REAL ANALYTIC FUNGTIONS ON PRODUCT SPACES AND SEPARATE ANALYTIGITY

FELIX E. BROWDER

Let f be a function on the product space $V \times W$, where V and W are analytic manifolds, both either real or complex. The function f is said to be analytic (or bi-analytic) on $V \times W$ if it is analytic in the analytic structure induced on $V \times W$ by the corresponding structures on V and W. The function f is said to be separately analytic on $V \times W$ if, for each x in V, the function $f(x, \cdot)$ is analytic on W while, for each y in W, the function $f(\cdot, y)$ is analytic on V. In the case of complex analytic manifolds, the classical theorem of Hartogs (3, chapter vii) states that the two notions of analyticity and separate analyticity are equivalent. For real analytic manifolds, it is known that such an equivalence does not hold, even if one adds the additional hypothesis that f is infinitely differentiable on $V \times W$.

It is the purpose of the present paper to establish a positive criterion for bi-analyticity in terms of the analytic properties of f in its separate variables. There are several equivalent forms in which we may state this criterion. The most direct of these is the following:
(A) Consider V and W as imbedded in \tilde{V} and \tilde{W}, their complexifications which are complex analytic manifolds.* Let K_{1} and K_{2} be compact subsets of V and W, respectively. Then there exists a neighbourhood U_{1} of K_{1} in \widetilde{V} and a neighbourhood U_{2} of K_{2} in \tilde{W} and a constant M (depending on K_{1} and K_{2}) such that for each x in K_{1}, the function $f(x, \cdot)$ on K_{2} may be extended to a complex analytic function $f(x, z)$ on U_{2} for which $|f(x, z)| \leqslant M, z \in U_{2}$, while similarly for each y in K_{2}, the function $f(\cdot, y)$ on K_{1} may be extended to a complex analytic function $f(z, y)$ for z in U_{1} for which $|f(z, y)| \leqslant M, z \in U_{1}$.

Our study of this problem arose from a question raised by de Barros-Neto in connection with his investigation (1) of the structure of distribution kernels (in the sense of Schwartz) which are analytically very regular; the application of our result (Theorem 1 below) to such kernels is carried out in a joint paper by Barros and the author which appears immediately after the present paper in the same issue of this journal.

The criterion (A) is of local character, as follows easily from the elementary properties of holomorphic functions. We therefore may give another equivalent form if we assume that V and W each lie in a single co-ordinate patch, and therefore without loss of generality, that V and W are E^{n} and $E^{n^{\prime}}$, respectively.

[^0](B) There exists a constant C_{0} such that for all x in V,
$$
\left|\left(\frac{\partial}{\partial y_{1}}\right)^{\alpha_{1}}\left(\frac{\partial}{\partial y_{2}}\right)^{\alpha_{2}} \ldots\left(\frac{\partial}{\partial y_{n}}\right)^{\alpha_{n}} f(x, y)\right| \leqslant C_{0}^{\left(\Sigma \alpha_{j}\right)} \cdot\left(\sum \alpha_{j}\right)!
$$
and for all y in W,
$$
\left|\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}}\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{2}} \ldots\left(\frac{\partial}{\partial x_{2}}\right)^{\alpha_{n}} f(x, y)\right| \leqslant C_{0}^{\left(\Sigma \alpha_{j}\right)} \cdot\left(\sum \alpha_{j}\right)!
$$

Theorem 1. Let $f(x, y)$ be a Borel measurable function on the product $V \times W$ of two real analytical manifolds V and W such that f is separately analytic on $V \times W$ and satisfies condition (A) above. Then f is analytic on $V \times W$.

Proof of Theorem 1. Since analyticity is a local property, we may assume without loss of generality that V and W are open subsets of Euclidean spaces. Introducing dummy variables into the space of lower dimension, we may suppose that both V and W lie in E^{n} for some integer n, and that they both contain the origin O. We need only prove that f is analytic at (O, O).

We introduce the usual notation for partial derivatives, setting

$$
D_{j}=i^{-1} \frac{\partial}{\partial x_{j}}
$$

for $1 \leqslant j \leqslant n$,

$$
D^{\alpha}=\prod_{j=1}^{n} D_{j}^{\alpha_{j}}
$$

for any n-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of non-negative integers,

$$
\alpha=\sum_{j=1}^{n} \alpha_{j}, \alpha!=\prod_{j=1}^{n}\left(\alpha_{j}\right)!
$$

If h is a function of two variables x and y in E^{n}, we indicate derivatives with respect to the x-variables by $D_{x}{ }^{\alpha}$ and derivatives with respect to the y-variables by $D_{y}{ }^{\beta}$.

If condition (A) holds, it follows immediately from the Cauchy integral formula for polycylinders that on some neighbourhood of (O, O) we have inequalities similar to those of condition (B), that is,
(C) There exists a constant c_{0} such that for all α and β,

$$
\begin{aligned}
& \left|D_{x}^{\alpha} f(x ; y)\right| \leqslant c_{0}^{|\alpha|} \alpha!\leqslant C_{0}^{|\alpha|}|\alpha|! \\
& \left|D_{y}^{\beta} f(x, y)\right| \leqslant c_{0}^{|\beta|} \beta!\leqslant C_{0}^{|\bar{\beta}|}|\beta|!
\end{aligned}
$$

Since f is Borel measurable on $V \times W$ and uniformly bounded on the neighbourhood N for which the bounds of (C) hold, it follows easily that its distribution derivatives $D_{x}{ }^{\alpha} f$ and $D_{y}{ }^{\beta} f$ coincide with the derivatives of f taken as a function of x with y held fixed and of y with x held fixed. It follows then from the bounds of condition (C) that on a fixed neighbourhood of
(O, O), all the derivatives $D_{x}{ }^{\alpha} f$ and $D_{y}{ }^{\beta} f$ are bounded functions. In particular, we know that $\left\{\left(\Delta_{x}\right)^{r}+\left(\Delta_{y}\right)^{r}\right\} f$ is bounded for every positive integer r, ($\left.\Delta=-\sum_{j} D_{j}{ }^{2}\right)$. It follows from the standard regularity theorems for solutions of elliptic partial differential equations that $D_{x}{ }^{\alpha} D_{y}{ }^{\beta} f$ lies in $L_{\text {loc }}{ }^{2}(N)$ for every α and β, and hence by the Sobolev Imbedding Theorem (Schwartz (4), vol. 2) f is infinitely differentiable in N.

We now remark that to prove that f is analytic at (O, O), it suffices to show the following:
(C^{\prime}) There exists a constant c_{1} such that for all α and β,

$$
\left|\left(D_{x}^{\alpha} D_{y}^{\beta} f\right)(O, O)\right| \leqslant c_{1}^{|\alpha|+|\beta|}(|\alpha|+|\beta|)!
$$

Indeed, suppose that $\left(\mathrm{C}^{\prime}\right)$ holds. Then we may form the power series

$$
f_{1}(x, y)=\sum_{\alpha, \beta}(\alpha!)^{-1}(\beta!)^{-1}\left(D_{x}^{\alpha} D_{y}^{\beta} f\right)(O, O) x^{\alpha} y^{\beta},
$$

where

$$
x^{\alpha}=\prod_{j=1}^{n} x^{\alpha_{j}}, y^{\beta}=\prod_{j=1}^{n} y^{\beta_{j}} .
$$

If the inequalities $\left(\mathrm{C}^{\prime}\right)$ hold, the power series for f_{1} may be majorized by the series

$$
\sum_{\alpha, \beta}(\alpha!)^{-1}(\beta!)^{-1} c_{1}^{|\alpha|+|\beta|}(|\alpha|+|\beta|)!|x|^{\mid \alpha}|y|^{\beta},
$$

where

$$
|x|^{\alpha}=\prod_{j}\left|x_{j}\right|^{\alpha_{j}} .
$$

The majorizing series is the expansion of the function

$$
\left(1-\sum_{j} c_{1}|x|_{j}+c_{1}|y|_{j}\right)^{-1}
$$

which converges for x and y sufficiently small. It follows that $f_{1}(x, y)$ is an analytic function of (x, y) on a suitably small neighbourhood of the origin (O, O). On the other hand, for every α and β,

$$
\left(D_{x}^{\alpha} D_{y}^{\beta} f\right)(O, O)=\left(D_{x}^{\alpha} D_{y}^{\beta} f_{1}\right)(O, O)
$$

The functions $f(\cdot, y)$ and $f_{1}(\cdot, y)$ are both analytic on a neighbourhood of O and have the same x-derivatives at O. Hence $f(x, O)=f_{1}(x, O)$ for $|x| \leqslant d_{0}$. Similarly, $D_{y}{ }^{\beta} f(x, O)=\left(D_{y}{ }^{\beta} f_{1}\right)(x, O)$ for $|x| \leqslant d_{0}$. Finally, for x held fixed, $f(x, \cdot)$ and $f_{1}(x, \cdot)$ are both analytic in a neighbourhood of the origin and have the same derivatives at $y=O$. Hence $f(x, y)=f_{1}(x, y)$. for all (x, y) near (O, O). Thus in order to show that f is analytic near (O, O) it clearly suffices to prove the inequalities $\left(\mathrm{C}^{\prime}\right)$ for some value of the constant c_{1}.

To carry through the latter proof, we may assume after making a linear change of variables (which will only affect the constant c_{0} in condition (C)) that the inequalities of (C) hold on the cube

$$
R=\left\{\left|x_{j}\right| \leqslant 1, \quad\left|y_{j}\right| \leqslant 1, \quad 1 \leqslant j \leqslant n\right\} .
$$

We define the function of a single real variable

$$
\zeta_{0}(s)=\left\{\begin{array}{l}
0, \quad|s| \geqslant 1 \\
1, \quad|s| \leqslant \frac{1}{2} \\
2-2 s, \quad \frac{1}{2} \leqslant|s| \leqslant 1
\end{array}\right.
$$

The function ζ_{0} is clearly continuous and piecewise continuously differentiable. Using ζ_{0}, we define the auxiliary function $\zeta(x, y)$ on $E^{n} \times E^{n}$ by

$$
\zeta(x, y)=\prod_{j=1}^{n} \zeta_{0}\left(x_{j}\right) \cdot \prod_{j=1}^{n} \zeta_{0}\left(y_{j}\right)
$$

For each positive integer r, we let

$$
\zeta_{r}(x, y)=(\zeta(x, y))^{r+2}
$$

For each r, the function $\zeta_{\tau}(x, y)$ is $(r+1)$-times continuously differentiable on $E^{n} \times E^{n}$ and has its support contained in R.

As another piece of auxiliary equipment, we consider for each sufficiently large integer m, the partial differential operator with constant coefficients on $E^{n} \times E^{n}$ defined by

$$
A_{2 m}=\left(-\Delta_{x}\right)^{m}+\left(-\Delta_{y}\right)^{m}+1
$$

We construct an elementary solution for $A_{2 m}$ on $E^{n} \times E^{n}$ by a Fourier transform. Let

$$
\langle x, \xi\rangle=\sum_{j} x_{j} \xi_{j}
$$

for x and ξ in E^{n}. Then we define the function $e_{2 m}(x, y)$ on $E^{n} \times E^{n}$ for $2 m>2 n$ by

$$
\begin{equation*}
e_{2 m}(x, y)=\int_{E^{n}} \int_{E^{n}} \exp \left(i\langle x, \xi\rangle+i\left\langle y, \xi^{\prime}\right\rangle\right)\left(|\xi|^{2 m}+\left|\xi^{\prime}\right|^{2 m}+1\right)^{-1} d \xi d \xi^{\prime} \tag{1}
\end{equation*}
$$

The integral converges uniformly on $E^{n} \times E^{n}$. We verify immediately by taking Fourier transforms (in the sense of tempered distributions of Schwartz (4)) that for every function v in $C^{2 m}\left(E^{n} \times E^{n}\right)$ with support in R, we have
(2) $\left.v(x, y)=\int_{R} e_{2 m}\left(x-x_{1}, y-y_{1}\right)\left(A_{2 m} v\right)\left(x_{1}, y_{1}\right) d x_{1} d y_{1} ;((x, y) \in R)\right)$.

Let α and β be two indices of differentiation with $|\alpha|+|\beta|<2 m-2 n$. We verify by inspection that we can differentiate the integral defining $e_{2 m}$ in equation (1), $(|\alpha|+|\beta|)$-times obtaining

$$
\begin{align*}
&\left(D_{x}^{\alpha} D_{y}^{\beta} e_{2 m}\right)(x, y)=\int_{E^{n}} \int_{E^{n}} \xi^{\alpha}\left(\xi^{\prime}\right)^{\beta} \exp \left(i\langle x, \xi\rangle+i\left\langle y, \xi^{\prime}\right\rangle\right)\left(|\xi|^{2 m}\right. \tag{3}\\
&\left.+\left|\xi^{\prime}\right|^{2 m}+1\right)^{-1} d \xi d \xi^{\prime}
\end{align*}
$$

It follows from (3) that $\left(D_{x}{ }^{\alpha} D_{y}{ }^{\beta} e_{2 m}\right)$ is continuous and bounded for $|\alpha|+|\beta|$ $<2 m-2 n$, with
(4) $\left|D_{x}^{\alpha} D_{y}^{\beta} e_{2 m}(x, y)\right| \leqslant \int_{E^{n}} \int_{E^{n}}|\xi|^{|\alpha|}\left|\xi^{\prime}\right|^{|\beta|}\left(|\xi|^{2 m}+\left|\xi^{\prime}\right|^{2 m}+1\right)^{-1} d \xi d \xi^{\prime}=K(m, n)$ where, by the inequality

$$
\begin{equation*}
|\xi|^{|\alpha|}\left|\xi^{\prime}\right|^{|\beta|} \leqslant \frac{\alpha}{\alpha+\beta}|\xi|^{|\alpha|+|\beta|}+\frac{\beta}{\alpha+\beta}\left|\xi^{\prime}\right|^{|\alpha|+|\beta|}, \tag{5}
\end{equation*}
$$

we know that
(6) $K(m, n) \leqslant \int_{E^{n}} \int_{E^{n}}\left(|\xi|^{2 m-2 n-1}+\left|\xi^{\prime}\right|^{2 m-2 n-1}+1\right)\left(|\xi|^{2 m}+\left|\xi^{\prime}\right|^{2 m}+1\right)^{-1} d \xi d \xi^{\prime}$, and the integral on the right side of the inequality (6) is bounded by

$$
\begin{equation*}
5 \int_{E^{n}} \int_{E^{n}}\left(|\xi|^{2 n+1}+\left|\xi^{\prime}\right|^{2 n+1}+1\right)^{-1} d \xi d \xi^{\prime} \tag{7}
\end{equation*}
$$

which is independent of m. Thus we have for all (x, y) in $E^{n} \times E^{n}$,

$$
\begin{equation*}
\left|D_{x}^{\alpha} D_{y}^{\beta} e_{2 m}(x, y)\right| \leqslant K(n) \tag{8}
\end{equation*}
$$

for $|\alpha|+|\beta|<2 m-2 n$.
Differentiating the equation (2) under the integral sign $|\alpha|+|\beta|$ times, we obtain for $|\alpha|+|\beta|<2 m-2 n$,

$$
\begin{equation*}
D_{x}^{\alpha} D_{y}^{\beta} v(x, y)=\int_{R}\left(D_{x}^{\alpha} D_{y}^{\beta} e_{2 m}\right)\left(x-x_{1}, y-y_{1}\right) A_{2 m} v\left(x_{1}, y_{1}\right) d x_{1} d y_{1} \tag{9}
\end{equation*}
$$

which yields, since the measure of R is exactly 1 , the inequality

$$
\begin{equation*}
\left|D_{x}^{\alpha} D_{y v}^{\beta} v(x, y)\right| \leqslant K(n) \sup _{\left(x_{1}, y_{1}\right) \in R}\left|A_{2_{m} v} v\left(x_{1}, y_{1}\right)\right| \tag{10}
\end{equation*}
$$

for (x, y) in R and $|\alpha|+|\beta|<2 m-2 n$.
We apply the inequality (10) to the given function $f(x, y)$ by setting

$$
v(x, y)=f(x, y) \zeta_{2 m}(x, y)
$$

We put $(x, y)=(O, O)$ on the left-hand side of the inequality (10) and obtain, since $\zeta_{2 m}$ is identically equal to 1 on a neighbourhood of (O, O), that

$$
\begin{equation*}
\left|\left(D_{x}^{\alpha} D_{y}^{\beta} f\right)(O, O)\right| \leqslant K(n) \sup _{(x, y) \in R}\left|A_{2 m}\left(\zeta_{2 m}(x, y) . f(x, y)\right)\right| . \tag{11}
\end{equation*}
$$

Let us examine the term on the right of the last inequality. It follows from the definition of $A_{2 m}$ that

$$
\begin{aligned}
& A_{2 m}\left(\zeta_{2 m} \mathrm{f}\right)=\left\{\left(-\Delta_{x}\right)^{m}+\left(-\Delta_{y}\right)^{m}+1\right\}\left(\zeta_{2 m} f\right)=\zeta_{2 m} \\
&\left\{\left(-\Delta_{x}\right)^{m}+\left(-\Delta_{y}\right)^{m}+1\right\} f+R_{1}
\end{aligned}
$$

where the remainder term R_{1} is of the form

$$
\begin{equation*}
R_{1}=\sum_{\substack{\alpha, \beta \\|\alpha|+|\beta|=2 m,|\alpha|>0}} C_{\alpha \beta} D_{x}^{\alpha}\left(\zeta_{2 m}\right) D_{x}^{\beta} f+\sum_{|\alpha|+|\beta|=2 m,|\alpha|>0} C_{\alpha \beta} D_{y}^{\alpha}\left(\zeta_{2 m}\right) D_{y}^{\beta} f \tag{12}
\end{equation*}
$$

The derivatives of $\zeta_{2 m}$ are considered only on the set where $\zeta_{2 m}$ is equal neither to 0 nor to 1 . On this set $\zeta_{2 m}$ is a polynomial of degree $(2 m+2)$ in each variable. It follows from an easy application of a well-known theorem of Bernstein that for all (x, y) in $R,|\alpha|>0$,

$$
\begin{equation*}
\left|\left(D_{x}^{\alpha} \zeta_{2 m}\right)(x, y)\right| \leqslant(2 m+2)^{|\alpha|} 2^{|\alpha|} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left(D_{y}^{\alpha} \zeta_{2 m}\right)(x, y)\right| \leqslant(2 m+2)^{|\alpha|} 2^{|\alpha|} \tag{14}
\end{equation*}
$$

We now estimate R_{1}. The expansion of $\left(-\Delta_{x}\right)^{m}$ in elementary differential operators has n^{m} terms with coefficient 1 . Each of these terms applied to a product $w_{1} w_{2}$ can be written as the sum of $2^{2 m}$ terms of the form $D^{\alpha} w_{1} D^{\beta} w_{2}$ with coefficient 1 . Hence the sum of the coefficeints

$$
\sum_{\alpha, \beta} c_{\alpha, \beta}
$$

in equation (12) is less than $2^{2 m} n^{m}$. By the condition (C) and inequalities (13) and (14), it follows therefore that (assuming $c_{0}>1$)

$$
\begin{equation*}
\left|R_{1}\right| \leqslant 2(2 n)^{2 m} C_{0}^{2 m}(2 m+2)^{2 m} 2^{2 m} \tag{15}
\end{equation*}
$$

A similar, but sharper, estimate holds for the term $\zeta_{2 m} A_{2 m} f$. Combining these estimates, we obtain finally for $|\alpha|+|\beta|<2 m-2 n$

$$
\begin{equation*}
\left|\left(D_{x}^{\alpha} D_{y}^{\beta} f\right)(O, O)\right| \leqslant k_{0}\left(4 n C_{0}\right)^{2 m}(2 m)^{2 m}\left(1+\frac{2}{2 m}\right)^{2 m} \tag{16}
\end{equation*}
$$

By Stirling's formula, however, we know that

$$
(2 m)!\sim(4 \pi m)^{\frac{1}{2}}(2 m)^{2 m} e^{-2 m}
$$

Hence there exists an absolute constant k such that

$$
(2 m)^{2 m} \leqslant k e^{2 m}(2 m)!
$$

We obtain,

$$
\begin{align*}
&\left|\left(D_{x}^{\alpha} D_{y}^{\beta} f\right)(O, O)\right| \leqslant k k_{0} e^{2}\left(4 n C_{0} e\right)^{2 m}(2 m)!\leqslant\left(4 n C_{0} e\right)^{2 m} \frac{(2 m)!}{(2 m-n-1)!} \tag{17}\\
&(2 m-n-1!) c_{1}^{2 m-2 n-1}(2 m-n-1)!
\end{align*}
$$

if $|\alpha|+|\beta|=2 m-2 n-1$, and similarly,

$$
\begin{equation*}
\left|\left(D_{x}^{\alpha} D_{y}^{\beta} f\right)(O, O)\right| \leqslant c_{1}^{2 m-n-2}(2 m-n-2)! \tag{18}
\end{equation*}
$$

if $|\alpha|+|\beta|=2 m-2 n-2$.
In particular, for any given α and β, we may choose m such that either $2 m=|\alpha|+|\beta|+2 n+1$, or $2 m=|\alpha|+|\beta|+2 n+2$. Since the inequalities (17) and (18) are therefore equivalent to the inequalities of condition (C^{\prime}) for various α and β, the proof of Theorem 1 is therefore complete.

Theorem 2. Let f be an infinitely differentiable, separately analytic function on $V \times W$, where V and W are real analytic manifolds. Then there exists an everywhere dense open subset G of $V \times W$ such that f is analytic on G.

Proof of Theorem 2. It clearly suffices to suppose that V and W are both cubes with centre at the origin in E^{n} and to show that f is analytic in some open subset of $V \times W=R$.

For each positive integer M, let

$$
\begin{aligned}
& S_{M}=\left\{(x, y):(x, y) \in R,\left|D_{x}^{\alpha} f(x, y)\right| \leqslant M^{|\alpha|} \alpha!\quad \text { for all } \alpha\right\}, \\
& S_{M}^{\prime}=\left\{(x, y):(x, y) \in R,\left|D_{y}^{\alpha} f(x, y)\right| \leqslant M^{|\alpha|} \alpha!\quad \text { for all } \alpha .\right\}
\end{aligned}
$$

By the separate analyticity of the function f, each point (x, y) of R belongs to at least one of the sets S_{M} and at least one of the sets $S_{M_{1}}{ }^{\prime}$. By the continuity of the derivatives of f, each S_{M} is the intersection of closed sets and hence closed. Similarly each $S_{M_{1}}{ }^{\prime}$ is closed, and so is

$$
S_{M} \cap S_{M_{1}}^{\prime}
$$

R is the union of the sets

$$
S_{M} \cap S_{M_{1}}^{\prime}
$$

and by the Baire category theorem, one of these closed sets must have an interior. Let R^{\prime} be a disk in

$$
S_{M} \cap S_{M_{1}}^{\prime} .
$$

Then if M_{2} is the larger of M and M_{1}, we have for all points of R^{\prime} and all α,

$$
\begin{aligned}
& \left|D_{x}^{\alpha} f(x, y)\right| \leqslant M_{2}^{|\alpha|} \alpha! \\
& \left|D_{y}^{\alpha} f(x, y)\right| \leqslant M_{2}^{|\alpha|} \alpha!
\end{aligned}
$$

It follows by the proof of Theorem 1 that f is then analytic at each interior point of R^{\prime}, and the proof of Theorem 2 is complete.

References

1. J. de Barros-Neto, thesis, University of Sao Paulo (1960).
2. J. de Barros-Neto and F. E. Browder, The analyticity of kernels, Can. J. Math., 13 (1961), 645-649.
3. S. Bochner and W. T. Martin. Several compiex variables (Princeton, 1949).
4. L. Schwartz, Théorie des distributions (Paris, 1950-1), I and II.

Yale University
New Haven, Conn.

[^0]: Received August 3, 1960. The author is a Sloan Fellow.
 *As defined, for example, by Bruhat and Whitney, Comm. Helv., 33 (1959), 132-60.

