S. Williamson Nagoya Math. J. Vol. 54 (1974), 215-216

ADDENDUM: *II*-PRINCIPAL HEREDITARY ORDERS

(Nagoya Math. J. 32 (1968), 41-65)

SUSAN WILLIAMSON

Let R denote a complete discrete rank one valuation ring of unequal characteristic, and let p denote the characteristic of the residue class field \overline{R} of R. Consider the integral closure S of R in a finite Galois extension K of the quotient field k of R. Recall (see Prop. 1.1 of [3]) that the inertia group G_0 of K over k is a semi-direct product $G_0 = J \times$ G_p , where J is a cyclic group of order relatively prime to p and G_p is a normal p-subgroup of G.

The author has proved in [3] that if $\Delta(f, S, G)$ is a Π -principal hereditary order, then G_p is Abelian; the purpose of the present note is to extend this result by showing that the inertia group G_0 must also be Abelian. The reader should refer to [3] for definitions and notation.

PROPOSITION. If the crossed product $\Delta(f, S, G)$ is Π -principal, then

- i) the inertia group G_0 is Abelian,
- ii) J is a normal subgroup of G.

Proof. To prove that G_0 is Abelian, it suffices to show that $\Delta(\bar{f}, \bar{S}, G_0)$ is a commutative ring. According to Prop. 1.6 of [3] we may consider a splitting field L of $\Delta(\bar{f}, \bar{S}, G_0)$, so that $\Delta(\bar{f}, L, G_0)$ is isomorphic to the trivial crossed product $\Delta(1, L, G_0)$. Now rad $\Delta(1, L, G_0)$ is generated by rad $\Delta(1, L, G_p)$, (see the exercise on p. 435 of [1]), from which it follows that $\Delta(\bar{f}, L, G_0)/\operatorname{rad} \Delta(1, L, G_0) = \Delta(1, L, J)$. Therefore the factor ring $\Delta(\bar{f}, L, G_0)/\operatorname{rad}(\bar{f}, L, G_0)$ is isomorphic to $\Delta(1, L, J)$.

We proceed to show that $\Delta(\bar{f}, \bar{S}, G_0)$ is isomorphic to a subring of the commutative ring $\Delta(1, L, J)$. The inclusion $(\operatorname{rad} \Delta(\bar{f}, L, G_0)) \cap \Delta(\bar{f}, \bar{S}, G_0)$ $\subset \operatorname{rad} \Delta(\bar{f}, \bar{S}, G_0)$ follows from Lem. 2.4 of [2], and $\operatorname{rad} \Delta(\bar{f}, \bar{S}, G_0) = (0)$ because $\Delta(f, S, G)$ is Π -principal; these facts combine to show that the natural map $\Delta(\bar{f}, \bar{S}, G_0) \to \Delta(\bar{f}, L, G_0)/\operatorname{rad} \Delta(\bar{f}, L, G_0)$ is a monomorphism,

Received January 7, 1974.

SUSAN WILLIAMSON

and this together with the observations in the preceding paragraph completes the proof of part i).

Assertion ii) follows from i) and Prop. 3.2 of [3].

References

- [1] C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Wiley (1962).
- [2] S. Williamson, Crossed products and ramification, Nagoya Math. J. Vol. 28 (1966), pp. 85-111.
- [3] S. Williamson, II-principal hereditary orders, Nagoya Math. J. Vol. 32 (1968), pp. 41-65.

Regis College

 $\mathbf{216}$