x ∈ A, if dcx= 0 and x= dz, then x= ddcw for some w.

(2) The spectral sequences induced by the row and column filtrations both degenerate at

E1, and for each k, there is an induced pure Hodge structure of weight k on Hk(A).
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A ddc-type condition beyond the Kähler realm 9

(3) The bicomplex (A,∂,∂̄) is a direct sum of
(a) bicomplexes with only a single component, and ∂ = ∂̄ = 0,

(b) bicomplexes which are a square of isomorphisms.

Condition (3) above can be equivalently stated as multI(A) = 0, unless I is a dot or a

square, and there are concise proofs now of the above theorem by checking the validity

of Conditions (1) and (2) on every indecomposable complex (c.f. [KQ20, Section 2.3],
[Ste21b, Corollary 7].

Deligne et al. [DGMS75] show that all Kähler manifolds satisfy the ddc-condition, and

that the ddc-condition has strong implications for the topology of the underlying manifold.

To obtain the latter, one method is to show the following diagram

(Kerdc,d)

i

�����
��
��
��

π

����
���

���
���

(A,d) (Hdc,d= 0)

is defined whenever (M,J) satisfies the ddc-condition, and that it induces an isomorphism

in cohomology. From this, it follows that M is formal, that is the differential graded

algebra of differential forms on M is connected by a chain of quasi-isomorphisms of
differential graded algebras to its cohomology (equipped with zero differential). According

to Sullivan’s theory of rational homotopy, the rational homotopy groups are then a formal

consequence of the cohomology groups, that is can be computed directly by a relatively
simple procedure [Sul77].

Our first new observation is that the above diagram is well-defined for all complex

manifolds, even if the ddc-condition does not hold. Let (M,J) be an almost complex

manifold, and define dc = I−1 dI as before. It is well known that J is integrable if and
only if d and dc commute in the graded sense, that is [d,dc] = 0. This implies the existence

of a diagram of cdga’s as above, but what is not obvious is that d= 0 on Hdc . This follows

from a more fundamental algebraic relation expressed in the proposition below.

Proposition 3.2. An almost complex structure J is integrable if and only if:

[d,J] = dc

[dc,J] =−d,

where J denotes the extension of J as a derivation.

The equations imply [d,dc] = 0. The two above equations are in fact equivalent, as can

be seen by conjugating either by I. Indeed, J and I commute, since J acts on (p,q)-forms
by i(p− q), which also gives the following beautiful formula:

e
π
2 J = I.

Proof. On complex valued forms, d= μ̄+ ∂̄+∂+μ with components of bidegrees (−1,2),

(0,1), (1,0), and (2,−1), respectively. In bidgree (p,q), I−1 = (−1)p−qI, so that conjugating

an operator of bidegree (r,s) by I acts by multiplication by (−i)r−s. As operators on forms
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10 J. Stelzig and S. O. Wilson

of bidegree (p,q),

[d,J] = 3iμ̄+ i∂̄− i∂−3iμ,

whereas

I
−1 dI=−iμ̄+ i∂̄− i∂+ iμ,

so that

[d,J]− I
−1 dI= 4i(μ̄−μ).

This vanishes if and only if J is integrable.

Remark 3.3. Working with an arbitrary bigraded complex (not necessarily with

multiplicative structure) one can define J as multiplication by i(p− q) in bidegree (p,q),
and a similar argument shows an analogous characterization in the purely algebraic

setting.

Corollary 3.4. For any complex manifold (respectively, any bicomplex), there is a

commutative diagram of complexes

(Kerdc,d)

i

�����
���

���
�

π

����
���

���
���

(A,d)

p
����

���
���

��
(Hdc,d= 0)

j�����
���

���
��

(A/Imdc,d)

.

This is both a pullback and a pushout in the category of complexes.

Proof. Proposition 3.2 implies that d passes to Hdc with d = 0, and that the two right
maps respect the differentials. The last statement is immediate to check.

Remark 3.5. The ddc-condition holds in degree k if and only if

Hk(Imdc,d) = 0 for all k.

Thus, the ddc-condition holds if and only if one (and every) map in the diagram of
Corollary 3.4 is an isomorphism in cohomology. To see this, one inserts the complex

(Imdc,d) as the kernel or cokernel in all places, and passes to any of the long exact

sequences in cohomology.

A square of complexes

A

B C

D

�

�

i

		��
��
� π



	
		

		

j		��
��
�

p 
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A ddc-type condition beyond the Kähler realm 11

is both a pullback and a pushout if and only if there is a short exact sequence

0 �� A=Ker(p− j)
i+π �� B⊕C

p−j �� Coker(i+π) =D �� 0.

This gives the following:

Theorem 3.6. For any complex manifold (respectively, any bicomplex), there is a short

exact sequence of complexes:

0 �� (Kerdc,d)
i+π �� (A,d)⊕ (Hdc,0)

p−j �� (A/Imdc,d) �� 0,

and therefore a long exact sequence in cohomology:

· · ·
δk−1 �� Hk (Kerdc)

i+π �� Hk
d ⊕Hk

dc

p−j �� Hk (A/Imdc)
δk �� Hk+1 (Kerdc) �� · · ·

Remark 3.7. For A = A(M) of a compact complex manifold M, the vector spaces

appearing in this long exact sequence are all finite dimensional when the manifold is

compact. One way to establish this is to relate them to the Bott-Chern and Aeppli

cohomology groups, as is done in Section 3.4.

The isomorphism type of this long exact sequence, and all things algebraically derived

from it, are invariants of the biholomorphism type of complex manifolds. In particular,

this holds for the rank of the connecting map δ. We will later see that this rank is even
a bimeromorphism invariant in complex dimension at most four (see Remark 4.7).

Finally, we relate the ddc-condition to the long exact sequence from Theorem 3.6.

Lemma 3.8. If A satisfies the ddc-condition, then the connecting homomorphism from
Theorem 3.6 is zero in all degrees.

Proof. Consider

Hk
d ⊕Hk

dc

p−j �� Hk (A/Imdc)
δk �� Hk+1 (Kerdc)

i+π �� Hk+1
d ⊕Hk+1

dc .

The ddc-condition implies the first map, being the sum of two surjective maps, is

surjective. Alternatively, the ddc-condition implies the last map, being the sum of two

injective maps, is injective. By either argument, δk = 0.

3.2. Equivalent characterizations of ddc+3

The vanishing of the connecting homomorphism δ does not quite imply the ddc-condition.

In fact, we have:

Theorem 3.9 (The ddc+3-condition). For any bounded bicomplex A, the following are
equivalent:

(1) The connecting homomorphism

δk :Hk (A/Imdc)→Hk+1 (Kerdc)
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12 J. Stelzig and S. O. Wilson

in the long exact sequence

· · · �� Hk
d ⊕Hk

dc

p−j �� Hk (A/Imdc)
δk �� Hk+1 (Kerdc)

i+π �� Hk
d ⊕Hk

dc
�� · · ·

is zero for all k.

(2) For all k ≥ 0, the diagram

Hk(Ker dc)

i

�����
���

���
��

π

��
















Hk
d

p
��















Hk

dc

j�����
���

���
�

Hk(A/Imdc)

is both a pullback and a pushout in the category of vector spaces.

(3) The following holds, for all k ≥ 0:

For all x ∈ Ak+1, if x= dy and x= dcz, then x= dw with w ∈Kerdc.

(4) The following numerical equality holds:

∑
k

dimHk(Kerdc)+dimHk(A/Imdc) = 2
∑
k

bk.

(here, we make the additional assumption on A that all involved quantities are

finite).

(5) The bicomplex (A,∂,∂̄) decomposes as a direct sum of dots, squares, and length 3
zigzags.

(6) The Frölicher (row- and column-) spectral sequences degenerate at E1, and the total

purity defect is equal to 1.

The purity defect will be introduced in Section 3.3, where the equivalence of Condition

(6) will be proved.

Remark 3.10. If A is equipped with a real structure σ (e.g. if A=A(M)), then d and
dc are real operators and one may replace A by the fixed points of σ (the real forms) in

Conditions (1)–(4). In that setting, also, the two spectral sequences in Condition (6) are

conjugate to each other, so it suffices to consider one.

Proof. The sequence in Condition (1) has a vanishing connecting homomorphism if and

only if the long exact sequence splits into short exact sequences

0 �� Hk(Kerdc)
i+π �� Hk

d ⊕Hk
dc

p−j �� Hk(A/Imdc) �� 0,
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Zigzag type Length A/Imdc Kerdc H(A/Imdc) H(Kerdc) Rank(δ)

Dot 1 C C C C 0

Square NA C→ C→ 0 0→ C→ C (0,0,0) (0,0,0) 0

L 3 C→ C 0→ C2 (0,0) (0,C2) 0

Rev. L 3 C2 → 0 C→ C (C2,0) (0,0) 0
Odd Out. 2m+1 Cm � C 0→ Cm+1 (Cm−1,0) (0,Cm+1) m−1

Odd Inc. 2m+1 Cm+1 → 0 C ↪→ Cm (Cm+1,0) (0,Cm−1) m−1

Even Out. 2m Cm → 0 0→ Cm (Cm,0) (0,Cm) m
Even Inc. 2m Cm → 0 0→ Cm (Cm,0) (0,Cm) m

Figure 1. Zigzag contributions for the connecting map δk :Hk(A/Imdc,d)→Hk+1(Kerdc,d).

which holds if and only if the diagram in Condition (2) is a pushout and pullback for all
k ≥ 0. To see the equivalence of the third condition, note that from the definitions we

have

H(A/Imdc) =
d−1(Imdc)

Imd+Imdc
and H(Ker dc) =

Ker d∩Ker dc

d(Ker dc)
.

Condition (3) expresses that the connecting homomorphism δ has image zero.

The equivalence of Conditions (4) to (1) can be seen as follows. For any compact

complex manifold, the long exact sequence of Theorem 3.6 implies:

dim
(
Hk(Kerdc)/Imδk−1

)
+dim(Kerδk) = 2bk.

Then the equality in Condition (4) holds if and only if Condition (1) holds.

Proving that Condition (5) is equivalent to Condition (1) will require several steps.
First, the diagram

δk :Hk(A/Imdc)→Hk+1(Kerdc)

can be understood as a functor on the category of bicomplexes over C, with values in

the (linear) category of diagrams of two vector spaces and a linear map between them.

Namely, for any bicomplex (B,∂,∂̄), we let d= ∂+ ∂̄, and dc = i(∂̄−∂), and consider the

diagram above. The map δk is readily seen to be induced by d. This functor is linear, and
it takes direct sums of bicomplexes to direct sums of vector spaces and maps between

them, since Kerdc and B/Imdc are compatible with direct sums.

From [KQ20], [Ste21b], every (bounded) bicomplex (B,∂,∂̄) decomposes as a direct sum
of dots, squares, and zigzags, the definition of which we recall below.

To complete the proof of the claim, it suffices to check that the map

δj :H
j(A/Imdc)→Hj+1(Kerdc)

is zero, for all j, on all bicomplexes which contain only dots, squares, and length 3 zigzags,

and that δj is nonzero for some j on any bicomplex that contains an even-length zigzag,
or an odd zigzag of length 5 or higher. We summarize these groups and the map δk in

Figure 1 below, which can be checked on a case-by-case basis, and explains the case of

each row in the diagram.
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14 J. Stelzig and S. O. Wilson

(Dot) The case of a dot is a single vector space C, in some bidegree (p,q) with

k = p+ q, and zeroes elsewhere with vanishing differentials ∂ and ∂̄. We compute that

A/Imdc =Kerdc =C in degree k, with zero in all other degrees, so that δj :H
j(A/Imdc)→

Hj+1(Kerdc) is the zero map for all j.

(Square) A square is a bicomplex whose only nonzero entries are as follows, with maps

that are isomorphisms:

Cp,q+1
∂ �� Cp+1,q+1

Cp,q
∂ ��

∂̄

��

Cp+1,q

∂̄

��
.

Let k= p+q. Computing the total complexes (A/Imdc,d) in total degrees k,k+1,k+2, we

have C ∼−→C→ 0. Similarly, the complex (Kerdc,d) in degrees k,k+1,k+2 is 0→C ∼−→C.
This shows the functors H(A/Imdc) and H(Kerdc) vanish on squares, and clearly, δj = 0

for all j.

(Odd length 3 zigzag) Consider an ‘L’, that is a length 3 zigzag with outgoing

differentials that are isomorphisms:

Cp,q+1

Cp,q
∂ ��

∂̄

��

Cp+1,q

.

In this case, the total complex (A/Imdc,d) in degrees k,k+1 is C ∼−→C, so the cohomology
H(A/Imdc,d) is zero in all degrees. Similarly, the complex (Kerdc,d) in total degrees

(k,k+1) is 0 → C2 and the cohomology H(Kerdc,d) is (0,C2) in degrees k and k+1,

respectively. Thus, δj = 0 for all j.
Next, we consider a ‘reverse L’, that is a length 3 zigzag with incoming differentials

that are isomorphisms:

Cp,q+1
∂ �� Cp+1,q+1

Cp+1,q

∂̄

��
.

In this case, the total complex (A/Imdc,d) in total degrees (k+1,k+2) is C2 → 0, so the

cohomologyH(A/Imdc,d) is (C2,0) in total degrees k+1 and k+2, respectively. Similarly,

the complex (Kerdc,d) in total degrees (k + 1,k + 2) is C ∼−→C and the cohomology
H(Kerdc,d) is (0,0) in degrees k+1 and k+2, respectively. Thus, δj = 0 for all j.

(General odd-length zigzag) For general odd-length zigzags, we have two cases,

outgoing and incoming:

https://doi.org/10.1017/S1474748023000312 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000312


A ddc-type condition beyond the Kähler realm 15

C

C
∂ ��

∂̄

��

C

C
∂ ��

. . .

C

C
∂ ��

∂̄

��

C

C
∂ �� C

C
∂ ��

∂̄

��

C

C

. . .

∂ �� C

C

∂̄

��

.

Consider the first case, which is in total degrees k and k+1, with vector spaces Cm and
Cm+1, respectively. The total complex (A/Imdc,d) is Cm in degree k, and C in degree

k+1, since dc is injective on each copy of C in degree k but not onto. The differential

d : Cm → C is onto, so the total cohomology of H(A/Imdc,d) is Cm−1, and 0, in total
degrees k and k+1, respectively.

Continuing with this odd-length outgoing case, the total complex (Kerdc,d) is 0 in

degree k, and Cm+1 in degree k+1. So the total cohomology ofH(Kerdc,d) is 0 and Cm+1,
in total degrees k and k+1, respectively. Finally, the differential δk :Hk(A/Imdc,d)→
Hk+1(Kerdc,d) is the injection Cm−1 → Cm+1.

The case of odd-length incoming is computed similarly. The results are in Figure 1 and

yield that δk :Hk(A/Imdc,d)→Hk+1(Kerdc,d) is the surjection Cm+1 � Cm−1, which
is nonzero for m> 1.

(Even-length zigzags) For general odd-length zigzags, we again have two cases, where

the top-leftmost space has an outgoing or incoming map:

C
∂ �� C

C

∂̄

��

C
∂ ��

. . .

C

C

∂̄

��

∂ �� C

C

C
∂ ��

∂̄

��

C

C
∂ ��

. . .

C

C

∂̄

��

.

Suppose each complex has Cm in total degrees k and k+1. Here, the two cases yield

the same complexes in total degree. Namely, in either case, the complex (A/Imdc,d) is
Cm → 0 with the same cohomology, and the complex (Kerdc,d) is 0→Cm, with the same

cohomology. The differential δk : Hk(A/Imdc,d) → Hk+1(Kerdc,d) is the isomorphism

Cm ∼−→Cm, which is a nonzero for m> 0, that is length at least 2.
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16 J. Stelzig and S. O. Wilson

Definition 3.11. The equivalent conditions in Theorem 3.9 will be referred to as the
ddc+3-condition. A complex manifold M will be said to be ddc+3 if the bicomplex of

differential forms on M satisfies the ddc+3-condition.

Example 3.12. For M = S1×S3 with the complex structure of a Hopf manifold, the

Frölicher spectral sequence degenerates and b0 = b1 = 1, b2 = 0. Hence, one has (see e.g.
[Ste21b, Chapter 4])

A(M)�1 ⊕ .

Hence, it is ddc+3. We will generalize this below in two ways (to all complex surfaces

and to all Vaisman manifolds).

The ddc +3-condition fails in general in complex dimension greater than 2, as the

following example shows.

Example 3.13. For M = S3 × S3 with the Calabi-Eckmann complex structure,
h0,1(M) �= 0 by [Bor66], so the Frölicher spectral sequence does not degenerate. Thus, M

is not ddc+3. One can analyse this failure more precisely. In fact, one may extract from

the calculations in [AT15, Section 3.3] that

A(M)�1 ⊕ ⊕ .

By inspecting Figure 1, one sees that the connecting homomorphism

δk :Hk (A/Imdc)→Hk+1 (Kerdc)

is an isomorphism for k = 1, 4, and the source and target are nonzero (in fact
2-dimensional) in this case.

We end this section with a remark concerning the other potential extremity of the

connecting homomorphism.

Remark 3.14. The connecting homomorphism δ is an isomorphism (away from the top

and bottom degrees) if and only if M is a rational homology sphere. Note that beyond
the standard sphere S6, there are numerous rational homology 6-spheres that are almost

complex. In fact, as shown by ([AM19], p.5), performing surgery on the first factor of

S1×N preserves the condition of being spinc, which in dimension 6 is equivalent to being
almost complex. Applying this construction to those 5-dimensional lens spaces which are

spinc yields infinitely many topologically distinct examples. It is not known if any posses

a complex structure.
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3.3. Purity defect

We relate the ddc+3-condition to a modest failure of the pure Hodge condition. To do

this, we introduce a definition that measures the extent to which a complex manifold fails

to have a pure Hodge structure, namely a nonnegative integer, called the purity defect,

defined in terms of the Hodge filtration. Proposition 3.18 shows that this number simply
measures the longest odd-length zigzag in the bicomplex (A,∂,∂̄). It will follow that a

manifold satisfies the ddc+3-condition if and only if there is first page degeneration and

purity defect at most 1, Corollary 3.20. Again, the definition and the last mentioned
corollary work just as well for any (bounded) bicomplex, but for ease of language

and because we show some specifically geometric results, we work with the complex

of differential forms in this subsection.
Recall that for any complex manifold (M,J), the Hodge-filtration,

F pAk(M) :=
⊕
j≥p

Aj,k−j(M),

induces a filtration on the de Rham cohomology, via

F pHk
dR(M ;C) := Im

(
F pAk(M)∩Kerd−→Hk

dR(M ;C)
)
,

as the space of de Rham classes that are representable by forms with holomorphic bidegree
greater than or equal to p. We let F̄ denote the conjugate filtration, and we say that

Hk
dR(M) inherits a pure Hodge structure (of weight k in degree k) if

Hk
dR(M ;C) =

⊕
p+q=k

F pHk
dR(M ;C)∩ F̄ qHk

dR(M ;C).

Definition 3.15. Let (M,J) be a complex manifold.

(1) The total filtration is the descending filtration defined by

F r
totH

k
dR(M) :=

∑
p+q=r

F pHk
dR(M ;C)∩ F̄ qHk

dR(M ;C).

(2) The purity defect in degree k is defined to be:

pdefk(M) := max

{
|d|

∣∣∣∣d ∈ Z and grk+d
Ftot

Hk
dR(M ;C) �= 0

}
,

where we understand the maximum to be 0 if Hk
dR(M ;C) = 0.

(3) The (total) purity defect is the nonnegative integer

pdef(M) := max
k

pdefk(M).

Note that F r
tot = 0 for r sufficiently large. In particular,

F pHk
dR(M ;C)∩ F̄ qHk

dR(M ;C) = 0

whenever p+ q−k is greater than the purity defect in degree k. This observation admits

a sort of converse. As a consequence of Serre duality, on any connected compact complex
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manifold, one has nondegenerate pairings (cf. [Ste22a])

grk+d
Ftot

Hk
dR(M ;C)×gr2n−k−d

Ftot
H2n−k

dR (M ;C)→ C.

Thus, we have:

Lemma 3.16. On a connected compact complex manifold M, the purity defect pdef(M)

is the absolute value of the maximal number p+ q−k, such that

F pHk
dR(M ;C)∩ F̄ qHk

dR(M ;C) �= 0.

Example 3.17. We list some low degree examples and a bound of pdef(M) in terms of
the dimension of M. Let Hk =Hk

dR(M ;C).

(1) The purity defect is 0 in degree k if and only if

F pHk ∩ F̄ qHk = 0 for p+ q > k,

and ∑
p+q=k

F pHk ∩ F̄ pHk =Hk.

Equivalently, this holds if and only if there is a pure Hodge structure of weight k in

degree k, that is the bicomplex (A,∂,∂̄) has no odd zigzags of length greater than 1
(c.f. [DGMS75] [Ste21b]).

(2) The purity defect is at most 1 in degree k if and only if

F pHk ∩ F̄ qHk = 0 for p+ q > k+1,

and ∑
p+q=k−1

F pHk ∩ F̄ pHk =Hk.

Thus, if a nonzero class [ωp,q] = [ωr,s] has two pure representatives of types (p,q)

and (r,s), then |p− r| ≤ 1, and additionally, every class c ∈ Hk can be written as
a sum of classes c =

∑
ci, where each ci = [ωpi,qi +ωpi+1,qi−1] is representable by

a closed form with at most two neighbouring components. In particular, for any

n-dimensional complex manifold M, one has pdef1(M) = pdef2n−1 ≤ 1. As we see

in the proposition below, a purity defect of at most 1 implies all odd zigzags are
length at most 3.

(3) On any compact complex manifold of complex dimension n, Serre duality and

bidegree reasons imply

pdefk(M) = pdef2n−k(M)≤ k.

In particular, pdef(M)≤ n. The inequality will be improved in Corollary 3.19 below

to pdef(M)≤ n−1.

https://doi.org/10.1017/S1474748023000312 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000312


A ddc-type condition beyond the Kähler realm 19

Proposition 3.18. A complex manifold (M,J) has pdef(M) ≤  if and only if there

are no zigzags of odd length greater than 2+1, in any decomposition of A(M) into

indecomposables.

This follows because the multiplicity of odd-length zigzags with length 2|p+ q−k|+1

are measured by the refined Betti-numbers

bp,qk (M) = dim
F pHk ∩ F̄ qHk

F p+1Hk ∩ F̄ qHk+F pHk ∩ F̄ q+1Hk
,

where Hk := Hk
dR(M ;C) (see [Ste21b]). We recall the simple idea behind this formula,

which also explains Proposition 3.18. Consider an odd zigzag of the form

C

C
∂ ��

∂̄

��

C

C
∂ ��

. . .

C

C
∂ ��

∂̄

��

C

.

The total cohomology is 1-dimensional and represented both by a generator for the top

left corner and by the cohomologous generator for the bottom right corner. So, the longer

such a zigzag is, the greater the possible value r = p+ q, such that F pHk
dR(M ;C)∩

F̄ qHk
dR(M ;C) �= 0, and the greater is the purity defect. A similar calculation can be

done for odd zigzags with incoming arrows.

Corollary 3.19. For any compact complex manifold of complex dimension n, the
inequality pdef(M)≤ n−1 holds.

Proof. By Proposition 3.18, pdef(M) = n implies that there is a zigzag of length 2n+1,
which, for space reasons, would have to have a nonzero component in bidegree (n,0).

However, by an application of Stokes’ theorem, one may see that the only indecomposable

complexes with nonzero components in degree (n,0) are dots and squares (c.f. [Ste21b,
Chapter 4]).

The following corollary completes the proof of Theorem 3.9, showing Condition (5) is
equivalent to Condition (6).

Corollary 3.20. The ddc+3-condition holds if and only if the Frölicher spectral sequence
degenerates at E1 and the purity defect is at most 1.

Proof. Degeneration at E1 occurs if and only if there are no even zigzags, and purity
defect at most 1 occurs if and only if there are no odd zigzags of length greater than 3.

The two together are equivalent to the condition that a bicomplex (A,∂,∂̄) decomposes

into a direct sum of dots, squares, and length 3 zigzags.
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Corollary 3.21. The ddc-condition holds if and only if the ddc+3 condition holds and
HdR(M ;C) has a pure Hodge structure in all degrees, that is purity defect is 0.

Proof. This follows from Theorem 3.1 and Example 3.17 (1) (or Proposition 3.18).

Remark 3.22. The last two corollaries suggest a natural generalization of the ddc+3

condition: Consider those manifolds with degenerate Frölicher spectral sequence and a

fixed bound on the purity defect (i.e. no even zigzags and bounded length of odd zigzags).
This type of condition will also naturally reappear in later sections.

Proposition 3.23. For any compact complex manifolds, M and N,

pdef(M ×N) = pdef(M)+pdef(N).

Proof. Let ZM be an odd zigzag of maximal length 2m+1 in A(M) and ZN an odd
zigzag of maximal length 2n+1 in A(N). By Serre duality, we may assume they both

have incoming outermost arrows. Now, there is an E1-isomorphism A(M×N)�1 A(N)⊗
A(M), and so ZM⊗ZN is a direct summand inA(M×N). But ZM⊗ZN �1 ZM×N , where
ZM×N is an odd zigzag of length 2(n+m)+1. Thus, pdef(M)+pdef(N)≤ pdef(M×N).

The argument also works the other way, since a tensor product of an even-length zigzag

with any other bicomplex does not contain odd zigzags ([Ste21b, Chapter 3]).

We conclude with the following curious observation:

Proposition 3.24. If pdef(M) ≤ 1, the cohomology algebra H(Kerdc) carries a mul-
tiplicative Hodge structure, that is, the cohomology groups Hk(Ker dc) admit a real

Hodge structure of weight k, such that the cup product restricts to maps Hp,q(Kerdc)⊗
Hp′,q′(Kerdc)−→Hp+p′,q+q′(Kerdc) (c.f. [Voi08]).

Proof. First note that the Hodge filtrations on Kerdc (induced by row and col-

umn filtration on A(M)) are compatible with the wedge product, since they are on
A(M). In particular, the cup product on cohomology respects these filtrations, that is

F pHr(Kerdc)∪F qHs(Kerdc)⊆F p+qHr+s(Kerdc) and similarly for F̄ . Now we argue via

indecomposable bicomplexes: For I any square, or reverse L, Kerdc(I) is contractible. For
I any even-length zigzag, dot, or L, the bicomplex structure on I induces a bicomplex

structure on Kerdc(I), which is then a direct sum of dots. Thus, in all cases that have

pdef(I)≤ 1, the Hodge filtrations induce a pure Hodge structure on Hk(Kerdc).

As noted in [Voi08], the existence of a multiplicative Hodge structure on an algebra
H imposes further conditions beyond b2k+1 are even. For example, the image of the cup

product maps Im(∪ : Hk ⊗H l → H l+k) are sub-Hodge structures, and thus have even

rank whenever l+k is odd.

3.4. Relation to Bott-Chern and Aeppli cohomologies

Recall the Bott-Chern and Aeppli cohomologies are defined as follows:

Hk
BC(A) =

Kerd∩Kerdc

Imddc
∩Ak Hk

A(A) =
Kerddc

Imd+Imdc
∩Ak.
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It is well known that these are finite dimensional, that HBC is a bigraded algebra, that
HA is a bigraded module over HBC , and that for any choice of metric, � : HBC → HA

is an isomorphism on complementary degrees. Moreover, there is a well-defined natural

transformation,

d :H∗
A →H∗+1

BC .

Proposition 3.25. For any complex manifold (respectively, any bicomplex), there is a

natural surjection

φ :H∗
BC(A)�H∗(Kerdc) with Ker(φ) =

d(Kerdc)

Imddc
,

and injection

ψ :H∗(A/Imdc) ↪→H∗
A(A) with Coker(ψ) =

Kerddc

d−1Imdc
,

induced by the identity map.
In particular, for any compact complex manifold, the groups Hk(Kerdc) and

Hk(A/Imdc), as well as Ker(φ) and Coker(ψ), are finite dimensional for all k.

Proof. This follows since

H∗(Kerdc) =
Kerd∩Kerdc

d(Ker dc)
H∗(A/Imdc) =

d−1Imdc

Imd+Imdc
.

Definition 3.26. For any bicomplex A, define the obstruction to purity groups

Hk
� (A) =

d(Kerdc)

Imddc
∩ Ak Hk

� (A) =
Kerddc

d−1Imdc
∩ Ak .

In summary, we have a diagram

0

��

0

· · ·Hk
d ⊕Hk

dc
�� Hk(A/Imdc)� �

ψ

��

δk �� Hk+1(Ker dc)

��

�� Hk+1
d ⊕Hk+1

dc · · ·

Hk
A(A)

d ��

����

Hk+1
BC (A)

φ

����

Hk
� (A)

��

d=0 �� Hk+1
� (A)
��

��

0 0

��

.

Proposition 3.27. On a compact connected n-dimensional complex manifold M, the

integration pairing ω �→
∫
M
ω ∧ − induces a duality between the vertical short exact
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sequences, in that

Hk(Kerdc)∼= (H2n−k(A/Imdc))∨ and Hk
� (M)∼= (H2n−k

� (M))∨, for all k.

Proof. This follows from a general duality statement for cohomological functors. We do
the first case in detail. The linear functor sending a bicomplex (A,∂,∂̄) to Hk(Kerdc(A))

sends squares to zero and commutes with arbitrary direct sums, and so defines a

cohomological functor. Denote by DA the dual bicomplex as a bigraded vector space
given by (DA)p,q = (An−p,n−q)∨ with differential dDA = (ϕ �→ (−1)|ϕ|−1ϕ ◦ d). Since M

is compact and oriented, the duality map A → DA given by ω �→
∫
M
ω∧− induces an

isomorphism on all cohomological functors [Ste21b, Corollary 20], so, in particular

Hk(Kerdc(A))∼=Hk(Kerdc(DA)).

Now it is a linear algebra calculation to show that

Hk(Kerdc(DA))∼= (H2n−k(A/Imdc))∨.

In fact, since over fields cohomology commutes with duals, this follows from the
identification

[Kerdc(DA)]k = {ϕ ∈ [A2n−k]∨ | ϕ◦dc = 0} ∼= ([A/Imdc]2n−k)∨.

The following result will characterize the case in which φ and ψ are isomorphisms, in

terms of the existence of a pure Hodge structure.

Theorem 3.28. Let A be a bicomplex. The following are equivalent:

(1) pdef(A) = 0.

(2) The de Rham cohomology Hk
dR(A) inherits a pure Hodge structure in all degrees k.

(3) The purity obstruction groups vanish for all k,

Hk
� (A) = 0 and Hk

� (A) = 0.

(4) The natural maps induced by the identity,

φ :Hk
BC(A)→Hk(Kerdc) and ψ :Hk (A/Imdc)→Hk

A(A),

are isomorphisms for all k.

Proof. It remains only to show Condition (3) is equivalent to Condition (2). Let us focus
on the groups H� first, where a similar calculation can be done for H�, or, if A=A(M)

for a compact manifold, one may appeal to Serre duality as in Proposition 3.27.

Recall that HdR(A) has a pure Hodge structure if and only if there are only squares,
even zigzags, and dots, with no odd zigzags of length greater than 1 [Ste21b]. The proof

then proceeds by computing either H�(A) or φ on every type of indecomposable complex.

The results are summarized in Figure 2.
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Zigzag type Length H�(A) HBC(A) H(Kerdc) φ

Dot 1 0 C C Iso

Square NA 0 (0,0,0) (0,0,0) Iso

Odd Out. 2m+1 0 (0,Cm+1) (0,Cm+1) Iso

Odd Inc. 2m+1 C (0,Cm) (0,Cm−1) Surj
Even Out. 2m 0 (0,Cm) (0,Cm) Iso

Even Inc. 2m 0 (0,Cm) (0,Cm) Iso

Figure 2. Zigzag contributions for the short exact sequence 0→H�(A)→HBC(A)→H(Ker dc)→ 0.

3.5. Numeric inequalities and characterizations

In Theorem 3.9, we gave a numeric characterization of the ddc+3 condition as an equality

of cohomology dimensions. In this section, we characterize this as the extremal case of

an inequality valid for all compact complex manifolds, and derive some related numerical
inequalities. These should be compared to the result of [AT13], that for any compact

complex manifold ∑
k

dimHk
A(M)+dimHk

BC(M)≥ 2
∑
k

bk.

Here, bk := dimHk(M) denotes the dimension of the de Rham cohomology, and equality
holds if and only if the ddc-condition holds. This will also follow from the results below.

Again, all results remain valid if we letA be an arbitrary bicomplex for which all quantities

considered here are finite.
For any compact complex manifold, define the following numbers:

hBC =
∑
k

dimHk
BC hA =

∑
k

dimHk
A

hKerdc =
∑
k

dimHk(Kerdc) hA/Imdc =
∑
k

dimHk(A/Imdc)

h∂̄ =
∑

p+q=k

k≥0

dimHp,q

∂̄
h∂ =

∑
p+q=k

k≥0

dimHp,q
∂ .

Proposition 3.29. For any compact complex manifold (M,J),

hBC +hA ≥ hKerdc +hA/Imdc ≥ h∂̄ +h∂ ≥ 2
∑
k

bk.

(1) The first inequality is equality if and only if there is a pure Hodge structure.

(2) The middle inequality is equality if and only if E2-degeneration and purity defect 1,

that is only zigzags of length at most 3.

(3) The last inequality is equality if and only if E1-degeneration.

(4) The first two inequalities are both equality if and only if pure Hodge and E2-

degeneration.

(5) The last two inequalities are both equality if and only if ddc+3.

https://doi.org/10.1017/S1474748023000312 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000312


24 J. Stelzig and S. O. Wilson

Remark 3.30. A characterization of the outermost equality hBC +hA = 2
∑

bk was also

obtained in [PSU20].

Proof. Claim (1) is in Theorem 3.28, while Claim (3) is immediate. Claim (4) follows

from Claims (1) and (2), while Claim (5) follows from Claims (2), (3), and Theorem 3.9. It

remains to show Claim (2). This follows from an inspection of Figure 1 and the observation
that the expression h∂̄ + h∂ vanishes on squares and is equal to two on every zigzag,

regardless of its length.

Remark 3.31. On a compact complex manifold, by duality and real structure, one may

replace the chain of inequalities by

hBC ≥ hKerdc ≥ h∂̄ ≥
∑

bk,

with the same characterizations of equalities.

4. First examples of ddc+3 manifolds and construction methods

In addition to all ddc-manifolds, there are numerous examples of ddc+3-manifolds.

4.1. Complex surfaces

For every compact complex surface S, the Frölicher spectral sequence degenerates at the
first page [BHPVdV04] and, by Corollary 3.19, one has pdef(S)≤ 1. Thus:

Corollary 4.1. Any compact complex surface satisfies the ddc+3-condition.

One may also describe the entire bicomplex in detail: Let us assume S to be connected.

E1-degeneration implies that there can be no even zigzags.H0
dR(S),H

2
dR(S),H

4
dR(S) have

a pure Hodge decomposition, [BHPVdV04], so there are no odd-length zigzags (other than
dots) contributing to b0,b2,b4. On the other hand, H1

dR(S) (and by duality H3
dR(S)) admit

a pure Hodge structure if and only if b1 is even, which coincides with the Kähler case. If

b1 is odd, then h0,1 = h1,0+1, and the first and third cohomologies have purity defect 1,
in the sense of Definition 3.15.

In fact, the decomposition of the complex valued differential forms A(S) into indecom-

posables is as follows:

A(S)�1

⊕b0

⊕

⊕h1,0

⊕

⊕h2,0

⊕

⊕b2−2h2,0

⊕

⊕ε

.

Here, ε= 0 if and only if S satisfies the ddc-condition, and ε= 1 otherwise.
We remark that the entire long exact sequence from Theorem 3.6, as well as the various

groups considered here, can all be deduced from the decomposition into indecomposables

above. Therefore, they are determined by the oriented topology of S.
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4.2. Twistor spaces

Let M be a compact four-manifold with a self-dual Riemannian metric and denote by

Z(M) its twistor space. In [ES93], it is shown that the Frölicher spectral sequence of Z(M)

always degenerates at the second page. Furthermore, this second page E2 is computed in

terms of metric data on the base as follows:

p

q

0 1 2 3

0

1

2

3

H0(M ;C)

H1(M ;C)

H2
−(M ;C)

0

0

H0(M ;C)⊕H2
+(M ;C)

H

0

0

K

H2
+(M ;C)⊕H4(M ;C)

0

0

H2
−(M ;C)

H3(M ;C)

H4(M ;C)

.

Here, H2
±(M ;C) denote the spaces of (anti)self-dual classes, and the definition of H,K

need not concern us.

Due to the lack of symmetry in the E1,0
2 and E0,1

2 , we see that as soon as b1(M) �= 0,
or b−2 (M) �= 0, the twistor space does not satisfy the ddc-condition. However:

Proposition 4.2. Whenever E1(Z(M)) = E2(Z(M)) and b−2 (M) = 0, the twistor space

Z(M) is ddc+3.

Proof. By the degeneration assumption, there are no even zigzags in any decomposition

of A(Z(M)) into indecomposables. It remains to rule out the possibility of odd zigzags
of length greater than 3, which, for dimension reasons, must have length 5 or 7. Length

7 zigzags do not occur by Corollary 3.19. There are two possibilities for a length 5 zigzag

on a three-fold:

and .

Any complex having one of these as a direct summand would have E0,2
2 �= 0, and E2,0

2 �= 0,

respectively, both of which are prohibited here.

In [ES93, Theorem 5.6], Eastwood and Singer construct, for any g ≥ 0, conformally flat

metrics on M = #g(S
1×S3), such that E1(Z(M)) = E2(Z(M)). Since b2(S

1×S3) = 0,

this implies:
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Corollary 4.3. For any g ≥ 0, there are metrics on M = #g(S
1 ×S3), such that the

associated twistor space Z(M) is a ddc+3-manifold.

4.3. Construction methods of ddc+3-manifolds

The behaviour of the bicomplex of differential forms, up to E1-isomorphism, is known

for several standard operations [Ste21a]. From this, we deduce many constructions which
preserve the ddc+3-condition.

Proposition 4.4. The ddc +3 condition has the following behaviour under geometric

constructions:

(1) A blow-up of a manifold M along a smooth centre Z ⊆M is ddc+3 if and only if

both M and Z are ddc+3.

(2) A product is ddc +3 if and only if one factor is a ddc +3-manifold and one is a

ddc-manifold.

(3) The target of a holomorphic surjection f : M → N with M ddc +3 and dimM =

dimN is, again, ddc+3.

(4) Projectivized holomorphic vector bundles are ddc +3-manifolds if and only if the

base of the bundle is a ddc+3-manifold.

Proof. Let M be a complex manifold. Denote by M̃ the blow-up of M in some smooth

centre Z of codimension d ≥ 2. Let V be a holomorphic vector bundle of rank r over
M. Let f :M →N be a holomorphic surjection. In [Ste21a], it was shown that there are

(chains of) E1-isomorphisms

A(M̃)�1 A(M)⊕d−1
i=1 A(Z)[i]

A(P(V))�1

r−1∑
i=0

A(M)[i]

A(M)�1 A(N)⊕A(M)/p∗A(N).

Here,A(Z)[i] denotes the complex shifted by degree (i,i), that isA(Z)[i]p,q =A(Z)p−i,q−i.

Since two bounded bicomplexes are E1-isomorphic if and only if all zigzags have the same

multiplicity, Conditions 1, 3, and 4 follow. For Condition 2, note that by the Künneth
formula, there is an E1-isomorphism A(M ×N)�A(M)⊗A(N). If M satisfies the ddc-

condition, we have A(M)�1 D, where D has a trivial differential, that is it is a direct sum

of dots D=
⊕

Dp,q. Then A(M×N)�1

⊕
p,qD

p,q⊗A(N), and the result follows because

the tensor product of any bicomplex with a dot is isomorphic to a shift of the original
bicomplex. Conversely, the purity defect is additive under products by Proposition 3.23, so

pdef(M×N)≤ 1 implies that pdef(M)≤ 1 and pdef(N) = 0, or vice versa. Furthermore,

the Frölicher spectral sequence of both M and N is a direct summand in that of M ×N ,
so, if it degenerates on the product, it does on both factors.

Remark 4.5. Using results of Meng, one can generalize Conditions 3 and 4 (with a

similar proof):
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Condition 3 holds more generally whenever there exists a closed current T on M of
bidegree (r,r) for r = dimM −dimN , such that f∗T �= 0. This is the case, for example,

for any map that admits a holomorphic section (c.f. [Men22, Section 3]).

Condition 4 holds more generally for relative flag varieties and any bundle the
cohomology of which looks additively like a product with a ddc-manifold (i.e. which

satisfies a Leray-Hirsch type theorem) (c.f. [Men22, Proposition 3.3]).

In particular, Condition 2 holds when the centre is any curve or surface. Because the
equivalence relation determined by ‘bimeromorphism’ is generated by blow-ups in smooth

centres [AKMW02], [W�l03], we obtain:

Corollary 4.6. The ddc+3-property is a bimeromorphism invariant of compact complex

manifolds in complex dimension at most four.

Similarly, the ddc+3 condition is a bimeromorphism invariant in any dimension if and

only if submanifolds of ddc+3-manifolds are, again, ddc+3-manifolds.

Remark 4.7. Since the connecting map δk in the long exact sequence vanishes on a

ddc+3-manifold, one can generalize the last corollary to the statement that the rank of

δk is a bimeromorphism invariant in complex dimension at most four.

4.4. Stability under deformations

In this subsection, we show that the purity defect behaves upper semicontinuously, so

that the ddc +3-condition is stable under small deformations. Under slightly stronger
assumptions, which include the cases of compact surfaces and Vaisman manifolds, then

the entire bicomplex is unchanged under small deformations, up to E1-isomorphism,

Proposition 4.15.

Theorem 4.8. Let M be a compact complex manifold with degenerate Frölicher spectral

sequence E1(M) = E∞(M). For any small deformation π : M → Δε(0) =: B with

M =M0 = π−1(0), the dimension

fp,q
k (t) := dimF pHk

dR(Mt)∩ F̄ qHk
dR(Mt)

behaves upper semicontinuously, that is for any t sufficiently close to 0, one has:

fp,q
k (0)≥ fp,q

k (t).

We learned an essential part of the argument below, namely, treating F pHk
dR∩ F̄ qHk

dR

as the intersection of vector bundles, from a talk of Chi Li, c.f. [Li23], following Voisin

[Voi07].

Proof. First, we recall the well known argument (see, e.g. [Voi07]) that for t sufficiently

close to 0, the Frölicher spectral sequence of Mt degenerates and the Hodge numbers are
the same as those of M0: Choosing a smooth family of Hermitian metrics on the fibres Mt,

the Hodge numbers may be computed via the ∂̄-Laplacian which is an elliptic operator

that varies smoothly in t. Therefore, the eigenvalues vary continuously and, in particular,
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the dimension of the kernel (i.e. the Hodge numbers) can only drop when passing from

M0 to a nearby fibre:

hp,q

∂̄
(M0)≥ hp,q(Mt).

On the other hand,

bk(M0) =
∑

p+q=k

hp,q(M0)≥
∑

p+q=k

hp,q(Mt)≥ bk(Mt) = bk(M0)

so equality holds everywhere. Now, for any t, consider the inclusion of complexes

F pA(Mt) ⊆ A(Mt) defined by F pA(Mt) =
⊕

r≥pAr,s(Mt). The induced map on coho-

mology has image F pHk
dR(Mt) and kernel

Im d∩F pAk
Mt

d(F pAk
Mt

)
.

Thus, the induced map on cohomology is injective if and only if the differential d is strict,

which in turn is known to be equivalent to degeneration of the Frölicher spectral sequence
[Del71, Proposition 1.3.2]. Therefore, for small t, we have an identification F pHk

dR(Mt) =

Hk(F pA(Mt)).

Now, because F pA(Mt) is an elliptic complex (see, e.g. [Ste22b]), or because their
collection over all t forms a resolution of the truncated complex of coherent sheaves of

relative holomorphic forms

0→ Ωp
M/B → Ωp+1

M/B → ·· · ,

the cohomology groups Hk(F pA(Mt)) form a vector bundle on the base as soon as their

dimensions are constant. On the other hand, because the dimension of a filtred vector
space is the same as that of its associated graded, we find that

dimF pHk
dR(A(Mt)) =

∑
r+s=k,r≥p

hr,s(Mt)

is constant indeed.

In summary, for sufficiently small t, we have proved that {F pHk
dR(Mt)} form a complex

vector subbundle of the vector bundle {Hk
dR(Mt)}. The same holds for the conjugate

filtration F̄ qHk
dR(Mt). But the dimension of an intersection of two vector subbundles

behaves upper semicontinuously.

Corollary 4.9. For any n-dimensional compact complex manifold M with E1(M) =

E∞(M), the dimension of the spaces in the 3-space decomposition [Ste21a, Theorem 4.8]

Hn
dR(M) =Hn,0(M)⊕

(
F 1Hn

dR(M)∩ F̄ 1Hn
dR(M)

)
⊕H0,n(M)

is constant under small deformations.

https://doi.org/10.1017/S1474748023000312 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000312


A ddc-type condition beyond the Kähler realm 29

Corollary 4.10. Under the assumptions of Theorem 4.8, that is a small deformation
with E1-degeneration of the central fibre, the purity defect is upper semicontinuous: for t

sufficiently close to 0,

pdef(M0)≤ k =⇒ pdef(Mt)≤ k.

Remark 4.11. Degeneration of the Frölicher spectral sequence in the central fibre is

necessary to obtain the conclusion of Corollary 4.10. In fact, the Iwasawa manifold has
purity defect 0, but it admits small deformation with purity defect 1 and 2 (see [Ste22a,

Section 9.1]).

Corollary 4.12. The ddc+3-condition is stable under small deformations.

Remark 4.13. The ddc + 3-condition introduced here should be compared with the
page-1-∂∂̄-condition introduced in [PSU21], [PSU20]. For the latter, one keeps purity

but relaxes the degeneration step of the Frölicher spectral sequence. That condition, too,

enjoys some stability under geometric constructions, as in Proposition 4.4. However, it is
in general not stable under small deformations.

Given the fact that the dimensions of Hk
dR are constant under small deformation, a

natural question is whether, given degeneration at E1, the dimensions of the spaces

F pHk
dR ∩ F̄ qHk

dR may actually change under small deformations. In general, the answer

is yes.

Example 4.14. Consider a family of complex manifolds {Mt}, such that the central

fibre is a type (iii.a) deformation of the Iwasawa manifold and the nearby fibres are type
(iii.b) deformations (see [Ang14, Section 3.2.1.2] for the definition of these deformations).

Then the central fibre has purity defect 2 and degenerate Frölicher spectral sequence, but

the nearby fibres have purity defect 1 (see [Ste22a, Section 9.1]

However, in certain situations, the spaces F pHk
dR ∩ F̄ qHk

dR actually do have constant

dimension:

Proposition 4.15. Let M be a compact complex manifold with E1(M) = E∞(M), such

that

(∗) for any k, there exists an r(k), such that grdFtot
Hk(M) = 0 unless d = r(k),

r(k)−1.

Then, any sufficiently small deformation Mt of M =M0 has the same E1-isomorphism

type as M, that is for all t sufficiently small:

(1) The bicomplex A(Mt) has the same zigzag multiplicities as A(M0).

(2) For any cohomological functor H (e.g. HBC,HA,H∂̄,..) H(Mt)∼=H(M0).

The condition (∗) visually says that the odd-length zigzags appearing in the bicomplex

are ‘not too distinct’ in the following sense: Order the odd-length zigzags (up to

translation) in an ascending way by their length, where we associate negative length
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to zigzags with incoming outermost arrows, that is

...≤ reverse L’s≤ dots≤ L’s≤ ....

Then the condition (∗) says that at most two directly adjacent zigzags types may
contribute to de Rham cohomology in any given degree. For example, if the purity defect

is 1, it says there are (at most) only dots and L’s or (at most) only dots and reverse L’s

in any given degree.

Remark 4.16. This condition (∗) is satisfied for compact complex surfaces as can be
seen from the explicit description of their bicomplexes above, and is also satisfied for

Vaisman manifolds, as will follow from Theorem 5.3 below (c.f. Corollary 5.10). One may

also prove an analogue of Proposition 4.4 for condition (∗) instead of the ddc+3-condition.

Proof. It suffices to show the multiplicities of all zigzags are constant for t close to 0.
There are no even zigzags on M0 or nearby fibres by degeneration of the Frölicher spectral

sequence, as in the first part of the proof of Theorem 4.8. The odd zigzags are counted

by the refined Betti numbers bp,qk (Mt). Thus, we have to show that the numbers bp,qk (Mt)
are constant for t close to 0.

First, we note that condition (∗) has to hold for nearby fibres as well. In fact, when

F r
totH

k(M0) = 0 for some r, then also F r
totH

k(Mt) = 0 for all nearby fibres by Theorem

4.8. By duality, the same implication holds for the condition F r
totH

k =Hk.
When p+ q = r(k), we have

bp,qk = dimF pHk ∩ F̄ qHk

by assumption, and we have seen that this number varies upper semicontinuously in

Theorem 4.8. On the other hand, bp,qk (M) = bn−p,n−q
2n−k (M) and so also the numbers for

p+ q−k = r(k)−1 vary upper semicontinuously. Finally,

bk(Mt) =
∑

p+q∈{r(k),r(k)+1}
bp,qk (Mt)≤

∑
p+q∈{r(k),r(k)+1}

bp,qk .(M0) = bk(M0) = bk(Mt).

5. Vaisman manifolds

A Vaisman manifold will mean a compact complex manifold with Hermitian metric which

is locally conformally Kähler (LCK) and has parallel Lee form [Vai79], [Vai82]. Recall the

locally conformal Kähler condition is equivalent to the fundamental form ω satisfying

dω = θ∧ω for a closed real 1-form, called the Lee form, and the parallel condition is that
∇θ = 0 with respect to the Levi-Civita connection. As is customary, we will assume θ �= 0

in the following to exclude the Kähler case from the discussion.

Example 5.1. The Hopf manifold (Cn+1 \ {0})/λZ for some λ ∈ C∗ \ S1 carries the

Vaisman metric 1
‖z‖2

∑n+1
i=1 dzidz̄i. More generally, take any projective manifold with a

negative line bundle L and consider V := (L\{s0})/λZ, where s0 denotes the zero section.

Then V carries a Vaisman metric [Vai80].
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In fact, this example gives a good (local) picture of the complex structure of a general

Vaisman manifold. We refer to [OV03] and [OV16] for a general discussion of the structure

of compact Vaisman manifolds.

5.1. The E1-isomorphism type of a Vaisman manifold

Denote the bigraded components of the closed Lee form by θ = θ1,0+ θ0,1. Then dθ1,0 =
∂̄θ1,0 =−dθ0,1 =−∂θ0,1, and setting ω0 := dcθ =−2i∂θ0,1, we have ω0 = ω−θ∧Jθ.

The dual vector fields Xθ and XJθ are holomorphic, Killing, and generate a group that

acts by holomorphic isometries. Let Ainv(M) denote the complex of invariant forms under
the group action, with subcomplex the basic forms AB(M), that is those in the kernel of

ιXθ
and ιXJθ

, as well as the kernel of the Lie derivatives LXθ
and LXJθ

. The subspace of

d -harmonic basic forms, HB , behave in much that same way as the forms on a Kähler
manifold, having a Lefschetz decomposition given by the operator L given by wedging

with ω0. We refer to [OV22] for a more thorough review of the operators mentioned here

and their relations.

Proposition 5.2. ([Tsu94],[IK19]) With notations as above, the subspace

HB ⊗Λ〈θ0,1,θ1,0〉 ⊆ A(V )

is a d-subcomplex and the inclusion is an E1-isomorphism.

Our goal is to describe the structure of the bicomplex HB ⊗Λ〈θ0,1,θ1,0〉 in terms of

indecomposables. We will reduce it to an algebraic computation below in the following

way. For any p+ q ≤ n, denote by

Pp,q := KerLn−p−q+1 ⊆HB

the space of primitive harmonic (p,q)-forms. Consider HB as a C[L]-module, and let Dp,q

be the C[L]-submodule generated by Pp,q, that is Dp,q := Pp,q[ω0]/ω
n−p−q+1
0 . Writing

Sp,q :=Dp,q ⊗Λ〈θ1,0,θ0,1〉, we have

HB ⊗Λ〈θ0,1,θ1,0〉=
⊕

p+q≤n

Sp,q.

Theorem 5.3 (The bicomplex of a Vaisman manifold). Let V be a compact Vaisman

manifold of dimension n+1. The inclusion of bicomplexes⊕
p+q≤n

Sp,q ⊆A(V )

is an E1-isomorphism. Every Sp,q is, as a bicomplex, a tensor product of the form

Sp,q = Pp,q ⊗Λ〈θ1,0,θ0,1,ω0〉/(ωn−p−q+1
0 ).

https://doi.org/10.1017/S1474748023000312 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000312


32 J. Stelzig and S. O. Wilson

The space of primitive basic harmonic forms Pp,q has zero differential, that is it is a direct
sum of dots. The second factor decomposes as follows into indecomposable bicomplexes:

(1) If k = n, there are four dots, with no nonzero differentials:

〈θ0,1〉 ⊕ 〈θ1,0θ0,1〉

C

⊕

⊕ 〈θ1,0〉.

⊕

(2) If k < n, there are two dots, two length three zigzags, and (if k < n− 2) several

squares:

〈θ0,1ωn−k
0 〉 〈θ0,1θ1,0ωn−k

0 〉

〈θ1,0θ0,1ωn−k−1
0 〉 ∂ ��

∂̄
��

〈θ1,0ωn−k
0 〉

〈θ0,1ωj+1
0 〉 ∂ ��

⊕n−k−2
j=0

〈ωj+2
0 〉

. .
.

〈θ1,0θ0,1ωj
0〉 ∂

��
∂̄
��

〈θ1,0ωj+1
0 〉
∂̄
��

〈θ0,1〉 ∂ �� 〈ω0〉
. .
.

C 〈θ1,0〉.
∂̄
��

Proof. Only the statement about the second factor of Sp,q still requires proof. For the
first claim, with k = n, the bicomplex is

Λ〈θ1,0,θ0,1,ω0〉/(ω0) = Λ〈θ1,0,θ0,1〉,

and the relation ∂θ0,1 =−∂̄θ1,0 = i
2ω0 implies all differentials are zero.

For the general case, k < n, we have ∂θ0,1 =−∂̄θ1,0 = i
2ω0 and ∂̄θ0,1 = ∂θ1,0 = 0, giving

the length three zigzag

〈θ0,1〉 ∂ �� 〈ω0〉

〈θ1,0〉
∂̄

��

in total degrees 1 and 2. The same relations also give the squares in the statement, with

all other differentials on these spaces zero, again, since ∂̄θ0,1 = ∂θ1,0 = 0. Finally, the

length 3 zigzag

〈θ0,1ωn−k
0 〉

〈θ1,0θ0,1ωn−k−1
0 〉 ∂ ��

∂̄

��

〈θ1,0ωn−k
0 〉

https://doi.org/10.1017/S1474748023000312 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000312


A ddc-type condition beyond the Kähler realm 33

follows from the same relations and the fact that ωn−k+1
0 = 0, which also implies that

∂θ0,1θ1,0ωn−k
0 = ∂̄θ0,1θ1,0ωn−k

0 = 0.

Since the bicomplex of a Vaisman manifold satisfies Condition (5) of Theorem 3.9, we

have:

Corollary 5.4. If a compact complex manifold admits a Vaisman metric, then it satisfies

the ddc+3-condition.

In particular, the Frölicher spectral sequence degenerates at the first page, which was

also shown in [Tsu94]. By results from section 3.3, we also have:

Corollary 5.5. If a compact complex manifold admits a Vaisman metric, then it has

purity defect 1.

Corollary 5.6. The middle cohomology of a compact Vaisman manifold carries a pure
Hodge structure.

Corollary 5.7. For any compact Vaisman-manifold V of dimension n+1, the Bott-
Chern and Aeppli cohomologies up to middle degree can be computed as follows:

Hp,q
BC(V )∼=

{
Pp,q ⊕ω0Pp−1,q−1 if p+ q ≤ n

θ1,0Pp−1,q ⊕θ0,1Pp,q−1 if p+ q = n+1

Hp,q
A (V )∼=

{
Pp,q ⊕θ1,0Pp−1,q ⊕θ0,1Pp,q−1 if p+ q ≤ n

θ1,0Pp−1,q ⊕θ0,1Pp,q−1 if p+ q = n+1.

Note that the groups above middle degree are determined by duality. They can also be

written down explicitly using the same method of proof.

Proof. Using the notation introduced before Theorem 5.3, we have:

A(V )�1

⊕
r,s∈Z

Sr,s

by Proposition 5.2. Now, [Ste21b, Corollary 13] states that an E1-isomorphism induces

an isomorphism on HBC , so by the Definition of Sr,s and the fact that Pr,s is a complex

with trivial differentials, we have:

Hp,q
BC(V ) =

⊕
r,s

Pr,s⊗Hp,q
BC

(
Λ〈θ0,1,θ1,0,ω0〉/(ωn−(r+s)+1

0 )
)
.

The result now follows by Theorem 5.3, as the groups HBC on any zigzag are known

to be computed by the dots (here, P) and the ‘tips’, that is the spaces X, U, and T in

diagrams such as those below:
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W
∂ �� X

Y

∂̄

�� U

Z

∂̄

��

∂ �� T.

The proof for the Aeppli cohomology is the same, except HA is computed by the dots
(again, P) and the spaces W, Y, and Z in the diagrams above.

Oeljeklaus-Toma (OT) manifolds are manifolds associated with number fields that have
s ≥ 1 real and t ≥ 1 pairs of distinct conjugate complex embeddings, together with the

choice of appropriate subgroups of the group of totally real units. We refer to [OT05] for

their definition and more details.

Remark 5.8. (LCK does not imply ddc+3) OT manifolds of type (s,1) with s≥ 2 are

LCK [OT05, p.169], but not ddc +3. In fact, in the computation in [Ste22a, Corollary
9.6], their bicomplex always contains zigzags of length 2s+1. For example, for M an OT

manifold of type (2,1), one has

A(M)�1 ⊕

⊕2

⊕ .

Generalizing the calculation in the previous remark, one obtains the following corollary.

It was previously proved by Hisashi Kasuya [Kas13] via a different route, and as we learned
from Nicolina Istrati, it also follows from the nonexistence of homolomorphic vector fields

on OT manifolds (c.f. [OT05, Proposition 2.5]).

Corollary 5.9. Oeljeklaus-Toma manifolds of type (s,t) with s≥ 2 are never Vaisman.

Proof. According to [OT21], the Frölicher spectral sequence degenerates on all
Oeljeklaus-Toma manifolds and the purity defect of an OT manifold of type (s,t) is

equal to s (this follows from [ADOS22, Theorem 9]).

Along a small deformation of a compact complex manifold with degenerate Frölicher

spectral sequence, the Hodge numbers remain constant. In the case of Hopf mani-

folds, the Hodge numbers determine the multiplicities of all zigzags combinatorially
(see [Ste21b]. Therefore, the multiplicities of all zigzags stay the same under small

deformations. The following corollary is a generalization of this fact to all Vaisman

manifolds and all cohomological functors, which follows directly from Remark 4.16 and
Proposition 4.15:

Corollary 5.10. Every small deformation Vt of a compact Vaisman manifold V0 has the
same E1-isomorphism type, that is for all t sufficiently small:

(1) The bicomplex A(Vt) has the same zigzag multiplicities as A(V0).

(2) For any cohomological functor H (e.g. HBC,HA,H∂̄,..), H(Vt)∼=H(V0).
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5.2. Vanishing of higher multiplicative operations

In this section, we record a Vaisman analogue of the formality result of [DGMS75] for

Kähler manifolds. Namely, we show the vanishing of certain higher cohomology operations

on compact Vaisman manifolds. This is to be expected by the close relationship between

Vaisman and Sasakian manifolds, and the results of [BFMnT16, Proposition 4.4] showing
that compact Sasakian manifolds have vanishing quadruple and higher Massey products.

The latter follows from an algebraic statement proved in [BFMnT16, Proposition 4.5],

and essentially the same argument shows:

Lemma 5.11. Let B = (
⊕2n+1

i=0 Bi,d= 0) be a (connected) cdga with trivial differential,
ω ∈H of degree 2, and consider an elementary extension A= (B⊗Λ(y),d), with dy = ω.

Assume that any cohomology class in H(A) of degree at most n has a representative in B,

and that any cohomology class in degree at least n+2 has a representative in By. Then
all Massey products 〈a1,...,ak〉 ∈H(A) with k ≥ 4 and no ai of degree n+1 contain 0.

Corollary 5.12. On a compact Vaisman manifold V of dimension n+ 1, a Massey

product 〈a1,...,ak〉 ∈H(V ) with k ≥ 4 contains 0, provided that no ai has degree n+1.

We do not know whether there exists a compact Vaisman manifold with a nontrivial

quadruple (or higher) Massey product.

Proof. As seen before, Vaisman manifolds V have a model B⊗Λ(Jθ), with B=H⊗Λ(θ),

where H =HB(V ) denotes the basic cohomology. This satisfies the required conditions

by the explicit formulae for the cohomology of Vaisman manifolds: In fact, denoting by
P k
B ⊆Hk the primitive part of the basic cohomology, one has

Hk
dR(V ) =

⎧⎪⎨
⎪⎩
P k
B ⊕P k−1

B θ if k ≤ n

Pn
Bθ⊕Pn

BJθ if k = n+1

(Pn−l
B ωl

0⊕P
n−(l−1)
B ωl−1

0 θ)Jθ if k = n+1+ l ≥ n+2

(see, for instance [Kas80], [Vai82], [OV22], or Theorem 5.3).

To establish the second vanishing result in this section, Proposition 5.14, we review

some background material on C∞-algebras, Cn-algebras, and their morphisms, which are

due to Kadeishvili [Kad88]. These are commutative analogues of A∞-algebras, etc., due
to [Sta63]. We use the unshifted sign conventions, for example, of [Mar06], and the Koszul

rule for signs is implicit.

An A∞-algebra on a graded vector space A = {An}n∈Z is a collection of linear maps
mk :A⊗k →A of degree 2−k, for k ≥ 1, such that

[d,mk] =
∑

j+�=k+1;j,l≥2

1≤i≤j

(−1)i(�+1)+kmj

(
id⊗i−1⊗m�⊗ id⊗j−i

)
,

where the left-hand side uses a differential in the complex Hom(A⊗k,A). The equations

imply d :=m1 satisfies d2 = 0, and that d is a derivation of the product m2. Also, m3 is

a chain homotopy for the associativity condition.
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A C∞-algebra is an A∞-algebra for which each mk ∈ Hom(A⊗k,A) vanishes on the
image of the shuffle product of the tensor coalgebra of A shifted down by 1. We refer

the reader to [Mar92] for the precise definition of these, which will not be needed here.

By definition, a Cn-algebra is a C∞-algebra, such that mk = 0 for all k > n. A cdga is

precisely a C2-algebra. A C∞-algebra is called minimal if m1 = 0.
If (A,mk) and (A′,m′

k) are A∞-algebras, an A∞-morphism from A to A′ is a collection

of linear maps fk :A⊗k →A′ of degree 1−k, such that for every k ≥ 1

[d,fk]+
∑
B

(−1)εm′
j(fr1 ⊗·· ·⊗frj ) =

∑
j+�=k+1;j,l≥2

1≤i≤j

(−1)i(�+1)+kfj(id
⊗i−1⊗m�⊗ id⊗j−i),

where

B = {j,r1, . . . ,rj |2≤ j ≤ k,r1, . . . ,rj ≥ 1,r1+. . .+ rj = k},

ε := ε(r1, . . . ,rj) =
∑

1≤α<β≤s

rα(rβ +1).

A C∞-morphism is a morphism {fk} of A∞-algebras, such that each map fk vanishes
on shuffles. An A∞ or C∞-morphism is a quasi-isomorphism if f1 : A → A′ induces an

isomorphism in cohomology of the complexes (A,m1) and (A′,m′
1).

A C∞-structure is called unital if there’s an m1-closed element 1 ∈ A0 which is a unit
for the product m2, and mk vanishes for k > 2 whenever 1 is inputted. A morphism {fk}
of unital C∞ algebras means f1 preserves units, and fk vanishes for k > 2 whenever 1 is

inputted.

We now come to the main transfer theorem for transfer of C∞-structures [CG08]. This
result has a long list of antecedents, for example [Mar06], [KS00], [Mer99], [Kad93],

[Mar92], [Kad80], which vary in their level of generality and explicitness of formulas

and signs.
We restrict to the case where (A,d) is a unital cdga, and suppose we have a contraction,

namely, chain maps π :A→H, i :H →A, with π ◦ i= idH and i◦π− id= [d,h] for some

homotopy h : A∗ → A∗−1 on the complex (A,d). We assume the follow side conditions
hold

h2 = 0, h◦ i= 0, π ◦h= 0,

which can always be arranged, and will hold in the applications below.

Theorem 5.13 [CG08]. For any unital cdga (A,d,m) with a contraction (A,H∗(A),π,i)
satisfying the above side conditions, there is a minimal unital C∞-algebra (H∗(A),mk)
given inductively, for k ≥ 2, by

mk = π ◦pk where pk =m

⎛
⎝k−1∑

j=1

(−1)khpj ⊗hpk−j

⎞
⎠,

where hp1 := i. Furthermore, there is a unital C∞-quasi-isomorphism fk : A⊗k →H∗(A)
given by fk = h◦pk, for k ≥ 1.
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Note that m2 = π ◦m ◦ (i⊗ i) is simply the transport of the product by the chain

equivalence, and on elements x= i(a),y = i(b),z = i(w),

m3(x,y,z) =−π(h(xy)z+(−1)|x|xh(yz)).

The recursive formulas in the statement above can also be expressed as ‘sum over trees’

formulas, which are perhaps easier to visualize. The following lemma gives sufficient
conditions for the induced C∞-algebra on H∗(A) to be a C3-algebra.

Proposition 5.14. Let (A,d) be a unital cdga, such that

A∼=B⊗Λx

as unital algebras, where B has a trivial differential, deg(x) is odd, and dx∈B. Then (A,d)
is quasi-isomorphic to a minimal unital C3-algebra, via a unital C∞-quasi-isomorphism

fk :A⊗k →H∗(A) satisfying fk = 0 for k ≥ 4.

Proof. Using the notation of Theorem 5.13, it suffices to show that pk = 0 for all k ≥ 4.

As complexes, we have A=B⊕Bx, and Bx is an ideal in A satisfying (Bx)2 = 0. Note

that, Imd⊆B and Kerd=B⊕Kerd∩Bx. This allows to choose a splitting A= Imd⊕L⊕
H, where L⊆Bx, d :L→ Imd is an isomorphism, and d|H =0. Choose i :H →A to be the
inclusion, that represents the cohomology of A, with projection π : A→H, and define a

contracting homotopy h :A→A to be a projection onto Im(d), followed by d−1 : Imd→L.

By construction, Imh is contained in the ideal Bx, and satisfies h(Bx) = (Imh)2 = 0.
Therefore, for k = 3, we have

p3 =m(i⊗hp2)+m(hp2⊗ i)⊆Bx,

so that p4 = 0, since

m(i⊗hp3) =m(hp2⊗hp2) =m(hp3⊗ i) = 0.

Similarly, for all k ≥ 4 and every 1≤ j < k, m(hpj ⊗hpk−j) = 0, so pk = 0.

According to [Tie08], the differential forms of a compact Sasakian manifold have a
model which satisfies the condition of Proposition 5.14.

Corollary 5.15. For any compact Sasakian manifold, the differential forms are C∞-
quasi-isomorphic to a minimal unital C3-algebra.

Additionally, we have:

Corollary 5.16. For any compact Vaisman manifold, the differential forms are C∞-

quasi-isomorphic to a minimal unital C3-algebra.

Proof. A real model of the complex (A(V ),d) is given by

H⊗Λ〈θ0,1,θ1,0〉= (H⊗Λθ)⊗Λ(Jθ),

where H is the basic cohomology, dθ = 0, and d(Jθ) = Jω0 ∈H⊗Λθ [IK19]. Now apply

Proposition 5.14 with B =H⊗Λθ and x= Jθ.
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Remark 5.17. The operations in a C∞-algebra are strongly related to Massey products,
[BMFM20], and one might view Corollary 5.16 as a uniform version of Corollary 5.12. As

far as we know, there is in general no implication between these properties (even if one

had Corollary 5.12 without degree restrictions).

Allowing for a moment the case dω = 0 in the Vaisman condition, we have the following

suggestive diagram of implications, which includes formality in the Kähler case:

Kähler ddc minimal C∞ model with mk = 0, k ≥ 3

Vaisman ddc+3 minimal C∞ model with mk = 0, k ≥ 4.

This suggests that ddc-type conditions are incompatible with having a highly complex

homotopy type. In the next section, such a statement will be made concrete.

6. Rational homotopy obstructions to ddc-type conditions

In this section, we show that the existence of a complex structure satisfying a variant

of the ddc+3-condition imposes nontrivial restrictions on the underlying real homotopy
type. We begin with the most basic form of the argument, which already has interesting

applications, and provide a generalization below.

First, we need some elementary concepts from rational homotopy theory. All cdga’s will

be concentrated in nonnegative degrees and connected, that is dimA0 = 1. A cdga (A,d)
is called minimal if it is free as a graded-commutative algebra, A = ΛV , and there is a

well-ordered basis {xi} of V, with xi < xj if deg(xi) < deg(xj), such that dxi is a sum

of products of lower order generators. A minimal model for a cdga A is a map of cdga’s,
ψ :M→A, such that M is minimal and ψ is a quasi-isomorphism. A k -minimal model for

a cdga A is a map of cdga’s, ψ :Mk →A, such that Mk is minimal, generated by degrees

less than or equal to k, and Hs(ψ) is an isomorphism for s≤ k while Hk+1(ψ) is injective.
Minimal models and k -minimal models always exist and are unique up to isomorphism.

There is a simple algorithm for their construction [Sul77]. If a k -minimal model is already

a minimal model for A, we call A k-minimal. Typical examples of 1-minimal cdga’s are

provided by the differential forms on nilmanifolds.

Question 6.1. Consider a filiform nilmanifold M = G/Γ, where Γ is a lattice in the

simply connected Lie group G associated with the (1-minimal) cdga of left-invariant
forms

Λ(η1,...,η6) dη1 = dη2 = 0, dηk = η1ηk−1 for k = 3,...,6.

Like any even-dimensional nilmanifold, M admits an almost complex structure (e.g. put

Jη2k = η2k−1). It is known that M does not admit left-invariant complex structures

[GR02], and it is unknown whether it admits any complex structures. As a possibly
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simpler question, we may ask: Is it possible that M admits a complex structure which
has a fixed E1-isomorphism type for the bicomplex of forms (A(M),∂,∂̄)? For example,

is the following bicomplex possible?

A(M)�1 ⊕ ⊕ ⊕ ⊕ ⊕ .

Note that this would yield the correct Betti numbers, satisfy the ddc+3 condition, and

have a pure Hodge structure on H1.

The following theorem, a prototype for the results in these sections, shows that the

bicomplex depicted above (and many others) cannot occur as those of a hypothetical

complex structure on M.

Theorem 6.2. Let M be a compact manifold of real dimension 2n, such that

(1) the cdga of forms (A(M),d,∧) is 1-minimal,

(2) the cup product map ∪ :H1(M)×H1(M)→H2(M) vanishes identically.

Assume there exists a complex structure on M, such that

(3) the map H1(Kerdc)→H1(M) is an isomorphism,

(4) the map H2(Kerdc)→H2(M)⊕H2(M) is injective.

Then, n= 0.

Here, the maps alluded to in Conditions (3) and (4) refer to those induced from the

left inclusion map i, and the direct sum map (i,I ◦π), where I = ip−q, in the following

diagram:

(Kerdc,d)

i

�����
���

���
�

I◦π

��
���

���
���

�

(A(M),d) (Hd(M),d= 0) .

The example in Question 6.1 satisfies Conditions (3) and (4) of Theorem 6.2. These

conditions will be discussed in more depth below.

Proof. Take a 1-minimal model ψ : M1(Kerdc) = ΛV → Kerdc. We show i ◦ψ is a 1-

minimal model for A(M), and therefore, a minimal model for A(M), since A(M) is
1-minimal.

Firstly, H1(i◦ψ) is an isomorphism by assumption, so it suffices to show that H2(i◦ψ)
is injective. For the latter, observe that Hk(I◦π ◦ψ) vanishes for k≥ 2. Indeed, given any
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class c ∈Hk(M1(Kerdc)), we may write c = [
∑

i v
1
i v

2
i ...v

k
i ] for some vji ∈ V . Then, using

that everything in the image of I◦π is closed, we compute

Hk(I◦π ◦ψ)(c) =
∑
i

[(I◦π ◦ψ)(v1i )]∪ ...∪ [(I◦π ◦ψ)(vki )] = 0.

Since Hk(i◦ψ,I◦π ◦ψ) :Hk(M1(Kerdc))→Hk(A(M))⊕Hk(A(M)) is injective, we get

that Hk(i◦ψ) is injective for k = 2.
Since i ◦ ψ is a minimal model for A(M), H2n(i ◦ ψ) is an isomorphism, so the

generator of H2n(Kerdc) lies in the image of H2n(ψ). On the other hand, we have seen

that rankHk(I ◦ π ◦ψ) = 0 for all k ≥ 2. Since for any compact complex 2n-manifold
rankH2n(I◦π) = 1, this implies 2n≤ 1, so n= 0.

In what follows, we generalize this result in several directions. Instead of ruling out

certain complex structures only on M itself, we will rule out complex structures on any

manifold with the real homotopy type of M. Furthermore, we will relax the vanishing of
the cup product on first degree cohomology, and drop the hypothesis of 1-minimality.

6.1. Additional structure on the real homotopy type of complex manifolds

We first abstract some homotopy-theoretic properties of the diagram

(Kerdc,d)

i

�����
��
��
��

I◦π

����
���

���
���

�

(A,d) (Hd(A),d= 0)

for compact complex manifolds. All cdgas will be connected and concentrated in

nonnegative degrees.

Recall that for a map of complexes ϕ :B →A, the cone of ϕ is defined by

cone(ϕ) :=
⊕
n∈Z

B[−1]n⊕An dcone(ϕ)(b,a) = (−dBb,dAa−ϕ(b)),

with B[−1]n =Bn+1, and the differential of B[−1] is −dB . The inclusion ν :A→ cone(ϕ)

and projection δ : cone(ϕ)→B[−1] given by δ(b,a) =−b yield an exact sequence

0 �� A
ν �� cone(ϕ)

δ �� B[−1] �� 0

whose long exact sequence in cohomology is isomorphic to that of 0→B→A→Coker→ 0

in the case of an inclusion ϕ :B →A.

We will use the following two lemmas; the proof of the first is left to the reader.

Lemma 6.3. For any map of cdga’s ϕ : B → A, cone(ϕ) is a differential graded module

over B, via the formula

B⊗ cone(ϕ)−→ cone(ϕ)

(b,(b′,a)) �−→ ((−1)|b|bb′,ϕ(b)a).

In particular, H(cone(ϕ)) is a graded module over H(B) via the same formula.
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Lemma 6.4. For any map of cdga’s, ϕ : B → A, the H(B)-module structure on

H(cone(ϕ)) is functorial in the sense that, for a homotopy commutative diagram of cdga’s

B A

B′ A′,

ϕ

fB fA

ϕ′

there is a map H(cone(ϕ)) → H(cone(ϕ′)) that intertwines the module structures over

the respective cohomology algebras, and is an isomorphism if fA and fB are quasi-
isomorphisms.

Proof. First, note that the statement is clear if the diagram strictly commutes. Thus, in

the above setting, we obtain a morphism of H(B)-modules H(cone(ϕ))→H(cone(fA ◦
ϕ)) and also a morphism H(cone(ϕ′ ◦ fB))→H(cone(ϕ′)) which intertwines the H(B),
respectively, H(B′) module structures. Next, pick a homotopy K :B→A′〈t,dt〉, such that

ε0 ◦K = ϕ′ ◦fB and ε1 ◦K = fA ◦ϕ, where εi sends t �→ i,dt �→ 0, we obtain isomorphisms

of H(B)-modules H(cone(fA ◦ϕ))←H(cone(K))→H(cone(ϕ′ ◦fB)).

In what follows, A will denote a connected cdga over the reals with finite-dimensional

cohomology satisfying 2n-dimensional Poincaré duality, that is H2n(A) ∼= R and the

pairing Hk(A)×H2n−k(A)→H2n(A) is nondegenerate.

Definition 6.5. A dc-diagram for A is a triple (B,ϕA,ϕH) of a connected, cohomologi-

cally finite dimensional cdga B, and cdga maps

B

A H(A),

ϕA ϕH

such that the following conditions hold:

(1) Symmetry: The long exact sequences associated with ϕA and ϕH are isomorphic.

(2) Connectivity: H0(ϕA) is an isomorphism and H1(ϕA) is injective.

(3) Duality: Denoting ϕ := (ϕA,ϕH) :B →A⊕H(A), one has H2n(cone(ϕ))∼= R and

the pairing Hk(B)⊗H2n−k(cone(ϕ))→H2n(cone(ϕ)) is nondegenerate for every k.

Example 6.6. Consider a cdga A with minimal model ϕA : MA → A. If A is formal,
there exists a quasi-isomorphism ϕH :MA →H(A) and the diagram

MA

A H(A)

ϕA ϕH

is a dc-diagram. In this case, the H(MA)-module structure on cone(ϕ) is isomorphic

to the module structure of H(A) on itself, and so the duality isomorphism Hk(MA)→
H2n−k(cone(ϕ))∨ simply recovers duality of H(A).
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Zigzag type Length Kerdc H(Kerdc) H(A) RankH(i) RankH(I◦π)
Dot 1 C C C 1 1

Square NA 0→ C→ C (0,0,0) (0,0) 0 0

Odd Out. 2m+1 0→ Cm+1 (0,Cm+1) (0,C) 1 1

Odd Inc. 2m+1 C ↪→ Cm (0,Cm−1) (C,0) 0 0
Even Out. 2m 0→ Cm (0,Cm) (0,0) 0 0

Even Inc. 2m 0→ Cm (0,Cm) (0,0) 0 0

Figure 3. Ranks of maps in standard dc-diagram.

Example 6.7. For every compact complex manifold M, the diagram

Kerdc

A(M) H(M)

i I◦π

is a dc-diagram, which we will call a standard dc-diagram.

Proof. Since the two long exact sequences have the same underlying spaces, they are

isomorphic only if the maps ϕA and ϕH have the same rank on cohomology. So, the

symmetry condition follows from a case-by-case inspection of every indecomposable
bicomplex, for which we refer to Figure 3.

The connectivity property follows from the long exact sequence associated to the short

exact sequence

0→Ker dc →A→A/Ker dc → 0

since H0(A/Ker dc) = 0 for any complex manifold.

For the duality property, since ϕ := (i,I ◦π) : Kerdc →A(M)⊕H(M) is injective, the

natural projection π : cone(ϕ)→ Coker(ϕ), given by

π(b,a) = ϕ(b)+(A(M)⊕H(M))/Im(ϕ),

induces an isomorphism H(π) : H(cone(ϕ)) → H(Coker(ϕ)). By Lemma 6.4, the pro-

jection π is compatible with the H(Kerdc)-module-structure on cohomologies, and

Coker(ϕ) = A/Imdc, by Theorem 3.6, so the duality property follows from Proposi-

tion 3.27.

The importance of the concept of dc-diagram comes from the following observation,
which shows it is a property of the real homotopy type of A to admit a dc-diagram with

given invariants (e.g. cohomology long exact sequences, pairings, etc.).

Proposition 6.8. Let f :A→A′ be a quasi-isomorphism of cdga’s.

(1) Let (B,ϕA,ϕH) be a dc-diagram for A. The pushforward diagram f∗(B,ϕA,ϕH) :=

(B,f ◦ϕA,H(f)◦ϕH) is a dc-diagram for A′.
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(2) Let (B′,ϕA′,ϕ′
H) be a dc-diagram for A′. Denote by ψ : B → B′ a minimal model

for B′ and by ϕA : B → A a cdga map, such that f ◦ϕA is homotopic to ϕA′ ◦ψ
(which exists, unique up to homotopy). Then the pullback diagram f∗(B′,ϕA′,ϕ′

H) :=
(B,ϕA,H(f)−1 ◦ϕ′

H ◦ψ) is a dc-diagram of A.

In both cases, there is a (homotopy) commutative diagram with vertical quasi-

isomorphisms:

B

A H(A)

B′

A′ H(A′)

.

In particular, the number rankϕA = rankϕH and the number dimKer(ϕA,ϕH) are

invariant under pullback and pushforward.

Let us now draw some easy consequences from the definition of dc-diagrams and the

long exact sequence in cohomology associated to 0→A⊕H(A)→ cone(ϕ)→B[−1]→ 0,

which will highlight common features with a standard dc-diagram.

Proposition 6.9. Given a dc-diagram (B,ϕA,ϕH), the cdga B has the following

properties:

(1) The cohomology of B is concentrated in degrees 0,...,2n.

(2) There is an inequality bk(B)+ b2n−k(B)≥ 2bk(A).

(3) There is an equality of Euler characteristics χ(B) = χ(A).

Further, denoting by ψA : A → cone(ϕ) and ψH : H(A) → cone(ϕ) the maps induced by
the inclusion A⊕H(A)→ cone(ϕ), we have:

(4) The duality pairings induce an isomorphism between the long exact sequences

...−→Hk(B)
Hk(ϕH)−→ Hk(A)−→Hk(cone(ϕH))−→ ...

and the dual of

...−→H2n−k−1(cone(ψH))−→H2n−k(A)
H2n−k(ψH)−→ H2n−k(cone(ϕ))−→ ...

(and similarly for ϕA,ψA).

(5) Cone(ϕA)∼= cone(ψH) and cone(ϕH)∼= cone(ψA) (degree preserving).
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Proof. First, Hk(B) = 0 for k > 2n by duality, since the cone is nonnegatively graded.
The second claim follows from the long exact sequence

· · · �� Hk(B)
ϕ �� Hk(A)⊕Hk(A) �� Hk(cone(ϕ)) �� Hk+1(B) �� · · · ,

again, by duality Hk(cone(ϕ)) ∼= H2n−k(B), using exactness at Hk(A)⊕Hk(A). The

third claim follows similarly from exactness and duality, since the Euler characteristic is

additive along long exact sequences.
For the fourth claim, note that the choice of a representative for a fundamental class

induces a commutative diagram

B H

D2ncone(ϕ) D2nH,

ϕH

D2nψH

where D2n denotes the dualization functor, defined for any complex C as (D2nC)k =

(C2n−k)∨, with differential given (up to sign) by pullback. Thus, we obtain an isomor-

phism of the associated long exact sequences involving the cones of ϕH and D2nψH .
Finally, for the last claim, we note that from the definitions there is a short exact

sequence

0−→H
ψH−→ cone(ϕ)−→ cone(ϕA)−→ 0.

Thus, comparing this long exact sequence with that induced by

0−→ cone(ϕ)−→ cone(ψH)−→H[−1]−→ 0,

we see that the natural map cone(ϕA)→ cone(ψH) has to be a quasi-isomorphism. The

case of ϕH and ψA is analogous.

Remark 6.10. A dc-diagram (B,ϕA,ϕH) which is quasi-isomorphic (as in Proposition

6.8) to a standard dc-diagram has certain additional properties:

(1) The odd Betti numbers, b2k+1(B), and the sums of complementary Betti numbers,
bk(B)+ b2n−k(B), are all even.

(2) If A comes from a complex manifold M, with pdef(M) ≤ 1, then H(B) inherits a

multiplicative Hodge structure by Proposition 3.24.

6.2. Main result and applications

The main result in this section gives a topological lower bound on the complexity of the

bicomplex of complex structures satisfying a ddc-type condition in low degrees, Theorem
6.18. We begin with a lemma that gives several equivalent formulations of this ddc-type

condition.

Lemma 6.11. Let A be a Poincaré duality cdga with dc-diagram (B,ϕA,ϕH) with ϕ =

(ϕA,ϕH). The following conditions are equivalent, for any fixed j ≥ 0.
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(1) Hs(ϕA) is an isomorphism for all s≤ j, and Hj+1(ϕ) is injective.

(2) Hs(ϕA) is an isomorphism for all s≥ 2n− j, and H2n−j−1(ψ) is surjective, where

ψ = ψA+ψH denotes the map: A⊕H(A)→ cone(ϕ).

(3) All maps Hs(ϕA), H
s(ϕH), Hs(ψA), H

s(ψH) are isomorphisms for s≤ j.

(4) All maps Hs(ϕA), H
s(ϕH), Hs(ψA), H

s(ψH) are isomorphisms for s≥ 2n− j.

For a standard dc-diagram (Ker dc,i,I◦π) coming from a complex manifold M, the above
conditions are equivalent to

(5) For degrees s ≤ j, we have E1-degeneration, bs =
∑

p+q=sh
p,q, and pure Hodge

structure, pdefs(M) = 0. In degree j+1, we have F pHj+1(M)∩ F̄ qHj+1(M) = 0

whenever p+ q > j+2.

(6) For any decomposition of A(M) into indecomposables, there are no even zigzags and
no odd zigzags of length ≥ 3 in bidegrees s,s+1 for s≤ j, except possibly L-shaped

zigzags in degrees j,j+1.

We emphasize that the condition “Hj+1(ϕ) is injective” in Condition 1, cannot
be dropped, and is equivalent to the vanishing of the connecting homomorphism δ :

Hj(cone(ϕ))→Hj+1(B), that is the ddc+3-condition (in degree j+1) when B =Ker dc.

For clarity, we illustrate Condition 6 explicitly assuming j = 1 (in total complex
dimension 3, but the low-degree part is the same in any total dimension). The following

zigzags cannot occur:

; ; ; ; ,

while modulo duality, all zigzags in degrees ≥ 2 are allowed, and the following zigzags in

smaller degrees are allowed:

; ; .

Proof. The equivalence of Conditions 3 and 4 follows by duality: In fact, by Proposition

6.9 Condition (4), Hs(ϕA) (respectively, Hs(ϕH)) is an isomorphism if and only if
H2n−s(ψA) (respectively, H

2n−s(ψH)) is an isomorphism.

Next, we show Conditions 1⇒3. By the symmetry axiom, Hs(ϕA) is an isomorphism

if and only if Hs(ϕH) is as well. Whenever Hs(ϕA) and Hs+1(ϕA) are isomorphisms,
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Hs(cone(ϕA)) = 0, so by Proposition 6.9 Condition (5), Hs(ψH) is also an isomorphism.

Similarly, whenever Hs(ϕH) and Hs+1(ϕH) are isomorphisms, Hs(ψA) is also an

isomorphism. Therefore, Condition 1 implies Hs(ϕA) and Hs(ϕH) are isomorphisms for
s ≤ j and Hs(ψA) and Hs(ψH) are isomorphisms for s < j and injective for j = s. In

degree j = s, we thus have a diagram:

Hj(B)

Hj(A) Hj(A)

Hj(cone(ϕ)),

� �

where we know in addition, from the long exact sequence for ϕ= (ϕA,ϕH), that the sum

of the two bottom maps: Hj(ψA)+Hj(ψH) :Hj(A)⊕Hj(A)→Hj(cone(ϕ)) is surjective.

Then a simple diagram chase yields that both bottom maps are surjective individually.
This shows Condition 3. Conversely, if Condition 3 holds, Hs(ϕA) is an isomorphism

for s ≤ j by assumption and the map Hj(ψA)+Hj(ψH) has to be surjective since each

summand is an isomorphism. Again, by the long exact sequence, this implies Hj+1(ϕ) is

injective, so Condition 1 holds.
The equivalence between Conditions 2 and 4 follows analogously.

For the equivalence with Condition 6, we refer the reader to Figures 3, and 1, and

for Condition 5, the origin is [Ste21a, Chapter 2], while the argument is a single-degree
version of the proof of Corollary 3.20.

Remark 6.12. As this lemma illustrates, there are many (inequivalent) ways of
truncating ddc-type conditions. For instance, in view of Conditions 1 and 5, one may

call the equivalent conditions of this lemma as ‘ddc in degrees ≤ j and ddc+3 in degree

j+1’. On the other hand, given Condition 3, one might call them simply ‘ddc in degrees
≤ j’. Finally, Condition 6 suggests neither name would be accurate. To avoid all confusion,

we choose a neutral name below.

Definition 6.13. A dc-diagram (B,ϕA,ϕH) which satisfies any of the equivalent

conditions in Lemma 6.11 will be called j-controlled. A complex structure on a manifold

M will be called j -controlled if its standard dc-diagram is j -controlled.

Given a j -controlled dc-diagram, we can relate the j -minimal model of B to the j -

minimal model of A, at least if all cup products into degree j+1 are trivial. Namely, for
any graded ring R, denote by 〈R≤j〉 the subring generated in degrees ≤ j. Then:

Lemma 6.14. Fix an integer j ≥ 1. Let A be a Poincaré duality cdga, such that

〈H≤j(A)〉∩Hj+1(A) = 0.

If A admits a j-controlled dc-diagram (B,ϕA,ϕH), then any j-minimal model ψ :Mj →B

induces a j-minimal model ϕA ◦ψ :Mj →A for A.
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Proof. The map Hs(ϕA ◦ ψ) = Hs(ϕA) ◦Hs(ψ) is an isomorphism for all s ≤ j by

assumption. Also,

Hj+1(ϕ◦ψ) = (Hj+1(ϕA ◦ψ),Hj+1(ϕH ◦ψ))

is injective by assumption, but the right factor Hj+1(ϕH ◦ψ) is 0 by freeness of the j -

minimal model for B and the assumption 〈H≤j(A)〉 ∩Hj+1(A) = 0. Therefore, the left

factor Hj+1(ϕA ◦ψ) is injective.

Now we introduce some topological invariants that will be used in the main theorem

below.

Definition 6.15. For any cdga A and k > j ≥ 1, let

rkj (A) = rank
(
Hk(Mj)→Hk(A)

)
dkj (A) = dim

(
〈H≤j(A)〉∩Hk(A)

)
,

where Mj →A is a j -minimal model of A.

We note rkj is well-defined for any j by uniqueness of the j -minimal model, up to

isomorphism. For any j > k, dkj (A) ≤ rkj (A), by definition of the j -minimal model. If A
is j -minimal, then rkj (A) = bk(A), the kth Betti number of A, for all k. If A is j -minimal

and formal, then rkj (A) = dkj (A) for all k.

The example of interest is A=A(M), and we make the following observation:

Remark 6.16. For any 1 ≤ j ≤ k < n, the numbers rkj (A(M)) and dkj (A(M)) are both

additive with respect to the connected sum of n-manifolds, namely

rkj (A(M#N))) = rkj (A(M))+ rkj (A(N))

dkj (A(M#N))) = dkj (A(M))+dkj (A(N)).

For the case k = n, we have

rnj (A(M#N))) = max{rnj (A(M)),rnj (A(N))}
dnj (A(M#N))) = max{dnj (A(M)),dnj (A(N))},

and the left side numbers are either 0 or 1, depending on whether the top class is realized

in either case. All these follow from the behaviour of cohomology rings, and j -minimal
models, under connected sums.

Next we introduce an ‘analytic’ invariant of dc-diagrams, which the main theorem
will show is bounded below by the nonnegative numbers rkj − dkj , under appropriate

hypotheses.

Definition 6.17. For any dc-diagram (B,ϕA,ϕH) of A, let

k = dimKerHk(ϕA) = dimKerHk(ϕH).

Note that 0 = 2n = 0 by the definition of dc-diagram, and that k = 0 for k ≤ j, for a

j -controlled dc-diagram, and therefore also 2n−k = 0 for 0≤ k ≤ j by the equivalence of
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Conditions 1 and 2 in Corollary 6.11. One can infer from Table 3 how to compute k for
various zigzag types. The explicit count involves lengths of zigzags and will not be given

here, but could be useful in applications.

Theorem 6.18. Let A be a Poincaré duality cdga. If for some j ≥ 1, we have

〈H≤j(A)〉∩Hj+1(A) = 0,

and A admits a j-controlled dc-diagram (B,ϕA,ϕH), then

0≤ rkj −dkj ≤ k

for all k > j.

In the inequality above, the term rkj −dkj is purely topological, and the right-hand side

is complex-analytic for a standard dc-diagram. In examples below, we show the condition

〈H≤j(A)〉∩Hj+1(A) = 0 cannot be dropped.

Proof. Fix k > j ≥ 1, consider a dc-diagram with j -minimal model ψ :Mj →B of B,

Mj

B

A H(A),

ψ

ϕA
ϕH

and define

νkj = rank
(
Hk(ψ) :Hk(Mj)→Hk(B)

)
= dim(V ),

where V = Im
(
Hk(ψ) :Hk(Mj)→Hk(B)

)
. By the assumptions and Lemma 6.14, ψ :

Mj → B, induces a j -minimal model ϕA ◦ψ :Mj → A for A, therefore for all k > j, we

have

rkj = rank
(
Hk(ϕA ◦ψ)

)
≤ νkj .

The map Hk(ϕH)
∣∣
V
: V → Hk(A) factors through 〈H≤j(A)〉 ∩Hk(A), since Mj is

generated by degrees j and lower, and this factoring

Hk(ϕH)
∣∣
V
: V → 〈H≤j(A)〉∩Hk(A)

is surjective since Hs(ϕH ◦ψ) is an isomorphism for s ≤ j, by the assumption that the

dc-diagram is j -controlled. Then,

rkj ≤ νkj = dim
(
ImHk(ϕH)

∣∣
V

)
+dim

(
KerHk(ϕH)

∣∣
V

)
≤ dim

(
H≤j(A)∩Hk(A)

)
+dim

(
KerHk(ϕH)

)
= dkj + k.
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Remark 6.19. Under the same hypotheses as the previous theorem, we have a
topological lower bound

2rkj −dkj ≤ bk(B),

for all k > j since

bk(B) = rank
(
Hk(ϕA)

)
+ k ≥ rkj + k ≥ 2rkj −dkj .

Duality gives us the following corollary

Corollary 6.20. Let A be a Poincaré duality cdga of formal dimension 2n. If for some

j ≥ 1, we have

〈H≤j(A)〉∩Hj+1(A) = 0,

and for some k, with 2n− j ≤ k ≤ 2n, we have rkj > dkj , that is

rank
(
Hk(Mj(A)→A)

)
> dim

(
〈H≤j(A)〉∩Hk(A)

)
,

then there is no compact complex manifold in the real homotopy type of A with a j-

controlled complex structure.

Proof. If we have a j -controlled dc-diagram, then by the equivalences of Lemma 6.11,

k = 2n−k = 0, so Theorem 6.18 gives rkj ≤ dkj .

Taking k = 2n, we recover Theorems 6.2 and E of the Introduction, since then r2nj = 1

and d2nj = 0. We give some examples.

Example 6.21 (Filiform revisited). The real homotopy type of the filiform nilmanifolds

of complex dimension n≥ 2, associated with the cdga of left-invariant forms

F2n := Λ(η1, . . . ,η2n) dη1 = dη2 = 0, dηk = η1ηk−1 for k ≥ 3,

never contains a 1-controlled complex structure. Indeed, nilmanifolds are 1-minimal, and

here, the cup product on H1 is trivial, as dη3 = η1η2, so that 1 = b2n = r2n1 > d2n1 = 0.

As for k= 3, the filiform nilmanifolds admit almost complex structures (e.g. set Jη2k =
η2k−1), and are known not to admit left-invariant complex structures in any dimension

[GR02]. In complex dimension 2, they are known not to admit any complex structure, as

can be recovered here, since by Corollary 4.1, any complex structure in complex dimension

2 is ddc +3, and would be ddc in degree 1, as can be shown using b1 = 2 is even. It is
unknown if this homotopy type can admit a complex structure in dimension n≥ 3.

Example 6.22 (A compact complex 3-fold satisfying the assumptions of Corollary 6.20).

Let M =G/Γ be a nilmanifold with structure equations

dη3 = η1η2 dη4 = η1η3

dη5 = η2η3 dη6 = η1η4+η2η5.

Any such nilmanifold has a left invariant complex structure (c.f. [Sal01]). Then b1(M) = 2,

and η1η2 = dη3, so the product ∪ :H1(M)×H1(M)→H2(M) is trivial. So 1 = b6 = r61 >

d61 = 0, and there is no 1-controlled compact complex manifold with this homotopy type.
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According to [COUV16] (p. 4, Theorem 2.1), there are two left-invariant complex

structures on M. In fact, one may compute that for each of them, the bicomplex looks as

follows:

A(M)�1 ⊕ ⊕ ⊕ .

So, these satisfy purity in degree 1, and pdef(M)≤ 1, but there is a nonzero differential
E0,1

2 (M)→ E1,1
2 (M). This is consistent with [COUV16], which shows any left invariant

complex structure must degenerate at E2 and not E1, so, in particular, is not ddc +3.

We emphasize that the results in this case, using the real homotopy type, apply to all
complex structures, not only those that are left invariant, and show no complex structure

which is 1-controlled can have this homotopy type.

Remark 6.23. From the above examples, many others can be constructed by taking

a connected sum with any manifold N whose first Betti number is zero. Indeed, if

H1(N) = 0, then 〈H≤1(N)〉 ∩H2(N) = 0 and r61 = d61 = 0, so by Remark 6.16, M#N
satisfies the topological hypothesis of Corollary 6.20 whenever M does. If both M and N

are almost complex, then so isM#N as well. Almost every orientable 6-manifold is almost

complex, with the only obstruction W3 ∈H3(X;Z), so there are a plethora of examples

for which 1-controlled complex structures are ruled out on M#N . Similar comments
apply to blow-ups along almost complex submanifolds and projectivized complex vector

bundles.

Example 6.24 (The triviality condition on the cup product cannot be dropped).

Consider the real homotopy type determined by the cdga with a 6-dimensional space

of generators in degree 1 and structure equations

dη5 = η1η3−η2η4, dη6 = η2η3+η1η4, dηi = 0 else.

This cdga can be identified with the left-invariant forms on the Iwasawa manifold, given by
upper triangular matrices with complex entries modulo those with entries in the Gaussian

integers. Note that the cup product map H1 ×H1 → H2 is not trivial. As in every

nilmanifold, we have r2n1 − d2n1 = 1. On the other hand, by construction, the Iwasawa

manifold carries a complex structure and some of its small deformations (namely, those
of type (ii.b) and (iii.b), according to the classification in [Ang14]) are 1-controlled (this

follows from [Ste22a, Section 9.1]). Thus, the condition on the vanishing cup product in

degree j+1 cannot be dropped in Theorem 6.18 or Corollary 6.20
Also, note this homotopy type has a nonvanishing triple Massey product in H2, so this

shows that such Massey products cannot, in general, be used to rule out the existence of

j -controlled structures.

The following example shows Corollary 6.20 can sometimes be used for k < 2n in

situations where k = 2n does not apply.
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Example 6.25. Let M be a 6-dimensional manifold with the real homotopy type of a
nilmanifold with structure equations dη1 = dη2 = 0, and

dη3 = η1η2 dη4 = η2η3

dη5 = η2η4 dη6 = η1η5+η3η4

(c.f. [Mor58] or [Ang14]). Then H1 = 〈η1,η2〉 and H2 = 〈η1η3,η2η5〉, and ∪ : H1(M)×
H2(M)→H3(M) is trivial, since d(η1η4) = η2η1η3 and d(η2η6+η3η5) = 2η1η2η5. Also,
∪ : H2(M)×H2(M) → H4(M) is trivial since d(η1η4η5) = η1η2η3η5 (the same claims

hold with a different underlying homotopy type, changing only the structure equation for

dη5, to dη5 = η2η4−η1η3. We may use this for M as well.).
So, for any such M, we have

2 = b2 = r42 > d42 = 0.

Now let N be any orientable 6-manifold N, such that ∪ :H1⊗H1 →H2 is nontrivial,

∪ :H1(N)×H2(N)→H3(N) is trivial, and d62(N) = 1. For example, let N = (S1×S1×
S4)#CP

3.
Now consider M#N . We cannot apply Corollary 6.20 with j = 1, nor can we apply it

with j = 2 and k = 6. But we can apply Corollary 6.20 to M#N with j = 2 and k = 4,

using additivity in Remark 6.16, and conclude M#N has no complex structure which is

2-controlled.

The examples of almost complex manifolds, without j -controlled complex structures,

are not limited to nilmanifolds and their connected sums with other manifolds. For
example, using Milivojević’s realization theorem for almost complex manifolds, one can

build examples with very sparse Betti numbers, which are rationally highly connected,

by ‘stretching out’ cdga’s from the previous examples:

Example 6.26 (Highly connected examples). Let s be an odd positive integer. Consider

the cdga with generators η1,η2,η3,η4 in degrees s,s,2s− 1, and 3s− 2, respectively, and
the only nontrivial relations dη3 = η1η2 and dη4 = η1η3. The Euler characteristic is zero,

the cohomology satisfies Poincaré duality, and is trivial in middle degree, so this real

homotopy type contains a simply connected 2n := 7s− 3-dimensional almost complex
manifold [Mil22, Theorem 2.4., Corollaries 6.3. and 6.4.]. Additionally, it is rationally

(s− 1)-connected, j := 3s− 2-minimal, and satisfies 〈H≤j〉 ∩Hj+1 = 〈H≤j〉 ∩H2n = 0.

Indeed, the cohomology Hs vanishes for s≤ j, except for Hs generated by η1 and η2, yet

dη3 = η1η2. Then by Corollary 6.20, any almost complex manifold with this real homotopy
type has no complex structure which is 7-controlled.
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