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HAMIJLTONIAN SYSTEMS WITH SPIN 

J. E. Marsden 

In this note we give a brief exposition of the mathematical foundations 
of the theory of spin for both c lass ica l and quantum mechanical systems on 
oriented Riemannian manifolds. We shall use freely the notations and theory 
developed in Abraham [1] and Marsden [2, 3], F rom the physical point of 
view nothing new appea r s . The whole purpose of the note is to explain how 
the theory fits in the spir i t of [1]. 

In view of [3], we can handle the c lass ica l and quantum mechanical 
ca ses simultaneously, as both a re Hamiltonian systems (the latter being 
on an infinite dimensional symplectic manifold). 

We first reca l l the definition of a spin manifold, second define a 
spin Hamiltonian system and thirdly, give the appropriate conservation 
law for spin angular momentum. The c lass ica l case seems to be of little 
physical in teres t other than theoret ical . Quantum mechanical examples 
a r e the two component Schrodinger equation and the Dirac equation. (One 
could also use the coupled Dirac-Maxwell system as a non-l inear example; 
see [3]). 

1. Spin Manifolds. We begin then with the definition of spin manifold 
following Pa la i s 1 exposition [4, p. 91]. Other standard references for 
spinors a re Milnor [5, 6], and Cartan [7]. Fur ther re ferences may be 
found in [7], and some references to the vast l i te ra ture from physics a re 
found in [10]. 

Let SO(n) be the rotation group on R . We let Spin (n) be the 
universa l (2 fold) covering group of SO(n). For an explicit construction 
for n ^ 3, in t e r m s of Clifford a lgebras , see [4], [6, p . 14] and [8, p . 367], 
and for covering groups see any standard text such as [9. pp. 22-27]. 

There exists an (irreducible complex) Spin (n) module denoted S , 
n 

called the n-dimensional spinors . If n = 2k or 2k+l, S has complex 
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d i m e n s i o n 2 . F o r e x a m p l e , one c h e c k s tha t Sp in (3 ) = S U ( 2 ) ; and 

S 3 - 2 ' 
L e t A be an o r i e n t e d R i e m a n n i a n m a n i f o l d . T o def ine a sp in bundle 

o v e r A we f i r s t def ine a l o c a l sp in bund le and t h e n g l o b a l i z e in the s p i r i t 

of E i l e n b e r g C a r t a n ; s e e [ 1 , § 4 ] . 

A v e c t o r b u n d l e IT : E — • A wi th f i b r e S i s a s p i n b u n d l e if t h e r e 
n 

i s a c o v e r i n g U of A and b u n d l e c h a r t s § : T U C T A > U X R ; 
a a a a 

- 1 
of T A and è * : TT (U ) •* U X S of E s u c h t ha t (i) cj) p r e s e r v e s 

a a a n a 
- 1 

the m e t r i c and o r i e n t a t i o n and (ii) the o v e r l a p m a p s c|>* ° c|> * h a v e the 
f o r m (x, s) » • (x, g n (x) • s) w h e r e g n : U D U + Spin (n) and 

a p a p a p 
- 1 

and p(g ^(x)) = <j> J <\> ( r e s t r i c t e d to x ) , w h e r e p : Spin (n) • SO(n) 
a p p a 

is the c a n o n i c a l p r o j e c t i o n . 

T h u s a sp in bund le o v e r A is a ( v e c t o r ) bund le TT : E *- A w h o s e 
l o c a l c h a r t s a r e l o c a l sp in b u n d l e s and t r a n s i t i o n m a p s a r e l o c a l sp in bund le 
i s o m o r p h i s m s . R o u g h l y , when we have a c o o r d i n a t e c h a n g e , t he f i b e r s 
" t r a n s f o r m l i k e " s p i n o r s r a t h e r t h a n v e c t o r s ; i . e . a c c o r d i n g to Spin (n) 
r a t h e r t h a n S O ( n ) . 

We s h a l l a l s o r e g a r d t h e r e s t r i c t i o n of TT to a s u b m a n i f o l d of A a s 
a sp in b u n d l e . 

2 . H a m i l t o n i a n S y s t e m s w i t h Sp in . We def ine a sp in H a m i l t o n i a n 
s y s t e m in t he fo l lowing w a y . F i r s t , le t A be an o r i e n t e d R i e m a n n i a n 
m a n i f o l d and TT : E * A a sp in bund le o v e r A. R e g a r d i n g E a s a 
m a n i f o l d M, pu t on T*M (the c o t a n g e n t b u n d l e ) t h e n a t u r a l s y m p l e c t i c 
s t r u c t u r e . A c l a s s i c a l sp in H a m i l t o n i a n s y s t e m i s a H a m i l t o n i a n s y s t e m 
on T * E . A sp in q u a n t u m m e c h a n i c a l s y s t e m i s a q u a n t u m m e c h a n i c a l 
s y s t e m o v e r E ( s ee [3] for the de f in i t ion of a q u a n t u m m e c h a n i c a l s y s t e m ) . 

In o t h e r w o r d s , a c l a s s i c a l sp in s y s t e m i s a H a m i l t o n i a n s y s t e m w h i c h 
d e p e n d s on the sp in c o o r d i n a t e s and m o m e n t a and a q u a n t u m m e c h a n i c a l sp in 
s y s t e m d e p e n d s j u s t on the sp in c o o r d i n a t e s . 

3 . The C o n s e r v a t i o n T h e o r e m . L e t G b e a Lie g r o u p w h i c h a c t s 
on a m a n i f o l d M. If X i s an i n f i n i t e s i m a l g e n e r a t o r of G on M, t h e n 
the func t ion P c a l l e d the m o m e n t u m of X def ined by 

X 
P : T*M *• R ; P {a ) = a ( X ( m ) ) i s i n v a r i a n t for any H a m i l t o n i a n 

X X m m 
s y s t e m w h o s e H a m i l t o n i a n func t ion i s i n v a r i a n t u n d e r the i n d u c e d a c t i o n 
of G on T * M . 

S i m i l a r l y if Q i s a v o l u m e for M and a q u a n t u m m e c h a n i c a l s y s t e m 

i s i n v a r i a n t u n d e r the a c t i o n , the func t ion < P > : D C L ( M , C ) *• R de f ined 
X 
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b y < P > (\\) ) = f < \\> ,iL, *\> > dtl (for say D the smooth functions) is 
X * X 

a constant of the motion. 

These are the basic conservation laws of mechanics. For proofs, 
see [2, 3], What we wish to do is simply to determine the corresponding 
conserved quantities in case M is a spin bundle over A and G acts on A. 

Let TT : E > A be a spin bundle and suppose G acts on A, by 
(J) : A > A and that this action lifts to E. That is, there is an action 

g 
\\) : E *E on E such that (i) TT a \\i = <|> ° TT and (ii), there are chart 

g 6 5 
-1 

coverings cb , cb * as above, such that over x e A , cb# « dj ° cb * e Spin(n) 6 a ^a P g a 
-1 - 1 

and p(d>* ' di ° d>* ) = §a ° (T ijj ) fi cb . T Jj is the tangent p Y(3 Yg Y a T(3 g T a Y g 
(derivative) of \\i 

Let X be an infinitesimal generator of cj> on A (a vectorfield on 
A) and Y the corresponding one for I|I on E. Then an easy computation 

shows that locally, Y = X + Y where Y , at each point lies in the Lie 
s s 

algebra of Spin(n), i .e. T Spin(n) . if the cb above have the form Tf 
e a a 

for charts f on A, then T p (Y ) = TX (in the chart) . 
a e p s 

In summary then, the conserved quantities consist of the ordinary 
conserved momentum X plus the spin angular momentum Y . 

s 

3 
If G is the rotation group and A = R these yield the usual 

conservation laws. See [3]. For the Schrodinger equation with spin we 
use A directly (two component spinors) while for the Dirac equation we 

4 
use the spin structure derived from A as a submanifold of R (four 
component spinors). For a general Dirac system A would be a space-like 
3 surface with spin structure derived from A X R. Note that a 
pseudo-Riemannian manifold does not define a spin structure as we have 
described it. 

We summarize the results in these two theorems: 

THEOREM 1. Let A be an oriented Riemannian manifold and 

TT : E •» A a spin bundle oyer A. Let H : T*E • R be a Hamiltonian 
oo 

system on T*E (H is usually a C function but distributions are also 
acceptable; see [2]). Let <J> be a smooth action of G on A which lifts 
to an action on E, and under which H is invariant. Let X be an 
infinitesimal generator of <\> on A. Then the function P : T*E • R defined 
by P = P OÏÏ + P is a constant of the motion (invariant under the flow of H) 
— X s 
where P : T*E *R is such that P = P,r where Y is a vectorfield 

s s Y s 
s 

on E linear along the fibers of TT determined above. 
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3 For example, take A = R and two component spinors a - [a , a ) 
3 3 , 2 2 1 

over A. We identify T*E with (R X R ) X (C X C ). Under the rotation 
group, the corresponding conserved quantit ies a re components of the following 
vector function (using the obvious notations) 

P (x, p , a, p ) = x X p + l / 2 p • o- • a 
x a x a 

where the components of cr are the standard Pauli spin m a t r i c e s . 

Spin theory is usually neglected c lass ical ly but there is surely no 
theore t ica l reason for it , only physical p recedence . 

THEOREM 2. Let A, E and <J> be as in Theorem 1. Let 
2 2 2 

H : D C L >• L, be a Hamiltonian operator on a domain D where L is 
op 

the complex Hilbert space of functions ^ : E »• C with respec t to a 
volume £1 on A and some fiber inner product and cf> p r e s e r v e s that volume 
(again distr ibution valued opera tors a re also acceptable ; see [3]). If H 

- op 

is invariant under (J>, then the expectation of X + Y (defined above) is a 

constant of the motion. 
In the same example as above, the conserved momentum about 

the z axis is the expectation 

8 1 8 , 

2 f f ( x ) i (x — ^ - y — - ) d x + 1/2 f 4J • 0- • 4J dx 
JA 1 9y 9x J A x 

1 A 3 A 

where IJJ (x) = i)j(x , 1 , 0 ) and . ib (x) = \\t[x., 0 , 1 ). The f i rs t t e rm is the usual 

angular momentum of \\i and the second is the spin angular momentum. 

Lifting an action from SO(n) to Spin (n) was t r ivial in the Euclidean 
examples above. However, in the general case this may be a topologically 
non-trivial p r o c e s s . 

4. Rigid Body with Spin. The motion of a rigid body can be regarded 
as a geodesic on SO (3) with respec t to a given left invariant m e t r i c 
(moment of inert ia tensor) c.f. [12]. However the analogous thing on Spin(n) 
is not a rigid body with spin. It is easily checked that the corresponding 
geodesies a re just lifts of geodesies on SO(3) , so is just another 
descript ion of rigid body motion (i. e. the rigid body can be regarded on 
either SU(2) or on S O ( 3 ) ) . 

The co r r ec t descr ipt ion of a rigid body with spin is as follows. 
Let A = SU(2) and I a left invariant m e t r i c (the given moment of iner t ia) . 
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2 3 
Let E = SU(2) X C and as a chart , use <j) : TA —~* A X T SU(2) = A X R 

-1 
defined by cb (v ) = (x, T L v ) , L being left t rans la t ion , and 

X X X X X 

cj>* : SU(2) X C2 + SU(2) X C ; <|> * (g , c) = (g , g _ 1 c) . With the obvious 
product met r i c on the spin bundle E , namely I t imes the standard inner 
product, we define geodesies on E to be the motion of a rigid body with 
spin. That the natural action of SU(2) on itself by left t ranslat ion lifts to 
E is easily checked, by setting L* (h , c ) = (gh, gc) . By the conservation 

g 
theorem 1 , the conserved functions a re given by (on TE) : 

Total Angular Momentum ( g , P ; c , P ) 
S c 

= rigid body angular momentum 

1 „ .— 
- - P • 1er • c 

2 c 
For m o r e detailed proofs of the resul ts sketched in this paper, see 

Marsden, Chang, Robinson, Hamiltonian Mechanics, Infinite Dimensional 
Lie Groups, Geodesic Flows and Hydrodynamics (Berkeley lecture notes) . 

I wish to thank Ted Chang for pointing out severa l inaccuracies in the 
f i rs t draft of this paper and for showing me the cor rec t descr ipt ion. 
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