
J. Functional Programming 6 (3): 379-391, May 1996 © 1996 Cambridge University Press 3 7 9

On cubism

BART JACOBS
CfVI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands.

Abstract

A number of difficulties in the formalism of Pure Type Systems (PTS) is discussed and an
alternative classification system for typed calculi is proposed. In the new approach the main
novelty is that one first explicitly specifies the dependencies that may occur. This is especially
useful to describe constants, but it also facilitates the description of other type theoretic
features like dependent sums.

Capsule Review

The paper reexamines the classification of typed lambda calculi as pure type systems, put
forward by Barendregt. A problematic aspect of the PTS-framework is the incorporation of
constants: this can be done, but at the cost of ad hoc extensions with products. The paper
proposes an alternative description of type systems, essentially by enriching PTS, with settings
plus features, obtaining a neat mechanism for handling constants.

1 Introduction

The phrase cubism will be used for the school that advocates classification of typed
1-calculi in terms of Pure Type Sytems (PTS). Some of these can be arranged nicely
in what has become known as Barendregt's cube. See Barendregt (1992) for an
overview. This classification has both technical and conceptual defects, as argued
below.

In my thesis (Jacobs 1991) I studied categorical semantics of various typed calculi.
It turned out that the formalism of PTSs wasn't really helpful in understanding the
semantics of these systems. Instead, the notion of dependence (to be explained below)
proved to be more fundamental and useful. It gives the possibility to 'read off' the
corresponding semantical structure almost directly, since this relation of dependence
corresponds to the categorical notion of fibred over. Here I will not go into these
semantical matters, but will argue that there are good reasons within syntax itself for
taking this notion of dependence as the starting point in the classification of typed
calculi. The essentials of the alternative classification of typed calculi (as proposed
in Jacobs (1991)) will be described here. In a nutshell, a new level is introduced
which comes before what is specified in PTSs. In this new level one lays down which
dependencies are allowed (in the system that one wishes to describe).

https://doi.org/10.1017/S0956796800001763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001763

380 B. Jacobs

Typed calculi are no longer as simple as in the early days of Church (1940). They
often involve different syntactic categories^ or universes (called sorts in PTSs) like
Type, Prop, Kind or Set. Thus it has become an important issue to classify such
calculi and describe them in a uniform and systematic way. This is achieved in PTSs,
which will be sketched first. Subsequently, the alternative classification in terms of
settings and features will be described. These two aproaches are then compared in
a discussion.

2 Pure type systems

A pure type system (PTS) is given by three sets of sorts, axioms and rules. The
axioms are of the form h c: s, where s is a sort and c is a constant or a sort. A rule
is a triple (si,S2,S3) of sorts which allows the following product formation rule:

T \-A:si T,x:A h B:s2

()

(Mostly one has s2 = S3; in that case one simply writes {s\,S2) for this rule.) Such a
PTS generates a calculus of expressions T \- A:s (for s a sort) and F \- M:A, using
the start rule

T \-A:s

F, x: A h x: A
together with the axioms, and application and abstraction rules (plus a weakening
and a conversion rule; see Barendregt (1992) for details). As usual, one writes
A —> B = Tlx.A.B if x is a variable which does not occur in B.

Particular examples of PTSs are given with two sorts, which we write as Type and
Kind here (* and • in the PTS-world) with one axiom Type: Kind and the following
rules:

System

A-»

n

2.co

XP
IP 2

kP(O
kC

Rules

(Type, Type)
(Type,Type)
(Type,Type)

(Type,Type)
(Type,Type)

(Type,Type)
(Type, Type)

(Type, Type)

(Kind,Type)

(Kind,Type)

(Kind, Type)

(Kind, Type)

(Kind, Kind)

(Kind, Kind)

(Kind, Kind)
(Kind, Kind)

(Type, Kind)
(Type, Kind)
(Type, Kind)
(Type, Kind)

Categories in the sense of philosophical logic, not as in category theory.

https://doi.org/10.1017/S0956796800001763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001763

On cubism

These systems can be organised elegantly in the form of a cube.

Xco XC

XL

381

-XPco

XP

The arrows should be read as inclusions starting from the simplest calculus X—*
in the lower left corner. This cube gives a possible fine-structure of the calculus
of constructions XC (from Coquand and Huet, 1988), but there are other ways to
decompose XC. This will be described next.

3 Type systems as settings plus features

The following serves as a motivation. Consider your favourite type system, which I
assume to have a number of sorts (or syntactic categories) and some mechanisms for
building types and terms. Abstract away from all particular details. What remains
are sequents of the form

xx:Ax,...,xn:An h A:s and xx:Au...,xn:An V- M:A

expressing that A is of sort s in context xi :A\,...,xn:An, and that M is a term which
inhabits A, again in context x\m.A\,...,xn:An. The point of view put forward here is
that such sequents contain the first piece of information in the classification of type
systems, namely the dependencies that may occur (in the specific type system that
we are considering). Let's formulate what these dependencies are.

Assume two sorts s\,S2 in a typed calculus. We say that s2 depends on s\ (in this
calculus) in case there are expressions

F \-A:si and r,x:A h B:s2

where the variable x occurs free in B. In this case we write S2 > s\. The idea is that
children of s2 (namely B:s2) may contain grandchildren of si (in this case x:A:s\).
This notion of dependency is related to indexing*: one can think of B as a family
{B(a):s2}a:A indexed by A:s\.

Consider, for example, an index set / together with a collection of sets {Xj}ieI

indexed by /. Formally, we can write this as

h / : Set and hX,:Set

And hence to indexed and fibred categories.

https://doi.org/10.1017/S0956796800001763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001763

382 B. Jacobs

This shows that sets indexed by sets requires a dependency Set > Set, expressing
that sets may depend on sets.

What is analysed here as a fundamental property is now formulated in abstract
form.

Definition 3.1
A setting consists of a set S of sorts together with a transitive relation >- of

dependency on S.
A type system is said to have this setting (S, >)—or to be built upon this setting—

if all occurring dependencies are allowed by the setting. This means that for each
pair of (well-formed, derivable) sequents

T \-A:si and T,x:A \- B(x):s2

with the variable x.A occurring free in B(x), we have s2 > s\ in the setting.

Now we can turn things around: instead of deriving a setting from a type system
(by inspection of which dependencies actually occur), we start from a setting, and
look at the type systems which have this setting. This is conceptually an important
step in our approach.

Again, at this stage, we only look at dependencies and at nothing else. For
example, not at how these dependencies may arise.

Example 3.2

(i) Assume we have a setting with one sort Type and the dependency Type > Type.
In a calculus with this setting one may have a type B(x):Type containing a term
variable x:A, where A is itself a type (i.e. A: Type). But this captures type dependency
as in Martin-Lof's (1984) type theory. A typical example is

hN:Type and n:N h natlist(n):Type

where the latter is the type of lists of natural numbers of length n. This describes
type-indexed types like set-indexed sets above.

(ii) If we have a setting with two sorts Type, Kind with the dependency Type >
Kind, then one can have types <r(a):Type containing a variable <x:A for a kind
/I: Kind. This situation occurs in polymorphic calculi. A special case is A = Type
with Type: Kind an axiom.

One sees how these settings capture certain characteristics of type systems. And
this constitutes the first step in the classification, as proposed here.

With settings one can also do some combinatorics. The next diagram gives the
settings with one and two sorts. The arrows are inclusions. The encircled numbers
have no meaning but are there for future reference. The setting of XC now occurs
at the bottom (as (7))- This gives an alternativefine-structure.
The double arrow CD z$ (3) indicates that there are two inclusions, namely Type i->
Type and Type>-> Kind.

Most of these settings underly well-known systems.

https://doi.org/10.1017/S0956796800001763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001763

On cubism

Most of these settings underly well-known systems.

(Type,>=0)®

(Type, Type > Type)

383

Kind, Type, Type > Kind
Kind > Kind

(Kind, Type, Type > Kindr

Kind, Type,
Type > Kind
Type > Type

Type >- Kind
Kind,Type, (Kind > Kind

Type > Type

Kind, Type,

V

Type > Kind \
Kind > Kind
Type > Type
Kind > Type /

Number Setting of

(D simply typed calculi (understood here without type variables)
(2) dependency typed calculi (like Martin-Lof's (), without universes)
(3) polymorphic calculi (the left plane A—>, 2.2, Xco, Xa> of the cube)

(4), (5) have not been studied separately
(6) HML () and the theory of predicates (;)
(7) the right plane XP,kP2,kP(D,XC of the cube

Hence the cube becomesWhat remains of the cube is a single edge (3) —>
one-dimensional.

The above systems HML of Moggi and the theory of predicates of Pavlovic with
underlying setting (6) were conceived as the calculus of constructions IC with setting
(7), but without the dependency Kind > Type. Moggi precludes this dependency in
HML, because he wishes to have a compile-time part of kinds which is independent
of a run-time part of types. The motivation of Pavlovic comes from logic: he thinks
of types as propositions and of kinds as sets and doesn't want sets to depend on
proofs (i.e. on inhabitants of propositions). Both arguments make good sense and

https://doi.org/10.1017/S0956796800001763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001763

384 B. Jacobs

form the basis for sensible type theories. Thus, the only way to understand these
subsystems of kC is to look at the underlying settings. This cannot be done (directly)
in a PTS-framework. In fact it is not clear at all how to describe these systems in a
PTS-format. The same holds for Martin-Lofs type theory.

A setting as understood here comes equipped with some basic rules for manipulat-
ing contexts, like projection, weakening and substitution. A specific calculus is then
layed down by specifying some additional 'features' that fit to the setting. These fea-
tures are mechanisms for building new types and terms. The collection of features
is open-ended: it includes axioms, products II, sums E, exponents —>, constants,
equality, quotients, subtypes, inductive types, etc. What we mean by mechanism
is not only the formation rule, but also the associated introduction-, elimination-,
conversion-, equality- and substitution-rules.

Definition 3.3
A feature is a mechanism for building new types and terms. It comes together

with a set of required dependencies. This set may be empty.
A feature may be added to a certain setting if all its sorts and all its required

dependencies exist in the setting. We then say that the feature fits to (or, is appropriate
in, or is allowed by) the setting.

A type system is a setting together with a number of features fitting to the setting.

The definition is somewhat vague, but this cannot be avoided due to the open-
endedness of the collection of features. The following table contains a number of
well-known features together with their required dependencies.

Feature Required dependencies

axiom I- si: S2 s\ > S2
(si,S2)-product II S2 > si
weak (si,S2)-sum X S2 > si
strong (si,S2)-sum X S2 > si, S2 > S2
very strong (si,s2)-sum Z S2 > s\, S2 > S2, s\ > S2
s-exponent -> —
s-cartesian product x —

Here we shall briefly discuss axioms, products n , exponents —> and cartesian
products x. The various sums occur in the next section. Also, constants may be
found there.

(i) If we have an axiom f- s\: S2, then we can use the start rule

h Si : S2

a:si \- <x:si

This yields a grandchild a of s2 occurring in a child <x:s\ of si. Hence, we have a
dependency s\ > S2- Thus, the axiom h si :S2 may only be used in a setting with this
dependency si >• S2.

https://doi.org/10.1017/S0956796800001763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001763

On cubism 385

(ii) The formation of dependent (si,S2)-products

F \-A:si T,x:A \- B:s2
(si,s2)

T \-Tlx:A.B:s2

only really makes sense if x may occur free in B. That is, if the dependency S2 > si
actually occurs. Hence, we take this as a required dependency for these products.
Adding such a product feature to a type system means besides the above formation
rule, also adding the associated rules like abstraction (introduction), application
(elimination), conversions, equations and behaviour under substitution,

(iii) For s-exponents one has a formation rule,

F \-A:s T \-B:s

T \-A->B:s
One sees that this has no influence on the dependencies which occur. Hence, s-
exponents may be added to any type system (in which the sort s occurs).

These s-exponents involve A —> B for A, B of the same sort s. Semantically one
thinks of the arrow type A —*• B as the exponent of objects A,B in a category.
This should not be confused with the exponent notation C —> D = Tlx.C.D if x
does not occur in D. This involves quite a different feature, namely (si,S2)-products
II for some pair si,s2 of possibly distinct sorts. The (categorical) interpretation of
(si,S2)-products is different from exponents. Only in case si = s2 can the arrow
C —> D = Fix: C. D (with x not in D) be understood as an s\-exponent object.

The situation for s-cartesian products,

T\-A:s T\-B:s

T \-A xB:s

is exactly the same: there are no required dependencies.
Notice that with the required dependencies S2 > s\ for (si,S2)-products and si > S2

for an axiom h si: s2, it becomes clear how to turn a specific PTS into a type system as
understood here. Just take all the sorts, together with the required dependencies for
the products and axioms occurring in the PTS. (One may have to take the transitive
closure.) This yields the underlying setting. The features of the type system are then
the products and axioms of the PTS. They are allowed by construction.

There is in general no way to turn a type system consisting of setting plus features
into a PTS. The notion of type system is much richer. It includes, for example,
Martin-Lof's type theory, which cannot be described as a PTS.

We conclude this section with an example how to set up a specific type system.
Some further details of settings and features will be discussed in the next section.

Example 3.4
One starts a type system by making explicit how many sorts one wishes and how

they should depend on each other. Suppose we want a type theoretic version of
'logic over dependent type theory', i.e. a predicate logic over dependent types (or
sets). In logical terms this means that we want set-indexed sets as in

h/ :Set and i:I \-X

https://doi.org/10.1017/S0956796800001763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001763

386 B. Jacobs

and predicates over such sets, i.e.

h / :Se t and i:I hi?(i):Prop

The first requires a dependency Set > Set and the second Prop > Set. Such a logic
was described in Jacobs and Melham (1993) (and called dependent logic there), and
also in Phoa (1992) as an expressive version of the internal language of a topos.

Under a propositions-as-types (and sets-as-kinds) reading we have Prop = Type
and Set = Kind. This shows we are in setting (?)•

Once the setting has been fixed, we can proceed to specify the features that we
wish to use in our calculus. For example, we may want

(Set, Set)-products/sums to form dependent products TliJ.Xj and sums Ei':/.X,.

(Set, Prop)-products/sums for quantification Vi:/.(p and 3i:I.<p.

Prop-exponents for implication cp —>• \p

\- Prop:Set for higher order quantification Va: Prop, (a —> a)

And some constants, like

hN:Set, n:N h natlist(n):Set, n:N h Even(«):Prop

These constants may be put together in what is commonly called a signature. It may
be clear that all of these features fit to the setting Set > Set, Prop > Set.

Semantically, the dependency Prop > Set tells that in a model, propositions must
be indexed by sets. This gives some basic skeleton. The features are then captured
by some additional structures which can be put on top of this skeleton.

4 Discussion

The main claim put forward here is that settings are fundamental in the classification
of typed calculi. Firstly, they give a certain order between various systems. Secondly,
they form the basis for the description of features on top of the setting.

This claim will be further illustrated in discussing three specific aspects: constants,
sums and logic. The setting-plus-features-approach will be contrasted with the PTS-
approach.

4.1 Constants

In the previous section, constants were already mentioned in passing. It turns out
that the underlying setting of a type system immediately tells which constants are
allowed, and which are not. This will be considered in some detail.

In mathematics one often finds phrases like: let Mat(n,m) be the set of n x m
matrices (over some fixed field). This can be seen as a declaration

n:N,m:N h Mat(n,m):Set

of a 'constant in context' or a 'parametrized constant'. Since N:Set the above con-
stant Mat(n,m) can be used in a setting with Set > Set; it requires this dependency,

https://doi.org/10.1017/S0956796800001763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001763

On cubism 387

just like an axiom feature I- s\: S2 requires a dependency s\ > s2- Thus, if one is
defining a type system with this dependency Set > Set, then one knows that a
constant like Mat(n, m) can be used. So it becomes clear that the first important step
in describing a specific type system is indeed saying what the setting is. Then one
can describe the constants in a signature, and say what the other features are.

Similar examples are found in predicate logic. Here one needs a dependency
Prop > Set. Indeed, one describes a specific predicate logic by specifying a signature

{F\,...,Fn, R\,..., Rm)

consisting of function symbols F, and predicate symbols Rj. The latter may involve
free variables x, say with x,: <x, where ot: Set. Formally, one can describe such an R
as a constant in context,

x i : f f i , . . . , x k : a k V- R(xu...,xk):Prop

And such constants are allowed with the dependency Prop > Set of predicate logic
(and of polymorphic calculi). One sees how easily such parametrized constants are
described. And the setting immediately tells us which ones are allowed and which
ones are not. Such constants are crucial in the practical use of type theory. And in
some systems—like in Martin Lof's—constants are needed to get off the ground.

The general formulation is as follows. A constant

x\:A\,...,xn:An \-c(xi,...,xn):s where A,: s,

may be added to a type system if the underlying setting has all the dependencies
s > s,.

The smoothness with which constants can be described is a great advantage of
working with these settings.

These constants in context are very natural, but they cannot be described within
the PTS-formalism, despite a number of attempts to fit them in. There is, however,
an indirect way: one could add extra means of quantification and describe the above
constant R as

\- R:oi ->•••—* Ok -* Prop

or, in case one has that the sets a, may depend on each other, as

I- R-.Tlxi : o \ . • • -

But this 'higher type description' is artificial and requires auxiliary (and unnecessary)
extensions.

4.2 Sums

Products II in type theory are relatively easy, but sums £ are much more complicated.
They occur in various forms. As already mentioned, there are weak, strong and very
strong sums. At this stage PTSs only deal with products, but a more complete
theory of typed calculi will eventually have to deal with these sums as well. And it is
then that it becomes important to have the dependencies that may occur explicitly

https://doi.org/10.1017/S0956796800001763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001763

388 B. Jacobs

available in the formalism describing the type theory at hand. The differences
between these three sums involve certain dependencies in the elimination rules. The
formation and introduction rules are the same in all three cases. We describe them
for (Kind,Type)-sums.

TI-,4:Kind T,x:A \- B:Type T h A:K\n6 T,x: A h B:Type

T hZx:AB:Type T,x:A,y:B h (x,y):Zx:A.B:Type

Just like dependent (Kind,Type)-products n , these dependent (Kind,Type)-sums E
require a dependency Type > Kind. This is enough for the weak elimination rule:

r h C : T y p e T,x:A,y:B \- Q:C
(weak)

T,z:l,x:A.B h (Q w h e r e (x,y) :=z):C

But for strong sums one allows the above type C to contain a variable z of the sum
type T,x:A.B, as in

r,z:Ix:AB hC(z):Type T,x:A,y:B h Q:C[(x,y)/z]
(strong)

T,z:l.x:A.B h (Q w h e r e (x,y) :=z):C

This occurrence of z in C(z) shows that these strong sums only make sense in a
setting with Type > Type, that is, with type dependency. In a next step, the very
strong sums allow elimination as above, both with respect to types and with respect
to kinds:

T,z:l,x:A.B h C(z):Type/Kind T,x:A,y:B h Q:C[(x,y)/z]
(very strong)

T,z:Y.x:A.B h (Q where (x,y) :=z):C

This very strong sum only makes sense in a setting where both Type and Kind may
depend on Type, i.e. Type > Type and Kind > Type. For example, we can now
immediately tell that in polymorphic calculi with setting © only weak sums make
sense (or are allowed, in the language of settings and features). And very strong
sums may be added to the calculus of constructions (setting (7)), but not to HML
or the theory of constructions (with setting ©).

The point here is not that settings are there to forbid certain features, but to make
clear right from the beginning (when one lays down the setting for a type system
under construction) which features are allowed. The example of the various sums is
meant to illustrate how much of an impact features may have on dependencies.

Notice that in case the sorts Type and Kind are the same, there is no difference
between strong and very strong sums. There is a standard result which says that the
very strong elimination rule can equivalently be replaced by a version with first and
second projections. In presence of an axiom I- Type: Kind, the very strong sums lead
(together with products) to a version of Girard's paradox, and thus to inconsistency.

One can similarly distinguish weak, strong and very strong equality in type
theory. For equality the very strong version makes perfectly good sense in presence
of I- Type: Kind.

https://doi.org/10.1017/S0956796800001763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001763

On cubism 389

4.3 Logic

Ordinary proposition logic may be seen as a degenerate form of predicate logic where
there are no real predicates, but only closed ones (without free variables). Similarly
higher order proposition logic—in which one can quantify over propositions as in
VccProp. ip(a)—can be seen as a degenerate subsystem of higher order many-typed
predicate logic, namely where one only has one single type Prop and no other (basic)
types.

Under the propositions-as-types (and proofs-as-terms) point of view, a calculus
of types and terms may be seen as a system of logic, in which types are viewed
as propositions and a term inhabiting a type as a proof (or derivation) of the
corresponding proposition. This raises the question: which calculi correspond to
which logical systems? This has been a central topic of research in cubism (see, for
example, Geuvers, 1993).

Since constants are usually ignored in cubism, some debatable correspondences
are found. As an example we consider hx>. According to cubists, this calculus
corresponds to higher order proposition logic. Formally, this is entirely correct, but
it only deals with a degenerate situation (as above). It is better and more natural
to say that Ao-calculi correspond to higher order many-typed predicate logics. We
write the plural form twice: there are various Ico-calculi and various higher order
many-typed predicate logics and the variation is determined by the basic constants
(that is, by the signatures Z?) which are assumed to be given right in the beginning.
(The setting here is already determined as Prop > Set, or, as Type > Kind.) Thus
we have a 2-calculus hj)(Sf) for every appropriate signature £f. And similarly in
predicate logic: any standard text shows how one starts with certain basic function
symbols and predicate symbols. Without the latter one does not get off the ground
and one remains in proposition logic. The degenerate border cases on both sides
(no constants) are related and only this point is mentioned by cubists. It's only the
tip of the iceberg.

Explicitly, if a constant h N:Kind is added to Xco, then it suddenly becomes
possible to form the kind N —> Type of predicates on N and quantify over it as in

IIP: N ->• Type. Yin: N. Tim: N. P(n + m) -> P(m + n)

which leads us into predicate logic. Thus, already one single constant brings down
the cubists' correspondence between (pure) Xco and higher order proposition logic.
Restricting oneself to this ha without constants is a bit like limiting ones attention
in the study of free groups to the singleton group (the free group on the empty set)5.

One should see Aa>-calculi (like other type systems or logics) as languages to
reason about certain mathematical structures. It's like with groups: there one has
three function symbols,

t - u : G , x:G,y:G \-m(x,y):G, x:G\~i(x):G

This comparison ridicules matters in an unfair way: the free Aw-calculus on the empty set
(that is pure Xco = Ao>(0) without constants) is not as degenerate as the free group on the
empty set.

https://doi.org/10.1017/S0956796800001763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001763

390 B. Jacobs

for unit, multiplication and inverse. When one reasons about a specific group G, then
all the elements a e G are added as constants a to the language, and the resulting
calculus is used.

There is the same picture for Xa>. Constants of an appropriate mathematical
structure may be organized in a signature Sf. Then one can use the calculus k(n(Sf)
to reason about that structure. In)ja{Sf) one reasons with explicit proof terms. One
can also build a predicate logic on if. Then one reasons without such proof-terms.

The purpose of this paper is to explain the ideas underlying an alternative
classification of typed calculi in terms of settings and features. Nothing has been
said about meta-mathematical or proof-theoretic aspects. But they can be formulated
in the new language as well. For example,

(i) Let i f be a type system such that for each dependency s-i > s\ in the setting
one has (sj,S2)-products IT. Then Church-Rosser holds,

(ii) Let S£>+ be the following extension of i£ from (i): for each dependency $2 > si
in the setting add weak (si,S2)-sums. Then j§?+ is conservative over ££.

At this stage it doesn't matter whether these statements are true or not. They only
serve to illustrate how one can do meta-mathematics. It is hoped that the settings
and features described here enhance the understanding of type systems and clarify
some of the issues involved.

In the end, what can be said about PTSs? I think the PTS-formalism works well
for the minimal versions1 of a limited number of typed calculi. But the formalism
does not scale up: not to extensions (as with sums or constants) and not to other
calculi (like Martin-Lof's or HML and the theory of constructions). These are the
technical defects of PTSs mentioned in the introduction. The conceptual defect is
what we consider to be an inappropriate analysis of the structure of typed calculi:
in PTSs the dependencies come out of the axioms and rules and are not taken as
primitive.

Acknowledgements

Thanks to Herman Geuvers for helpful discussions.

References

Barendregt, H. P. (1992) Lambda calculi with types. In: S. Abramski, Dov M. Gabbai and
T. S. E. Maibaum (eds.), Handbook of Logic in Computer Science, Vol. 2, Oxford University
Press, pp. 117-309.

Church, A. (1940) A formulation of the simple theory of types. J. Symbol. Log. 5: 56-68.
Coquand, Th. and Huet, G. (1988) The Calculus of Constructions. Inform. & Comp.,

76(2/3): 95-120.
Geuvers, J. H. (1993) Logics and Type Systems. PhD Thesis, University of Nijmegen.

And indeed, in the introduction to Barendregt (1992) it is clearly stated that only minimal
versions are studied.

https://doi.org/10.1017/S0956796800001763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001763

On cubism 391

Jacobs, B. (1991) Categorical Type Theory. PhD Thesis, University of Nijmegen.

Jacobs, B. and Melham, T. (1993) Translating dependent type theory into higher order logic.
In M. Bezem and J. F. Groote (eds.), Typed Lambda Calculi and Applications. Springer
LNCS 664 pp. 209-229.

Martin-Lof, P. (1984) Intuitionistic Type Theory. Bibliopolis, Naples.

Moggi, E. (1991) A category-theoretic account of program modules. Math. Struct, in Comp.

Sci., 1(1): 103-139.

Pavlovic, D. (1990) Predicates and Fibrations. PhD Thesis, University of Utrecht.

Pavlovic, D. (1991) Constructions and predicates. In D. H. Pitt et al. (eds.), Category and

Computer Science: Springer LNCS 530, pp. 173-196.

Phoa, W. (1992) An introduction to fibrations, topos theory, the effective topos and modest
sets. Techn. Rep. LFCS-92-208, Edinburgh University.

https://doi.org/10.1017/S0956796800001763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001763

