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Circadian variation in abomasal digesta flow in grazing 
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I .  Lactating grazing ewes, fistulated at the rumen and abomasum were either not supplemented or offered, 
individually, 600 g/d of either pelleted, molassed sugar-beet pulp (‘energy’ supplement) or a pelleted 1 : 1 (w/w) 
mixture of this feed and formaldehyde-treated soya-bean meal (‘protein’ supplement). Digesta flows at the 
abomasum were estimated from the concentrations of the markers CrEDTA and ruthenium phenanthroline 
complex, during their administration by continuous intra-rumen infusion. Digesta samples were taken at 
09.00 hours and at six further times at 4 h intervals. This was repeated 2 d later. 

2. No significant difference in flow between days was noted. Daily flows of dry matter (DM) and non-ammonia- 
nitrogen (NAN) (g/d) in supplemented ewes were significantly higher than in unsupplemented ewes, both in total 
digesta and its particulate phase. However, there were significant differences between sampling times or significant 
interactions between sampling time and supplement treatment. The results were therefore examined by Fourier 
analysis for possible circadian variation in digesta flow. As there was marked between-animal variability in flow- 
rate, the digesta-flow values for each sampling time were re-expressed as percentages of the flows calculated from 
daily mean marker concentrations. 

3. In unsupplemented animals, marked and significant circadian variation was then identified in the flow of 
DM, total N and NAN in both whole digesta and the particulate phase. There was also significant circadian 
variation in the flow of DM, total N and NAN in the digesta of the supplemented ewes. Curves were of the same 
general shape as those for unsupplemented animals, but some significant differences were found, principally for 
digesta NAN flow. In both supplemented and unsupplemented animals, peak flows occurred in the period 
20.00-01.00 hours. The proportion of DM and NAN flowing in the particulate phase was relatively constant 
through the day for unsupplemented ewes, but significant circadian variation occurred for supplemented ewes. 

4. The possible mechanisms generating the circadian variation in digesta flow, such as grazing behaviour and 
the rumen digestion of supplements, are discussed. Values are also presented to indicate the extent of the likely 
errors if digesta flows were estimated from samples which did not represent all stages of the circadian pattern. 

Studies of supplementary feeding in grazing, lactating ewes have frequently found that the 
response to supplements is variable (e.g. Milne et al. 1981 ; Dove et al. 1984a, b). This is 
partly related to between-animal variability in supplement intake (Dove, 1984; Dove et al. 
19846) but, even at constant intake, variability in response may also be related to individual 
differences in the effect of supplements on the kinetics of digestion. These effects are not yet 
understood. They are also difficult to measure, because the pools and flows of digesta, 
particulary in grazing sheep, are not constant, but exhibit marked circadian variation 
(Corbett & Pickering, 1983; Thomson et al. 1985). Hence, in studies of digesta flow in the 
field, it would be possible to obtain biassed estimates of the flow of digesta through the 
choice of inappropriate sampling times. 

Within the context of a larger study of the response of the lactating, grazing ewe to 
supplements, we investigated: (a) the extent of circadian variation in digesta flow, (b) the 
effect, on any circadian variation, of feeding supplements designed to increase the supply 
of metabolizable energy or protein, and (c) the effect of possible circadian variation on the 
errors of estimating abomasal digesta flow from samples taken at intervals during the 
day. 
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A brief report concerning abomasal digesta flows up to week 8 of lactation has appeared 
previously (Dove et al. 1985). 

MATERIALS A N D  METHODS 

Experimental design 
The results reported here were obtained as part of a larger experiment consisting of four 
replicates (fields) on which four treatments were randomly allocated, i.e. two un- 
supplemented treatments (high herbage mass, low herbage mass), one treatment on which 
ewes received an 'energy ' supplement and one treatment on which ewes received a 'protein' 
supplement (for details of supplements, see below). The present results were obtained in one 
of these replicates, in which surgically prepared ewes grazed together with the unfistulated 
animals (with appropriate increases in plot size). However, by the start of the present 
measurements, rapid pasture growth had resulted in similar herbage mass of about 2000 
kg organic matter (OM)/ha on all four plots in this replicate, so that no differences between 
the two unsupplemented plots were detected. For the remainder of the present paper, values 
from these two groups have been pooled, so that there are, effectively, three treatments. 

In assessing the treatment differences discussed later (p. 656), it should be noted that, in 
working within one replicate, between-treatment differences were confounded with possible 
between-plot differences. However, the evenness of the herbage masses between plots, the 
marked similarity of responses on the two unsupplemented plots and the marked similarity 
of all responses to previous work suggest that this confounding was not a problem. 

Pastures and supplements 
The four treatments were imposed on four 0.62 ha plots of perennial ryegrass (Lolium 
perenne L.) pasture which had received 40 kg N/ha as a compound fertilizer (N-phos- 
phorus-potassium in the proportions 22: 11 : 1 1 by wt) 30 d and again 10 d before the start 
of the present measurements. Herbage mass was determined in each plot immediately 
before and after the measurement period by cutting nine quadrats (1 55 x 1200 mm) to 
ground level. Samples so collected were dried at 100" and ashed overnight at 450" to 
determine OM content. 

The 'energy' supplement was commercial pelleted molassed-sugar-beet pulp (OM 926, 
N 19.0 g/kg dry matter (DM)) offered to each sheep at the rate of 600 g/d (air dry). The 
'protein' supplement consisted of a 1 : 1 (w/w) mixture of the sugar-beet pulp plus 
formaldehyde-treated soya-bean meal. Formaldehyde treatment was carried out as 
described by Freer & Dove (1984) and, following 7 d of curing, treated meal was mixed with 
hammer-milled sugar-beet pulp and re-pelleted. This supplement (OM 923, N 49.8 g/kg 
DM) was also offered to each sheep at 600 g/d (air dry). 

Animals and their management 
Each experimental plot was grazed by nine lactating Border Leicester x Scottish Blackface 
ewes (and their lambs), three of which were fistulated at the rumen and abomasum. 
Performance findings from the unfistulated ewes will be reported elsewhere. Digesta flow 
values were obtained from only eleven of the twelve fistulated ewes and, of these, six ewes 
suckled single lambs and five suckled twins. Values from single- and twin-suckling ewes 
were pooled within treatment since no significant differences between them were detected. 
At the start of measurements, the fistulated ewes were at day 85 (SD 9.8) of lactation. 

Supplemented animals were collected daily from the field and offered supplements, 
individually, between 08.00 and 09.00 hours GMT. The entire procedure of collection, 
feeding and return of animals usually took less than 20 min for each group. 
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Measurement of digesta flow 
The flow of abomasal digesta was estimated from the dilution of the particulate phase 
marker Tris-( 1 , 10-phenanthro1ine)-ruthenium (11) chloride and the liquid-phase marker 
CrEDTA, prepared by the methods of Tan et al. (1971) and Binnerts et al. (1968) 
respectively, and administered by continuous intra-rumen infusion. 

On the 1st day of infusion, all fistulated ewes were given a priming dose via the rumen 
cannula of 100 ml of a solution containing 355 mg ruthenium/kg and 1050 mg chromium/ 
kg. Thereafter, the infusate was administered directly to the rumen at the continuous rate 
of about 3 ml/h by peristaltic pumps carried by the animals. The pumps were similar in 
operation to those of Corbett et al. (1976). Four 1.5 V dry batteries powered an Escap 28 
DC motor which, through an Escap A42 gearbox (reduction 2160: 1; Portescap UK Ltd, 
Reading) turned a 30 mm diameter PTFE rotor at 1.2 rev./min. Infusates were delivered 
through silicon tubing stretched around the rotors. The mean coefficient of variation of 
delivery rate was 2-5 ( ~ ~ 1 . 7 7 )  %. The actual amounts infused were determined from the loss 
of weight of the infusion packs, which were changed daily. 

On day 6 of infusion, samples of approximately 20 ml rumen fluid and 100 ml abomasal 
digesta were obtained at about 09.00 hours, immediately before the feeding of supplements 
to the animals. Samples were then taken every 4 h, up to and including 09.00 hours on day 
7. This procedure was repeated starting on day 8 of infusion so that samples were obtained 
at each of seven times on each of 2 d. For each group of ewes, the sampling procedure 
usually occupied about 15 min and grazing usually continued when the animals were 
returned to the field. 

Processing of samples and chemical analyses 
Samples of rumen fluid for the determination of rumen ammonia were acidified immediately 
with 1-2 drops of concentrated sulphuric acid. Abomasal digesta samples collected during 
daylight hours were chilled immediately and processed that evening. Samples collected 
overnight were chilled and processed the next day with the last samples, collected at 09.00 
hours. A subsample of 50g was removed (‘digesta’ sample). The remainder was then 
centrifuged at 1200 g for 15 min and the sediment collected as the ‘particulate’ fraction. 
After separation, fractions were freeze-dried. 

The OM contents of the supplements were determined by drying at 80 O for 24 h followed 
by ashing overnight at 450”. OM digestibilities of supplements and of pasture samples, 
collected using oesophageally fistulated sheep, were determined in vitro by the method of 
Tilley & Terry (1963) as modified by Alexander & McGowan (1966). The rate of rumen 
degradation of DM and N in the supplements was estimated from samples incubated in 
nylon bags in the rumen of sheep similar to the grazing fistulates, using the procedures and 
methods described by Freer & Dove (1984). 

NH, concentrations in rumen fluid and abomasal samples were determined by steam 
distillation. N contents were determined by semi-microKjeldah1 procedure. The con- 
centrations of Ru and Cr in the infusate, digesta and faeces samples were determined by 
X-ray fluorescence spectrometry (Evans et al. 1977). However, some samples proved to 
have very low Cr levels. These were re-analysed by atomic absorption spectrometry using 
an Instrumentation Laboratory Video 22 spectrometer operating with a nitrous 
oxide-acetylene flame. 

Calculation of digesta flows 
The concentrations of Cr and Ru in the digesta and particulate phases were used to 
compute apparent flows of abomasal digesta (g/d) at each time of sampling, using the 
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‘double-marker’ procedures described by Faichney (1975 a, 1980). The mean daily flow of 
digesta was similarly estimated from the mean of the Ru and Cr concentrations in the 
separate samples collected on that day. As Faichney (1980) discussed, the double-marker 
procedures should, strictly, only be applied where steady-state conditions are known to 
exist. With non-steady state, the two digesta markers should be used independently 
(Faichney, 1980), though this involves the assumption of ideal marker behaviour. However, 
the results presented by Faichney (1980) also indicate that, even with a single, large meal 
per day, the differences in flow estimated by using the double-marker rather than the 
independent, two-marker procedure were ‘so small as to be of no practical significance’ 
(Faichney, 1980). Since our ewes grazed for extended periods, the error associated with our 
use of the double-marker procedure is likely to be even smaller. 

In addition to the previously described calculations, an assessment of the flow of the 
particulate phase of digesta was obtained by using the Ru concentrations in samples of that 
phase, with the assumption that Ru was behaving as an ideal marker of that phase. 

Statistical analyses 
Initially, all results were examined by analysis of variance, investigating the effects of 
sampling day, sampling time within sampling day, supplementation treatment and 
variation between animals. Significant between-sheep differences were detected in the 
absolute levels of digesta flow, so to facilitate comparisons, the seven estimates of apparent 
flow for each animal on each day were expressed as a percentage of the flow calculated from 
mean marker concentrations. The values so expressed were re-examined by analysis of 
variance within each treatment, assessing the separate effects of sheep, day, sampling time 
and their interactions. The effect of sampling time was further subdivided into four Fourier 
terms (sin ( t ) ,  cos ( t ) ,  sin (2 t ) ,  cos ( 2 t )  with time t expressed in hours) to examine the 
circadian pattern of digesta flows. These Fourier terms were not tested against the total 
error mean square, but against individual Fourier components of the error term, derived 
using the procedures of Rowel1 & Walters ( 1  976) for the analysis of contrasts over time. No 
between-sheep or between-day differences were detected in the analyses of variance and 
interactions were rarely significant, but there were significant effects of sampling time. In 
subsequent analyses, results for the 2 d for each sheep were combined. Similarly, no 
differences were detected between the responses on the two unsupplemented plots and, in 
the remainder of the present paper, values from these groups have been pooled. 

The possibility of circadian variation in digesta flow was then examined by Fourier 
analysis based on individual data points, using the OPTIMIZE routine in GENSTAT 
(1977). The model used was similar to that described by Corbett & Pickering (1983), i.e. 

Y = a + b sin ( t )  + c cos ( t )  + dsin (2 t )  + e cos (2 t ) ,  

where Y is apparent digesta flow in an animal, expressed in either absolute or percentage 
terms and t is the time expressed in hours converted to radians by multiplying by 27r/ 
24 (= 0.261 8), since preliminary analyses had indicated that the fundamental period of the 
fitted Fourier relations did not differ significantly from 24 h. 

The significance of the fitted Fourier relations, that is, the extent to which the pattern of 
digesta flow departed in cyclical fashion from the value calculated from mean marker 
concentrations, was assessed from the comparison of the mean squares for regression and 
for residuals. The significance of differences between fitted curves (e.g. between different 
supplement treatments) was assessed from the reduction in the residual mean square 
effected by fitting separate curves through the values, rather than a common curve. The 
significance of differences in the pattern of flow of components (i.e. DM, non-NH,-N 
(NAN)) within a phase (digesta, particulate phase) of a given treatment was examined by 
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calculating the arithmetic differences (at a given time) between the components in a phase 
(or the same component in different phases) and testing as described previously for 
circadian variation in the pattern of the differences. 

RESULTS 

Pastures and supplements 
Pasture availability in the unsupplemented plots was 1998 (SE 155.9) kg OM/ha, and in the 
plots where ewes received energy or protein supplements was 1958 (SE 133.4) and 2275 (SE 
155.8) kg OM/ha respectively. These levels of herbage mass would be unlikely to limit 
herbage intake in lactating ewes (Milne et at. 1981). The in vitro digestibility of OM in the 
oesophageal extrusa samples collected from the plots was 0.76 (SE 0.004), with no difference 
between plots. 

Faecal outputs were estimated from the Ru concentration in bulked faecal grab samples 
collected over the digesta sampling period. After adjustment for faeces arising from the 
supplement, pasture OM intakes in the unsupplemented and supplemented groups were 
1505 (SE 164.2) and 1515 (SE 258.8) g/d respectively. 

The energy supplement had an OM digestibility in vitro of 0.90 and 83.1 O/O of the DM 
of this supplement disappeared after 24 h of incubation in nylon bags in the rumen. The 
equivalent disappearance of DM in the treated soya-bean was 43.8 O/O but the disappearance 
from a 1 : 1 (w/w) pelleted mixture of the treated soya-bean meal and the sugar-beet pulp 
was 69.7 YO, which is 6.2 YO higher than the arithmetic average of the above figures. This 
apparent effect of pelleting on disappearance rate of formaldehyde-treated material has 
been observed previously (Freer & Dove, 1984). 

Though formaldehyde treatment clearly decreased rumen degradation of the soya-bean 
meal and thus of the protein supplement, the in vitro digestibility (0-90) was the same as 
that of the energy supplement. 

Ewes given the energy supplement consumed 506 (SE 9.4) g OM/d as supplement, while 
those given the protein supplement ate only 318 (SE 66.8) g OM/d as a supplement. This was 
in contrast to earlier periods in lactation in the same animals (Dove et al. 1985), in which 
supplement intakes were much the same. 

N H ,  concentrations and absolute flows of DM and NAN 
NH, concentrations in the rumen and in abomasal digesta were similar to those recorded 
earlier in lactation (Dove et al. 1985). The effect of supplement treatment was not 
significant and Fourier analysis failed to identify any significant circadian variation. 

Abomasal DM flows averaged 995g/d in unsupplemented ewes and 1294 g/d in 
supplemented ewes, while the corresponding flows of NAN were 42 and 65 g/d respectively. 
These are consistent with the flows reported for earlier stages of lactation (Dove et al. 1985). 
However, there was highly significant between-sheep variability in digesta flow ( P  < 0.00 l), 
presumably because of between-sheep variability in intake. When flow-rate values were re- 
expressed as percentages of flows calculated from mean marker concentrations, these 
between-sheep differences were reduced to non-significant levels. However, there were still 
significant treatment effects for digesta DM flow (P < 0.05) and NAN flow (P < 0.025) and 
significant differences between sampling times for the flow of DM ( P  < 0.025) and NAN 
(P < 0.025) in the particulate phase. 

Circadian variation in digesta flow 
The circadian variation in digesta flow became more evident after re-expression of flows as 
percentages of the daily flow calculated from mean marker concentrations. Coefficients of 

https://doi.org/10.1079/BJN
19880135  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1079/BJN19880135


658 H .  DOVE A N D  OTHERS 

Table 1. Coeficients of the Fourier equations describing circadian variation in the estimated 
flows of dry matter (DM),  total nitrogen and non-ammonia-N ( N A N )  in the abomasal 
contents of unsupplemented ewes grazing perennial ryegrass (Lolium perenne L.)  

(Flow estimated at time t (radians, GMT) as a percentage of daily flow estimated from 24 h mean marker 
concentrations, where flow = a+bsin(t)+ccos(t)+d sin(2r)+ecos(Zt)) 

~- ~ ~~ ~~ ~~ ~- 

Regression coefficients Statistical 
____ - Residual significance: __ 

Phase Component a b C d e SD P <  

Digesta DM 105 41 1.48 17-54 3.64 3 08 22.079 0.0 1 
N 103.64 3.31 I9 51 1.62 8.86 26721 0 02s 
NAN 103.02 459 18 12 3.29 758 27.126 0 025 

Particulate DM 109 50 -4.90 2695 -5.96 7.69 25.109 0.00 1 
N 11086 -7.61 28 73 -8.49 6.60 30.383 0.00 1 
NAN 109.82 -7.28 2809 -8.99 S 90 29.413 0001 

~ ~~~~~ 

~ _ _ _ _ _ ~ ~  __. - 

c 
( b) 0 

1601 

B o b , ,  , I , ,  , , , I ,  I ,  

07.00 11.00 15.00 19.00 23.00 03.00 07.00 11 

Time of day (hours, GMT) 

)O 

Fig. 1. Circadian variation in the flows of dry matter (0-0) and non-ammonia-nitrogen (0 - 0 )  in 
(a) whole digesta and (b) the particulate phase of digesta in unsupplemented ewes, grazing perennial 
ryegrass (Loliurn perenne L.), expressed in relation to the flow calculated from mean marker 
concentrations. Points represent means with their standard errors represented by vertical bars, across 
sheep and sampling days. The equations for the fitted Fourier curves are given in Table 1. 
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Table 2. Coeficients of the Fourier equations describing circadian variation in the estimated 
flowls of dry matter (DM) ,  total nitrogen and non-ammonia-N (NAN)  in the ahomasal 
contents of supplemented ewes grazing perennial ryegrass (Lolium perenne L.) 

(Flow estimated at time t (radians, GMT) as a percentage of daily flow estimated from 24 h mean marker 
concentrations, where flow = u+b sin ( I )+(  cos (t)+d sin (21+e cos (21)) 

Regression coefficients Statistical 
Phase .. ~~~~ Residual significance : 

Supplement component a b c d e SD P <  
. ~~ 

Energy Digesta 
DM 115.23 -16.76 22.89 -4."+ 20.61 32.670 005 
N 118.77 -20.18 29.90 -/38 19.90 30.950 0.005 
N A N  113.79 - 17.30 25.44 -9.24 16.95 27.659 0.0 1 

DM 106.53 -2.29 19.25 -050 6.26 18.745 0.00 5 
N 11007 -6.55 28.71 -3.00 8.55 23.224 0.00 1 
NAN 108.70 -7.17 28.30 -3.22 8.23 22.910 0.00 1 

DM 105.42 -14.85 12.61 -5.24 7.02 25.015 0.05 < P < 0.10 
N 104.38 -18.72 18.72 -8.46 5.09 23.892 0.0 1 
NAN 106.50 -26.12 16.25 -5.58 2.67 28.203 0.025 

DM 103.57 -3.81 7.17 -2.04 812 16.569 NS 
N 103.04 -4.83 9.42 -1.34 12.24 18-939 NS 
NAN 104.12 -4.75 9.91 -1.66 12.41 20.594 NS 

Particulate 

Protein Digesta 

Particulate 

__ 

NS, Not significant. 

the Fourier equations describing flows so expressed are shown in Table 1 for 
unsupplemented ewes. 

Marked and significant circadian variation was evident in the flows of DM, total N and 
NAN in both whole digesta and its particulate phase. The most obvious feature of our 
curves was a peak flow occurring at approximately 21.00-01.00 hours. In whole digesta, 
shown in Fig. 1 (a), the fitted curves for both DM and NAN flows ranged from 15 % below 
to 30 % above mean daily flow ; the patterns of DM or NAN flow did not differ significantly 
from each other. Similarly, the patterns of DM and NAN flow in the particulate phase did 
not differ significantly from each other (Fig. 1 (b))  and did not differ significantly from their 
counterparts in whole digesta. 

In ewes given the energy supplement, there was significant circadian variation in DM, 
total N and NAN flows in both whole digesta and in the particulate phase (Table 2). In 
ewes given the protein supplement, significant circadian variation was identified for the 
flows of DM, N and NAN in whole digesta. The Fourier curves fitted to flows in the 
particulate phase were of the same general shape as the other curves, but did not achieve 
overall statistical significance. As was the case with unsupplemented animals, the patterns of 
DM, total N or NAN flow within a given treatment and phase did not differ significantly 
from each other. 

The curve for digesta DM flow in ewes given the energy supplement (Fig. 2(a)) had a 
greater amplitude than those in the other treatments, but the general shape of these curves 
was similar and they were not statistically different. The curves for the two supplemented 
groups also were not statistically different. 

In the case of digesta NAN flow (Fig. 2(b)), the fitted curves for the supplemented groups 
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6 0 1 ,  , , , , , , , I , , , 
07.00 11.00 15.00 19.00 23.00 03.00 07.00 11.00 

Time of day (hours, GMT) 

Fig. 2. Circadian variation in the flows of (a) dry matter (DM) and (b) non-ammonia-nitrogen (NAN) 
in the whole digesta of ewes grazing perennial ryegrass (Loliurn perenne L.) and given either the energy 
supplement (600 g pelleted molassed sugar-beet pulp (MSBP)) (O--O) or protein supplement (600 g 
MSBP formaldehyde-treated soya-bean meal (1 : 1, w/w)) (0 .. .*). Points represent means, with their 
standards errors represented by vertical bars, across sheep and sampling days. The equations describing 
the fitted Fourier curves are given in Table 2. Curves for unsupplemented ewes (-) are shown for 
comparison. 

differed significantly from that for unsupplemented animals (P < 0.05), but not from each 
other. 

The curves for the flow of DM in the particulate phase (Fig. 3(a) )  were more similar in 
shape for the three treatment groups than the curves for whole digesta and were not 
significantly different. Curves describing the flow of NAN in the particulate pahse did not 
differ significantly. 

To examine whether there was circadian variation in the disposition of flow between the 
liquid and particulate phases of digesta, Fourier curves were then fitted to values for the 
calculated proportion of DM or NAN flowing in the particulate phase. These are shown 
in Table 3 and in Fig. 4 respectively for each of the three treatment groups. In 
unsupplemented animals, it is clear that the proportion of DM or NAN flowing in the 
particulate phase was relatively constant throughout the 24 h, at approximately 60 %. In 
the case of DM flow, the fitted curves suggest an increase in proportion of flow in the 
particulate phase in the period soon after supplementation in ewes given the protein 
supplement, followed by a return to the same level as the unsupplemented animals. While 
this is in accord with a possible interpretation of the curves in Figs. 2(a)  and 3(a),  it should 
be stressed that the curves in Fig. 4(a) were not significantly different from each other. 

However, in the case of the proportion of NAN flowing in the particulate phase, the 
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2 60 I I I 1 I I 

60 I I I I 

Time of day (hours, GMT) 

Fig. 3. Circadian variation in the flows of (a) dry matter (DM) and (b) non-ammonia-nitrogen (NAN) 
in the particulate phase of digesta in ewes grazing perennial ryegrass (Lolium perenne L.) and given either 
the energy supplement (600 g pelleted molassed sugar-beet pulp (MSBP)) (O--O) or protein 
supplement (600 g MSBP-formaldehyde-treated soya-bean meal ( I  : I, w/w)) (0. .  .a). Points represent 
means, with their standard errors represented by vertical bars, across sheep and sampling days. The 
equations describing the fitted Fourier curves are given in Table 2. Curves for unsupplemented ewes (-) 
are shown for comparison. 

Table 3. Coeficients of the Fourier equations describing the circadian variation in the 
estimatedproportion of the dry matter (DM) and non-ammonia-nitrogen ( N A N j o w i n g  in the 
particulate phase of abomasal digesta in supplemented and unsupplemented ewes grazing 
perennial rygrass (Lolium perenne L.) 

(Flow estimated at time t (radians, GMT) as a percentage of daily flow estimated from 24 h mean marker 
concentrations, where flow = a + b sin ( t )  + ccos ( t )  + dsin ( 2 4  + e cos (2t)) 

-______-_ ______ 

Regression coefficients 
Residual Statistical 

Supplement Component a b c d e SD significance 

None DM 60.10 0.89 -2.16 -0.45 -1.79 15.100 NS 
NAN 62.04 -091 -076 -1.25 -0.77 15.059 NS 

Energy DM 65.21 4.49 2.45 -3.12 -5.39 13.671 NS 

Protein DM 63.62 2.81 -3.78 0.38 3.23 9.531 NS 
NAN 67.31 0.06 8.17 -3.60 -8.30 11.179 P < 0.05 

NAN 61.38 3.50 -6.26 -1.04 5.84 10.039 0.05 < P < 0.10 
-~ __._____ 

NS, Not significant. 
24-2 
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(a )  

07.00 11.00 15.00 19.00 23.00 03.00 07.00 11.00 

Time of day (hours, GMT) 

Fig. 4. Circadian variation in the proportion of (u) dry matter (DM) and (b) non-ammonia-nitrogen 
(NAN) flowing in the particulate phase of digesta in supplemented and unsupplemented ewes grazing 
perennial ryegrass (Lolium perenne L.). The equations for the fitted Fourier curves are given in Table 3. 
(0-O), No supplement; (.--a), energy supplement (600 g pelleted molassed sugar-beet pulp 
(MSBP)), (A,. . . A), protein supplement (600 g MSBP-formaldehyde-treated soya-bean meal (1 : 1, w/ 
w)). Points represent means, with their standard errors represented by vertical bars. 

curves fitted to values for ewes given the protein or energy supplements differed from each 
other (P < 0.005), while the difference between these curves and those for unsupplemented 
animals approached significance (0.05 < P < 0.10). The curve for ewes fed on the protein 
supplement shows a clear increase in the proportion of NAN flowing in the particulate 
phase in the period soon after supplementation, followed by a gradual return to values 
equivalent to unsupplemented animals. In ewes given the energy supplement, the situation 
is less clear-cut but suggests a decrease in the proportion of NAN flow in the particulate 
pahse in the period following supplementation. 

DISCUSSION 

Circadian variation in digesta $ow in unsupplemented animals 
Circadian variation in digesta flow in grazing castrate male sheep has been demonstrated 
(Corbett & Pickering, 1983) and shown not to be an artifact of the sampling procedures. 
We observed similar patterns in grazing ewes in late lactation (Table 1). The residual 
standard deviations in Table 1 are, in general, about twice those quoted by Corbett & 
Pickering (1983), but these authors fitted their curves to values averaged across sheep at 
each sampling time. The equations in Table 1 were derived using all individual values. Re- 
calculation of our Fourier curves using treatment means resulted in residual standard 
deviations comparable with those of Corbett & Pickering (1983). We also suggest that our 
observed circadian patterns are not marker artifacts, since preliminary examination of our 
values showed no circadian variation in the ratio of the two digesta flow markers in our 
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Fig. 5. Comparison of the Fourier curves describing the circadian variation in the flows of (a) dry matter 
(DM) and (b) total nitrogen in whole digesta and (c) DM and (d) total N in the particulate phase of 
digesta in the unsupplemented ewes grazing perennial ryegrass ( L o h m  perenne L.) in the present study 
(-), and curves of Corbett & Pickering (1983) (---) for animals grazing perennial ryegrass in their Expt 
10. The curves of Corbett & Pickering (1983) refer to organic matter (OM) rather than DM. All curves 
are expressed in relation to the local standard time (present study, GMT ; previous study, Australian 
Eastern Standard Time). t, Times of Morning (MCT) and Evening Civil Twilight (ECT) (Edinburgh 
55" 5 6  N, 3 August 03.19, 20.52 hours and Armidale 30" 3 6  S ,  6 December 04.24, 19.19 hours 
respectively). 

samples. Further support for this suggestion comes from the observations of similar 
circadian variation in digesta flow, based on direct measurement, in housed sheep (Harris & 
Phillipson, 1962) and cattle (Wanderley et al. 1985) fed twice daily, a situation which 
approximates grazing in long daylengths (Lynch & Hedges, 1979; Corbett & Pickering, 
1983). 

Despite the differences in breed, sex, physiological state, pasture environment and 
daylength, the form of the fitted Fourier curves is remarkably similar to those of Corbett 
& Pickering (1983), as can be seen in Fig. 5 for digesta components and particulate-phase 
components. The curves from Corbett & Pickering (1983) have been recalculated from the 
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Fig. 6. Re-expression of the Fourier curves shown in Fig. 5 after adjustment to the common time of 
Evening Civil Twilight at  Armidale (30" 36' S) on 6 December. (-), Present study; (----), Corbett & 
Pickering (1983). (a) Dry matter (DM) and (b) total nitrogen in whole digesta and (c) DM and (d) total 
N in the particulate phase of digesta in unsupplemented sheep grazing perennial ryegrass (Lolium perenne 
L.) in the present study, and for animals grazing perennial ryegrass in Expt 10 of Corbett & Pickering 
(1983). The curves of Corbett & Pickering (1983) refer to organic matter (OM) rather than DM. 

original values of their Expt 10, in which animals grazed a pasture of predominantly 
perennial ryegrass similar to that grazed by our animals. 

In both studies, digesta DM or OM flows were at their lowest between dawn and late 
afternoon. Peak flow, which in both studies was some 30 YO greater than the flow calculated 
from mean marker concentrations, occurred between 22.00 and 02.00 hours. The results 
presented by Langlands (1965) indicated a rise in the N content of the diet selected by 
grazing sheep as the day progressed. This was not measured directly in our study, but 
there were no temporal trends in the N or NAN content of abomasal digesta in 
unsupplemented ewes so that the pattern of flow of digesta NAN was essentially the same 
as digesta DM (Fig. 5(b)) and again, similar to that reported by Corbett & Pickering 
(1983). The amplitude of the circadian variation in the particulate phase was greater in both 
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Table 4. Influence of method of expression of time-base on residual mean squares of the 
j t t e d  Fourier curves 

Residual mean square (YO change) 

Phase Component Standard timet Common ECTt Common MCTt 

Digesta DM or OMS 13.46 67.81 (-7.7) 86.74 (+ 18.1) 
Total nitrogen 83.12 52.32 (-37.1) 123.24 (f48.3) 

Particulate DM or OMS 80.65 99.08 (+ 22.9) 99.08 (+ 22.9) 
Total nitrogen 103.84 136.01 (+31.0) 145.46 (+40.1) 

~~ 

DM, dry matter; OM, organic matter. 
Curves fitted to the appropriate combined values of the present study and those of Expt 10 of Corbett & 

Pickering (1983). 
t Standard time, GMT (present study) or Australian Eastern Standard time (Corbett & Pickering, 1983); 

Common ECT, corrected to common Evening Civil Twilight at Armidale (30" 36's) on 6 December (19.19 
hours); Common MCT, corrected to common Morning Civil Twilight at Armidale (30" 36's) on 6 December 
(04.24 hours). 

$ DM in present values; OM in values from Corbett & Pickering (1983). 

studies, though the timing of peaks and troughs follows that found for digesta and was not 
statistically different. 

Lynch & Hedges (1979) noted that grazing behaviour could be related to the time of 
Morning Civil Twilight (MCT) and Evening Civil Twilight (ECT). This led Corbett & 
Pickering (1983) to compare patterns of digesta flow, measured at different times of the 
year, by correcting the time-bases to a common MCT or ECT. Correction to a common 
MCT introduced significant variation between fitted curves, whereas those corrected to a 
common ECT were not significantly different. 

In Fig. 6 the Fourier curves in Fig. 5 are re-expressed in relation to a common ECT (that 
for 6 December; Armidale 33" 36's). For digesta flows, this results in even closer 
correspondence between the studies than was obvious in Fig. 5. The effect with flows in the 
particulate phase is less clear-cut. A more quantitative approach was attempted by 
comparing the separate curves (our Fourier curves, fitted to values averaged across sheep 
within sampling time, and curves using corresponding values from Corbett & Pickering 
(1983)) with a common curve through the combined values. This exercise was conducted 
with time expressed either as local standard time, or in relation to the common MCT or 
ECT prevailing at  Armidale, Australia, as described previously. With Fourier curves 
related to standard time, our curves did not differ significantly from those of the earlier 
study, i.e. the fitting of a common curve did not significantly increase the residual mean 
square after regression. This confirms the impression created by Fig. 5 that the responses 
in the two studies were similar. In Table 4, we present the residual mean squares for the 
common fitted curves for each time-base. With whole digesta, adjustment of the values to 
a common ECT effected a substantial reduction in the residual mean square, particularly 
for N flow. This in turn confirms the impression gained from Fig. 6. By constrast, 
adjustment to a common MCT markedly increased the residual mean square. These trends 
are very similar to those noted by Corbett & Pickering (1983) and lend strong support to 
the idea that the observed circadian patterns are real phenomena. 

When similar adjustments were made for the particulate phase, marked increases in 
residual mean squares were noted for either Civial Twilight correction. However these 
changes in residual mean squares, while large, were not statistically significant. 

Circadian patterns in the pool size of, and flow through, digesta compartments are 
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presumably related to the patterns of grazing, drinking and rumination, and the effect that 
these have on rumen fill and outflow. Corbett & Pickering (1983) observed that the 
circadian patterns of rumen fill and abomasal digesta flow were similar, and presented 
evidence that these patterns were more influenced by rumination pattern than by the timing 
of grazing. However, recent direct measurements of the circadian variation in rumen fill 
(Thomson et al. 1985) suggest that the rate of intake may also be a contributor. 

Hence, while the patterns of abomasal digesta flow in Figs. 5 and 6 are consistent with 
a range of observations of grazing and rumination activity, the underlying mechanisms are 
a matter of speculation until simultaneous measurements are made of these activities and 
digesta pools and flows. 

InJuence of supplementary feeding and s u ~ p i ~ m e ~ t  type on circadian variation 
The feeding of supplements influenced the absolute flows of DM and NAN, both in the 
present study and earlier in lactation (Dove et al. 1985). Apart from this effect, the 
supplements could be expected to perturb the ‘normal’ circadian pattern of digesta flow 
either directly, or indirectly through an effect on the pattern of grazing or drinking activity 
or pattern of rumination. The findings presented in Table 2 and Fig. 2 indicate that, in 
general, the circadian variation in flow of whole digesta was similar to that found in 
unsupplemented animals, suggesting that this further departure from steady-state 
conditions had not prevented a valid estimation of digesta flow. Though the curves for 
digesta DM flow in supplemented animals were not significantly different from those for 
unsupplemented animals, their peak did appear to be reached earlier and, in the case of the 
energy supplement, was greater in amplitude and preceded by a subsidiary peak in the early 
afternoon. These differences were even more marked in digesta NAN flow, in which case 
the curves for supplemented animals were significantly different from those for 
unsupplemented animals. This has repercussions for sampling schedules (see p. 667). 
Curves describing the flow in the particulate phase in supplemented animals were more 
similar to those for unsupplemented animals than the equivalent whole-digesta curves, 
though a marked subsidiary peak was apparent in NAN flow in the particulate phase of 
digesta for ewes given the protein supplement. 

The mechanisms by which these supplements exert any influence on circadian patterns 
of digesta flow await elucidation. However, the results in Fig. 4 suggest that, in the period 
soon after supplementation (09.00-14.00 hours), there was a decreased flow of material in 
the particulate phase of digesta or, by inference, an increased flow in the liquid phase. This 
would be consistent with the known high level of soluble carbohydrates in molassed-sugar- 
beet pulp (Ministry of Agriculture, Fisheries and Food, 1975) and its rapid digestion rate 
in the rumen. 

By contrast, the protein supplement caused a significant increase in the flow of DM and 
NAN in the particulate phase, in the period soon after supplementation. The results of our 
nylon-bag assay showed that the formaldehyde treatment of the soya-bean meal had 
greatly reduced its rate of rumen digestion, without influencing its overall digestibility. 
Faichney (1975 b) demonstrated that, relative to an untreated diet, formaldehyde treatment 
of the same diet reduced the mean retention time of both soluble and particulate matter in 
the rumen, and suggested that this was due to increased propulsive activity in the rumen. 
A similar mechanism operating in the present study would be expected to result in increased 
flow in the particulate phase in the period following the feeding of the protein supplement. 
Certainly, granules indentifiable as crushed soya-bean meal were frequently seen in digesta 
samples collected in the afternoon. 

In interpreting the effect of supplements on digesta flow, possible indirect effects must 
also be considered. Apart from unknown effects on water intake, supplements might 
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Table 5. EstimatedJlows of dry matter (DM) and non-ammonia-nitrogen (NAN) in whole 
digesta and particulate phase as a consequence of intermittent sampling 

(Values are calculated using the expressions in Tables 1 and 2 and are expressed as percentages of the flow 
calculated from daily mean marker concentrations. The assumed sampling schedule was 09.00, 13.00, 
17.00 and 09.00 hours) 

Supplement 

Phase Component None Energy Protein 
~- ~- 

Digesta DM 93.0 100.5 97.7 
NAN 90.5 98.5 95.9 

Particulate DM 93.1 93.9 99.2 
NAN 93 2 90.5 97.8 

increase or decrease the time-period spent grazing (Tribe, 1950; Holder, 1962). We did not 
measure grazing time, but in lactating Border Leicester x Merino ewes, consumption of 
500 g sunflower meal/d did not reduce grazing time compared with unsupplemented 
controls, though, as in many studies, it reduced pasture intake (Dove et al. 19843; H. Dove, 
M. Freer and A. R. Egan, unpublished results). The relative effects of the direct and 
indirect influences of supplements on digesta flow cannot be defined from our study. This, 
coupled with the large between-animal variability in supplement intake in group-fed 
animals (Dove, 1984; Dove et al. 19843), implies that caution should be exercised in 
extrapolating our measured responses to supplementation in other situations. 

Infruence of circadian variation on the accuracy of digesta sampling 
The existence of a circadian pattern of digesta flow means that it would be possible, through 
an injudicious choice of sampling times, to obtain a digesta sample in which the 
concentrations of the digesta markers did not accurately reflect the true daily flow of 
digesta. In our studies in the same animals earlier in lactation (Dove et al. 1985), samples 
of abomasal digesta were collected at 09.00, 13.00, 17.00 and 09.00 hours the following day. 
From the equations given in Tables 1 and 2, it is possible to calculate the consequences of 
employing that same sampling schedule in the present study. These results, expressed as 
percentages of the flow calculated from mean marker concentrations, are given in Table 
5.  

In unsupplemented animals, the use of the above sampling schedule would have resulted 
in underestimates of 7-10 YO in the flow of DM or NAN in whole digesta or the particulate 
phase. In animals given the energy supplement no underestimate of digesta flows would 
have occurred, though flows in the particulate phase would again have been underestimated 
by 7-10Y0. In ewes given the protein supplement only small underestimates would have 
occurred. 

These considerations suggest that steps should be taken to ensure that a chosen sampling 
schedule does truly accommodate the pattern of flow, though it is encouraging that the 
present results suggest that a failure to do so might not result in large errors. Corbett & 
Pickering (1983) suggested that the results from an infrequent sampling schedule could be 
corrected using Fourier analysis, but this requires that the circadian variation has already 
been measured and described. An alternative, but probably no less laborious procedure is 
that used by Faichney ( 1  980) in which samples are taken over several days in such a way 
as to sample a large number of putative periods within the 24 h total. 
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