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Points of Weak∗-Norm Continuity in the Unit
Ball of the Space WC(K,X)∗

T. S. S. R. K. Rao

Abstract. For a compact Hausdorff space with a dense set of isolated points, we give a complete description of
points of weak∗-norm continuity in the dual unit ball of the space of Banach space valued functions that are
continuous when the range has the weak topology. As an application we give a complete description of points
of weak-norm continuity of the unit ball of the space of vector measures when the underlying Banach space
has the Radon-Nikodym property.

Introduction

Let X be a Banach space. Let B(X) denote the closed unit ball of X. x∗ ∈ B(X∗) is said
to be a point of weak∗-norm continuity (w∗-PC for short) if for any net {x∗α} ⊂ B(X∗),
x∗α → x∗ in the weak∗ topology implies x∗α → x∗ in the norm topology. For a compact
Hausdorff space K, if C(K,X), denotes the space of X-valued continuous functions defined
on K, equipped with the supremum norm then a complete description of the w∗-PC’s of
B
(
C(K,X)∗

)
was recently given by Hu and Smith [6] (see [1] for a short proof of their

result). In this note we are interested in extending the description given by Hu and Smith
to the case of WC(K,X), the space of X-valued functions on K that are continuous when
X has the weak topology, equipped with the supremum norm. Our main result shows that
the w∗-PC’s of B

(
WC(K,X)∗

)
and that of B

(
C(K,X)∗

)
have the same description when

K is such that its set of isolated points is dense in K. Our result also works for the case
of W ∗C(K,X∗), the space of X∗-valued functions on K that are continuous when X∗ is
equipped with the weak∗ topology.

As an application of these results, we show that for a finite nonatomic measure µ and
for any Banach space X, there are no points of weak-norm continuity in B

(
L1(µ,X)

)
.

Let K(X,Y ),F(X,Y ),L(X,Y ) denote respectively spaces of compact, weakly compact
and bounded operators. A result of Ruess and Stegall (Theorem 4 of [12]) says that all
the operator spaces mentioned above have the “same” w∗-denting points in the dual unit
ball. (Let us recall that an equivalent definition of w∗-denting point is that it is an ex-
treme point and a point of w∗-norm continuity). It is therefore natural to ask if the
same is true of w∗ PC’s. Example 1.6 on page 267 of [4] illustrates that extreme points
of B
(
K(X,Y )∗

)
need not be extreme in B

(
L(X,Y )∗

)
. Taking Y = C(K), it is well-known

(see [3, p. 490]) that the spaces of operators mentioned above can be identified as C(K,X∗),
WC(K,X∗) and W ∗C(K,X∗) respectively. Thus knowing the complete description of w∗-
PC’s of B

(
C(K,X)∗

)
we want to know if the same holds for other standard function spaces.
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Weak∗-Norm Continuity 119

Unlike the case of w∗-denting points, there is no geometric description of w∗-PC’s
known. Thus the methods of Ruess and Stegall [12] do not seem to work here. Our ideas
came from M-structure theory for which we refer the reader to the monograph [4] by Har-
mand, Werner and Werner.

Main Results

For any discrete set Γ, let c0(Γ,X) and `∞(Γ,X) denote the space of X-valued functions
vanishing at infinity and the space of bounded functions, respectively (equipped as usual
with the supremum norm).

Let us recall from [4, Chapter I] that a closed subspace M ⊂ X is said to be a M-ideal if
there is a projection P : X∗ → X∗ such that ‖P(x∗)‖+ ‖x∗−P(x∗)‖ = ‖x∗‖ for all x∗ ∈ X∗

and Ker P = M⊥. Any m∗ ∈ M∗ has a unique norm preserving extension to X (see [4,
p. 11]).

We need two results essentially proved in our earlier work [1], [11].

Theorem 1 Λ ∈ B
(
c0(Γ,X)∗

)
is a w∗-PC iff Λ =

∑∞
i=1 αix∗i , where x∗i ’s are w∗ PC’s of

B(X∗) and
∑∞

i=1 |αi | = 1.

Lemma 1 Let M ⊂ X be a closed subspace. If x∗ ∈ B(X∗) is a w∗-PC and is the unique norm
preserving extension of x∗/M then x∗/M is a w∗-PC of B(M∗). If M is a M-ideal in X then
any w∗-PC of B(M∗) is a w∗-PC of B(X∗).

For any k ∈ K and x ∈ X, by δ(k) ⊗ x we denote the functional whose value at any
X-valued function f on K is defined by

(
δ(k) ⊗ x

)
( f ) = f (k)(x). This is a functional of

norm one on all the spaces we will be considering.

Theorem 2 Let X be a Banach space and K a compact Hausdorff space. Let K1 denote the set
of isolated points of K. If Λ is a w∗-PC of B

(
WC(K,X)∗

)
then Λ =

∑∞
i=1 αiδ(ki)⊗ x∗i where

{ki}i≥1 ⊂ K1, {x∗i }’s are all w∗-PC’s of B(X∗) and
∑∞

i=1 |αi | = 1. If K1 is dense in K then
any Λ of the above form is a w∗-PC of B

(
WC(K,X)∗

)
.

Proof Using the identification of C(K,X)∗ as the space of X∗-valued regular Borel mea-
sures, the authors of [2], describe a projection

P : WC(K,X)∗ →WC(K,X)∗

as follows.
For any µ ∈WC(K,X)∗, consider the measure ν = µ/C(K,X). Define

P(µ)( f ) =

∫
f dν for f ∈WC(K,X).

Then P is of norm one and Ker P = C(K,X)⊥. Note that Range P is thus isometric to
C(K,X)∗ and also

P
(
δ(k)⊗ x∗

)
( f ) = x∗

(
f (k)
)
=
(
δ(k)⊗ x∗

)
( f ) for any k ∈ K, x∗ ∈ X∗.
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Since functionals of the form {δ(k) ⊗ x∗ : k ∈ K, ‖x∗‖ = 1} separate points
of WC(K,X), by an application of the Hahn-Banach separation theorem we have that

CO
w∗
{δ(k)⊗ x∗ : k ∈ K, ‖x∗‖ = 1} = B

(
WC(K,X)∗

)
(weak∗ closed convex hull).

Now since Λ is a w∗-PC, we have that

Λ ∈ CO{δ(k)⊗ x∗ : k ∈ K, ‖x∗‖ = 1} (norm closure).

Since Λ/C(K,X) is now a countably supported measure and since P(Λ) = Λ, we have
that

Λ =

∞∑
i=1

αiδ(ki)⊗ x∗i .

If αi0 6= 0 then ki0 is an isolated point and x∗i0
is a w∗-PC of B(X∗).

To see this, note that if {kα} is a net in K such that kα → ki0 then for any f ∈WC(K,X)

(
δ(kα)⊗ x∗i0

)
( f ) = x∗i0

(
f (kα)

)
→ x∗i0

(
f (k)
)
=
(
δ(k)⊗ x∗i0

)
( f )

since f (kα) → f (ki0 ) in the weak topology. Therefore δ(kα) ⊗ x∗i0
→ δ(ki0 ) ⊗ x∗i0

in the
weak∗ topology of WC(K,X)∗.

Now

∞∑
i=1
i 6=i0

αiδ(ki)⊗ x∗i + δ(kα)⊗ x∗i0
→

∞∑
i=1
i 6=i0

αiδ(ki)⊗ x∗i + δ(k)⊗ x∗i0
= Λ

in the weak∗ topology of WC(K,X)∗ and thus in the norm topology. Therefore {kα} is
eventually constant. Hence ki0 is an isolated point of K. A similar argument shows that x∗i0

is a w∗-PC of B(X∗).
Now suppose that K1 is dense in K. Let Λ =

∑∞
i=1 αiδ(ki)⊗ x∗i where ki ∈ K1 and x∗i ’s

are w∗-PC’s of B(X∗) for all i.
From the theorem quoted above, it follows that (as K1 has the discrete topology) Λ is a

w∗-PC of B
(
c0(K1,X)∗

)
. We shall show that c0(K1,X) is a M-ideal in WC(K,X). Then the

conclusion follows as an application of the lemma mentioned above.
Let W1 ⊂W2 be two closed subspaces of a Banach space W . It is easy to see that if W1 is

a M-ideal in W , then it is a M-ideal in W2 [4, Proposition 1.1.7]. We shall make use of this
observation in what follows.

Since K1 is dense in K, we have

c0(K1,X) ⊂ C(K,X) ⊂WC(K,X) ⊂ `∞(K1,X)

It is known that c0(K1,X) is a M-ideal in `∞(K1,X) (see [4, Chapter I]), therefore from the
observation above we have that c0(K1,X) is a M-ideal in WC(K,X). Hence Λ is a w∗-PC of
B
(
WC(K,X)∗

)
.

Remark 1 We do not know if the second part of the above theorem is true without the
hypothesis “K1 is dense in K”. However finite convex combinations of points of the form
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δ(k) ⊗ x∗ for k ∈ K1 and a w∗-PC x∗ of B(X∗) are w∗-PC’s of B
(
WC(K,X)∗

)
. It is easy

to deduce now that B
(

WC(K,X)∗
)

and B
(
C(K,X)∗

)
have the same denting points, thus

obtaining a different proof of the Ruess and Stegall theorem when the range is a C(K) space
(see also Remark 2).

Our first corollary is a special situation.

Corollary 1 Let K be a compact extremally disconnected space. Then Λ of the form described
above is a w∗-PC of B

(
WC(K,X)∗

)
.

Proof Let K1 be the set of isolated points of K. Then E = K1 is a clopen subset of K. Now
it is easy to see that f → χE f is a M-projection (see [4, Chapter I]) in WC(K,X)

(
C(K,X)

)
.

It hence follows from the above theorem and the lemma quoted before, that Λ is a w∗-PC
of B
(
WC(K,X)∗

)
.

The next one is a corollary to the proof of the above theorem and makes use of the
fact that there is a norm one projection P : L

(
X,C(K)

)∗
→ L

(
X,C(K)

)∗
with Ker P =

K
(
X,C(K)

)⊥
and such that P

(
δ(k) ⊗ x∗∗

)
= δ(k) ⊗ x∗∗. (Note that

(
δ(k) ⊗ x∗∗

)
(T) =

x∗∗
(

T∗
(
δ(k)
))

for any k ∈ K and x∗∗ ∈ X∗∗). This follows from Lemma 1 of [7].

Corollary 2 If Λ is a w∗-PC of B
(
L
(
X,C(K)

)∗)
then Λ =

∑∞
i=1 αiδ(ki) ⊗ xi where

{ki}i≥1 ⊂ K1, {xi}’s are all points of weak-norm continuity of B(X) and
∑∞

i=1 |αi| = 1.

If further K1 is dense in K then any Λ of the above form is a w∗-PC of B
(
L
(
X,C(K)

)∗)
.

Remark 2 Identifying the space K(`1,X) as C
(
β(N),X

)
and the space L(`1,X) as ⊕∞X,

the above arguments show that both the spaces have the same w∗-PC’s in the dual unit
ball, for any X. In the case of non-discrete finite measure space (Ω,A, µ) we note that
K
(
L1(µ),X

)
can be identified with C(K,X) where K is the Stone space (and thus an ex-

tremally disconnected space) of L∞(µ). This author has observed in [10] that this identi-
fication extends to F

(
L1(µ),X

)
onto WC(K,X). It is also easy to see that L

(
L1(µ),X

)
gets

mapped into W ∗C(K,X∗∗). Therefore all the operator spaces considered have the same
w∗-PC’s in the dual unit ball.

The next result concerns the w∗-PC’s of another well studied class of operators (see [4,
Chapter VI]).

Proposition 1 If K(X,Y ) is a M-ideal in L(X,Y ) then their dual unit balls have the same
w∗-PC’s.

Proof Since K(X,Y ) is a M-ideal in L(X,Y ) by the uniqueness of norm preserving exten-
sions (see Proposition 1.12 of [4]), we have that the functional (y∗ ⊗ x∗∗)(T) =
x∗∗
(

T∗(y∗)
)

for any unit vectors y∗ ∈ Y ∗ and x∗∗ ∈ X∗∗), is the norm preserving exten-
sion of its restriction to K(X,Y ). Since these functionals determine the norm of L(X,Y ),
as in the proof of Theorem 1 we see that if F is a w∗-PC of B

(
L(X,Y )

)
then it is of norm

one on K(X,Y ). Hence the conclusion follows from our lemma quoted before.
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Next set of results concern Proposition 11 and the concluding remarks of [6]. In what
follows by a “point of continuity” we mean a point of weak-norm continuity of the iden-
tity mapping on B(X). These ideas yield a simple proof of Proposition 11 in [6] and a
corresponding result in the injective tensor product case.

We first state a lemma the first part of which follows from Lemma 2.1 in [5] and the
converse can be proved by imitating the arguments given during the proof of Lemma 3
in [11].

Lemma 2 Let P be a L-projection. If x0 is a point of continuity of B(X), then either x0 ∈
B
(
P(X)
)

or B
(
(I − P)(X)

)
and is a point of continuity of that space or P(x)/‖P(x)‖ and

(I − P)(x)/‖(I − P)(x)‖ are points of continuity in the unit ball of the range and the kernel of
P respectively. Conversely any point of continuity in B

(
P(X)
)

or B
(
(I − P)(X)

)
is a point of

continuity of B(X).

Remark 3 For any L-projection P on X, I ⊗ P is a L-projection on the projective tensor
product space Y ⊗π X (see [4, Chapter VI]). Let {yi} be any sequence of pairwise indepen-
dent unit vectors in Y such that line{yi} is the range of a L-projection for each i. It is easy
to see that for any sequence {xi} of points of continuity of B(X), F =

∑∞
i=1 αi(yi ⊗ xi) is a

point of continuity of B(Y ⊗π X) for all αi with
∑∞

i=1 |αi| = 1.
In particular if (Ω,A, µ) is any measure space then for any sequence {χAi} of normalized

µ atoms, F =
∑∞

i=1 αi(χAi ⊗ xi) is a point of continuity of B
(
L1(µ,X)

)
. When µ is purely

atomic, it is not difficult to see that these are the only points of continuity. These arguments
also cover the case of points of continuity in B

(
C(K,X)∗

)
for a dispersed K.

For a nonatomic measure µ since there are no extreme points in B
(
L1(µ,X)

)
, the next

result complements the results of Hu-Lin [5] when p = 1.

Theorem 3 For any finite nonatomic measure µ and for any Banach space X, there are no
points of continuity in B

(
L1(µ,X)

)
.

Proof Let F be a point of continuity of B
(
L1(µ,X)

)
. It follows from Corollary 2.10 of [5]

that F is a w∗-PC of B
(
L1(µ,X)∗∗

)
. Note that L1(µ,X)∗ can be identified with L

(
X,C(K)

)
where K is the Stone space of L∞(µ). Since µ is nonatomic clearly K has no isolated points.

It now follows from Corollary 2 that there are no w∗-PC’s in B
(
L
(
X,C(K)

)∗)
. This con-

tradiction shows that there are no points of continuity in B
(
L1(µ,X)

)
.

Corollary 3 For any compact set K containing a perfect set and for any Banach space X
such that X∗ has the R.N. P., any point of continuity of the unit ball of C(K,X)∗ has the
form F =

∑∞
i=1 αiδ(ki) ⊗ x∗i where ki’s are in K, x∗i ’s are points of continuity of B(X∗) and∑∞

i=1 |αi | = 1.

Proof Let F ∈ B
(
C(K,X)∗

)
. Since X∗ has the R.N. P., F ∈ B

(
L1(|F|,X∗)

)
and is clearly

a point of continuity. From Theorem 2 and the remarks made before it we get F =∑∞
i=1 αi(χAi ⊗ x∗i ), where Ai ’s are |F| atoms. It follows from Theorem 8 on page 51 of

[L] that there exist ki ∈ K such that |F|(Ai) = |F|(ki). Therefore F has the required form.
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It is easy to see that a point of continuity of the unit ball of a subspace need not be the
point of continuity of the unit ball of the entire space (take for example a finite dimensional
subspace). In the next proposition we exhibit another class of subspaces where the points
of continuity get preserved. Examples that satisfy the hypothesis of this proposition include
the spaces considered in Theorem 2 and Proposition 1.

Proposition 2 Let M ⊂ X be a closed subspace such that P : X∗ → X∗ is a norm one
projection with Ker(P) = M⊥ and B

(
P(X∗)

)
is w∗-dense in B(X∗). Any point of continuity

of B(M) is a point of continuity of B(X).

Proof In what follows we identify M∗ canonically with P(X∗). Let J : X → M∗∗ be defined
by J(x)

(
P(x∗)

)
= x∗(x) for x ∈ X and x∗ ∈ X∗. Because of the denseness assumption,

clearly J is an isometry whose restriction to M is its canonical embedding in M∗∗. Now
suppose m is a point of continuity of B(M). By Corollary 2.10 of [5] again, m is a w∗-point
of continuity of B(M∗∗). Suppose {xα} is a net in B(X) converging weakly to m. Since
J({xα}) → m weakly, we have ‖ J({xα}) − m‖ = ‖xα − m‖ → 0. Hence m is a point of
continuity of B(X).

Remark 4 Unlike the situation described in Lemma 2, if X = M ⊕∞ N (the `∞ direct
sum) then m ∈ B(M) is a point of continuity of B(X) iff N is finite dimensional.

Since comparison of the extremal structures of B
(
K(X,Y )∗

)
and B

(
L(X,Y )∗

)
is one of

our motivations for this work, we conclude the paper with the following remark.

Remark 5 Hu and Smith have also succeeded in describing the strongly extreme points
(see [6], [11] for the definition and this result) of B

(
C(K,X)∗

)
as points of the form δ(k)⊗

x∗, k ∈ K and x∗ ∈ B(X∗) is a strongly extreme point. Any extreme point of B(`∞) is a
strongly extreme point. Thus the example C(K) = `∞, X = c0 (from [4, p. 267]) alluded to

in the introduction also illustrates that strongly extreme points of B
(
K
(
X,C(K)

)∗)
need

not even be extreme points of B
(
L
(
X,C(K)

)∗)
. If k is an isolated point then one can show

that δ(k) ⊗ x∗ is indeed a strongly extreme point of L
(
X,C(K)

)
whenever x∗ is a strongly

extreme point of B(X∗) (see Lemma 3 of [11]). We do not know if there are any other
strongly extreme points in B

(
L(c0, `

∞)∗
)
. In the case F

(
X,C(K)

)
, note that since X∗ = `1

has the Schur property, for the above example F
(

X,C(K)
)
= K

(
X,C(K)

)
. Similarly if

one considers WC(K,X) where X = c0 and K is any compact set, then since C(K,X) is a
M-ideal in WC(K,X) (see Theorem 7 in [2]) any strongly extreme point of B

(
C(K,X)∗

)
is a strongly extreme point of B

(
WC(K,X)∗

)
(again from Lemma 3 of [11]). Finally in

the infinite dimensional set up extreme points of B
(
C(K,X)∗

)
and B

(
WC(K,X)∗

)
are the

same only when X has the Schur property (see [9]).
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