
Computational Star Formation
Proceedings IAU Symposium No. 270, 2011
J. Alves, B.G. Elmegreen, J. M. Girart & V. Trimble, eds.

c© International Astronomical Union 2011
doi:10.1017/S1743921311000706

Numerical Cosmology powered by GPUs

Dominique Aubert1

1Observatoire Astronomique, Universite de Strasbourg, CNRS,UMR 7550
11 rue de l’Universite, 67000 Strasbourg France
email: dominique.aubert@astro.unistra.fr

Abstract. Graphics Processing Units (GPUs) offer a new way to accelerate numerical calcu-
lations by means of on-board massive parallelisation. We discuss two examples of GPU imple-
mentation relevant for cosmological simulations, an N-Body Particle-mesh solver and a radiative
transfer code. The latter has also been ported on multi-GPU clusters. The range of acceleration
(x30-x80) achieved here offer bright perspective for large scale simulations driven by GPUs.

Keywords. methods: n-body simulations, numerical, cosmology

1. GPUs for scientific applications
The last few years have seen the rise of a new technique for parallel calculations which

relies on graphics processing units (GPUs hereafter). This type of hardware was originally
designed and optimized for applications related to graphics display such as 3D rendering.
Compared to the classical CPUs, the GPU architecture favors ‘calculation units’ against
cache and control flow units. It originates from the fact that graphical calculations are
numerically intensive but the same set of operations is identically applied to a large
number of data (like e.g. polygons rotations). Ideally, the lack of cache is compensated
by the intensity of calculations and control flow is unnecessary since the same operations
are applied to all data. Furthermore, graphics boards typically contain a few hundreds
of multicore units, implying that a large number of clone calculations can be dealt in
parallel. If a scientific application can fit in this model, one can expect a significant
acceleration.

Due to their original field of applications, GPUs were at first limited to single-float
calculations but the latest generation boards are also able to perform double-precision
calculations. Single boards can achieve a peak performance of 1.5 Tflop/s in single pre-
cision and 500 Gflop/s in double precision. Theoretical bandwidth can be as high as 180
GB/s. Applications which have been ported on GPUs experience typically a x10 to x100
acceleration compared to a single CPU-core calculation. The final improvement rate is
dependent on several factors: the suitability of a given application to the GPU program-
ming model, the amount of communication between the host PC and the board and of
course the level of optimisation such as memory access patterns.

Several options exists to interact with this hardware for scientific calculations. Origi-
nally, the scientists literally wrote their applications in order to mimic graphics calcula-
tions, with e.g. shaders. Hopefully, more user friendly solutions exists today. Currently,
the most popular one is CUDA, written by the Nvidia company exclusively for its devices.
CUDA is a toolkit which contains a compiler plus several libraries and development tools.
In practice, one writes a regular C or Fortran code coupled to a set of libraries which
provide primitives to interact with the devices, mostly for communications, launching cal-
culations and organizing the parallel task among the data. More recently, the OpenCL
standard has been defined by the Khronos group: this standard allows to program on

397

https://doi.org/10.1017/S1743921311000706 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921311000706


398 D. Aubert

any multicore architecture in an unified way and is not limited to the devices designed
by a specific company.

2. Particle-Mesh N-Body integrator
The particle-mesh (PM) technique relies on a grid-based description of the gravitational

field created by a distribution of massive particles. This method is fast but suffers from a
low spatial resolution and is usually coupled to a more accurate technique such as direct
n-body (PPM) or tree-based calculations (TPM). Once the initial particle distribution is
known, the density is calculated on a fixed grid. The Poisson equation is solved usually
by means of Fourier-space technique or relaxation and the resulting potential provides
the force field at the grid nodes. The force is interpolated at particle positions and the
latter can be moved and prepared for the next timestep.

In Aubert, Amini & David 2009, we described a GPU implementation of this tech-
nique using CUDA and further technical details can be found in this publication. In our
implementation, the Poisson equation can be solved either by FFT (using the cuFFT
library) or by our own implementation of the multigrid relaxation technique. Interest-
ingly most of the steps of a PM calculation consist in identical operations performed
independently on a large set of data. For instance, updating the velocity of particles
can easily be done in parallel. Also the restriction or prolongation operations in the
multigrid solver can be performed cell-by-cell without any communication. Even the re-
laxation can be performed on the cells of the grid completely in parallel. Overall, any
operation restricted to the particle-based description or the grid-based description can be
fully executed by independent and parallel threads. As a consequence large accelerations
(x50 -x100) can be achieved on these operations on GPUs. This is illustrated by the
Figure 1.

However, the PM technique implies that several switches between the particle based
and the grid based description should be performed. An example is the histogramming
step, where particles are projected on a grid using e.g. a CIC interpolating scheme.
A first issue is related to the fact that particles can hit the same cell, implying that
the number of hits in a given cell cannot be updated in parallel. Moreover particles
are distributed ‘randomly’ in the computational volume leading to non ordered mem-
ory accesses in order to update the grid, killing the GPU performances. The same is-
sues are encountered when interpolating the force computed on a grid back on parti-
cles. Interestingly, these points were already tackled when vector-based architectures
were the norm and a way to circumvent these problems are described e.g. in Fer-
rel & Bertschinger (1994). Using brute force with atomic operations which serialize

Figure 1. A typical PM timestep on CPU and GPU. Dark blue stand for the time spent in
the histogramming step while light blue stands for the resolution of the Poisson equation. The
other colors stand for force calculation and position update and are negligible. The bars are on
scale and the GPU is globally 30 times faster than CPU, but the relative importance of CIC
and Poisson resolution is different.

https://doi.org/10.1017/S1743921311000706 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921311000706


Cosmology with GPUs 399

accesses when required is also an option. In any case the operation remains quite GPU-
unfriendly.

As a consequence, the relative importance of the tasks involved in PM calculations
differs from classic CPU calculations. Figure 1 compare the two cases: overall a x30 ac-
celeration is achieved on GPU but the importance of the Poisson resolution is reduced
compared to the CPU implementation, whereas the CIC-histogramming step becomes
dominant. It is due to the fact that the Poisson resolution experiences a better bene-
fit from the GPU implementation than the CIC step. The Poisson resolution fits into
the GPU programming model while the histogramming is intrinsically more difficult to
parallelise.

3. Cosmological Radiative transfer on multi-GPUs
The second application is described in full details in Aubert & Teyssier (2008) and

Aubert & Teyssier (2010). It consists in a cosmological radiative transfer code, called
ATON. Given a gas density distribution and a collection of sources, this code solves
the radiative transfer using the moment-based M1 technique (Levermore 1984) and com-
putes the chemistry and heating created by the ionizing radiation. Radiation is described
as a fluid on a fixed grid and its transport is computed using Godunov-like techniques
in an explicit fashion. Thanks to the latter choice, the radiative state of cell can be
updated in parallel and using the same set of operations, fitting perfectly in the GPU
programming model. Chemistry and photo-heating process are purely local and can also
be computed in a fully parallel fashion. More generally all hyperbolic solvers are per-
fectly adequate for GPU-based calculations. For instance, using CUDA, ATON is 80x
faster on a GeForce 8800 GTX than on a Opteron 2.7 GHz. It should be noted that
such an acceleration is mandatory to use ATON: because of the explicit resolution, the
Courant condition on the speed of light forces the calculation to operate on a large
number of timesteps. Without GPUs, such a technique would be extremely limited in
practice.

Another feature of ATON is that it runs on more than one GPU using an additional
MPI layer. Practically, the GPUs are seen only by a single host but the host communi-
cate through regular MPI communications. Each GPU is assigned a sub-volume of the
global computational volume and the exchanges between subvolumes are implemented
by exchanging ghost layers between the GPUs: the graphics boards send the data on
their hosts, the hosts communicates and once ready they send the exchanged data back
on their GPUs.

As an application we performed a study of the cosmological reionisation in a set 10243

cosmological simulations (see Aubert & Teyssier 2010). The number of required timesteps
to evolve the system from z ∼ 15 to z = 5.5 lie between 50 000 and 150 000 depending
on the physical size of the simulated volume. These calculations were performed on 128
Tesla GPUs hosted by the Titane Supercomputer of the CEA. Thanks to the accelera-
tion provided by GPUs, such calculations are completed in 3-10 hours. It allowed us to
assess the issue of communication costs: since all the exchanged data must go through
the PCI-bus, a legitimate question would be to understand how much is lost in commu-
nications. Globally, it should be noted that the speedup remains reasonably linear up
to 128 devices. Furthermore, our measurements for different parallel configurations show
that 10 - 15% of a calculation is spent in MPI+PCI communications. While significant, it
remains reasonable and demonstrates the usability of GPUs for large scale multi-device
calculations.

https://doi.org/10.1017/S1743921311000706 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921311000706


400 D. Aubert

Figure 2. Top: speedup curve achieved by the radiative transfer code ATON as a function of
the number of GPUs. Bottom: time spent in the different stages of radiative timestep of aton.
The communications are limited to 15% fraction.

4. Conclusion
In addition to these two applications (PM and radiative transfer) we also implemented

on GPUs a standard hydrodynamical solver on fixed grid, achieving an acceleration close
to x100. It should be noted that such accelerations are by no means exceptional for GPU
codes and are obtained in a large range of applications from graphics rendering, to medical
applications or genomics. It should also be emphasized that GPU-programming is fairly
easy to learn, however the difficulty lies in fitting existing applications into this specific
programming model, which can be fairly different than the usual CPU programming, less
flexible and closer to the hardware. These difficulties set aside, significant accelerations
can be quickly obtained for a moderate developing cost.

References
Aubert, D., Amini, M., & David, R. 2009, LNCS,5544,874
Ferrel, E. & Bertschinger, E. 1994, Int. J. Mod. Phys., 933
Aubert, D. & Teyssier, R. 2008, MNRAS, 387, 295
Aubert, D. & Teyssier, R. 2010, submitted to ApJ, arxiv:1004.2503
Levermore, C. 1984, Journal of Quantitative Spectroscopy and Radiative Transfer, 31, 149

https://doi.org/10.1017/S1743921311000706 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921311000706



