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In the present paper we deal with a quasi-linear elliptic equation depending on a
sublinear nonlinearity involving the gradient. We prove the existence of a nontrivial
nodal solution employing the theory of invariant sets of descending flow together
with sub-supersolution techniques, gradient regularity arguments, strong comparison
principle for the p-Laplace operator. The same conclusion is obtained for an
eigenvalue problem under a different set of assumptions.
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1. Introduction

In the present paper we study the following quasilinear problem{−Δpu = f(x, u,∇u) in Ω,
u = 0 on ∂Ω,

(P)

where Ω is a smooth bounded domain in R
N , 1 < p < N and f : Ω × R × R

N → R

is a continuous function fulfilling suitable growth conditions at zero and at infinity.
Problem (P ) appears in connection with the study of non-Newtonian fluids, where

p is related to the characteristics of the medium (dilatant for p > 2, pseudoplastic
for p < 2). The forcing term f is a convection type term, i.e. it depends on the
gradient of the unknown function. The dependence on the gradient in the nonlin-
earity does not allow to apply in a straightforward way variational methods to find
solutions of (P ). However, the existence of constant sign solutions for (P ) has been
obtained by means of topological degree, method of sub-supersolutions, fixed point
theory and approximation techniques (see for instance [1, 7, 12, 20, 21] and the
references therein). When the source term does not depend on the gradient, the
study of sign changing solutions for semilinear and quasilinear elliptic problems has
been addressed in a number of papers. If p = 2 and f = f(u) is superlinear and sub-
critical, the existence of a nodal solution (together with a positive and a negative
one) has been proved for instance in [6] employing Morse theory and the strong
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maximum principle, or in [11] using topological degree technique, assuming also
that f ′(0) < λ1 (being λ1 the first eigenvalue of the negative Laplacian). In [11],
the sublinear case is also addressed and under the condition f ′(0) > λ2 (being λ2

the second eigenvalue of the negative Laplacian) the existence of the biggest nega-
tive solution, the smallest positive solution and of a nontrivial solution in between
(thus nodal) is achieved. The theory of invariant sets of descending flow defined
by a pseudogradient vector field is deeply investigated in [19] to localize nodal
solutions of a superlinear semilinear problem in different invariant sets. For p �= 2
several contributions extend the quoted results to a nonlinear setting: the existence
of nodal solutions is proved in [3–5, 22, 24] where the theory of invariant sets of
descending flow is exploited under various assumptions on f both in the superlinear
and in the sublinear case, or in [8] by variational and sub–supersolution techniques.

The existence of nodal solutions when f depends on the gradient is still an
almost unexplored issue. Motivated by [13], where the existence of a positive and a
negative solution (actually extremal) for problem (P ) has been proved, the following
questions arise naturally.

Question 1.1.

1. Does problem (P ) admit a nodal solution for p > 1?

2. Beside the smallest positive and the biggest negative solution does there exist
a non-trivial nodal solution for problem (P ) in between?

The first question has been partially solved in [18] and [15] where the existence
of a nodal solution in the presence of a nonlinearity depending on the gradient has
been addressed in the case p = 2. In [18], the authors assume f to be a superlinear
function, locally Lipschitz with respect to both the second and the third variable in
a neighbourhood of zero, with some further assumptions on the gradient variable.
Using the Nehari method, they obtain a sign changing solution as the limit of a
sequence of ‘approximated’ nodal functions. In [15] the sublinear case is studied
and the existence of a nodal solution is ensured by suitable growth conditions at
zero in the real (second) variable via the theory of invariant sets of descending flow.

In the present paper, we completely solve the first question above for any
1 < p < ∞. In the first part of the paper we extend the results of [15] point-
ing out some difficulties which arise from the quasilinear setting which prevent
a straightforward generalization of the conclusions of [15]. Combining the gradient
flow theory with some essential tools as a gradient regularity result and strong com-
parison principle for the p-Laplacian we prove the existence of a nodal solution for
a parametrized problem with variational structure. An iteration procedure allows
to create a sequence of sign changing solutions converging to a non-trivial nodal
solution.

Together with the conclusion of [13] (see also [14]), where the existence of the
smallest positive solution and of the biggest negative solution for (P ) was proved
via sub-super solution methods and fixed point arguments, we obtain a multiplicity
theorem under very natural and verifiable assumptions. It still remains an open
question whether the nodal solution lies in between (see remark 5.1). In the last
part of the paper we give another contribution to the first question, suggesting a
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On the existence of a nodal solution 3

different set of hypotheses to prove the existence of sign changing solutions for an
eigenvalue problem.

We believe that this work represents the first step in the search of nodal solutions
for quasilinear problems depending on the gradient.

Denote by ‖ · ‖, the standard norm in W 1,p
0 (Ω), i.e. ‖u‖ = (

∫
Ω
|∇u|p dx)1/p, and

by ‖ · ‖q, ‖ · ‖∞ the classical norms in Lq(Ω) and in L∞(Ω) respectively, i.e. ‖u‖q =
(
∫
Ω
|u|q dx)1/q and ‖u‖∞ = supessΩ|u|. Let λ1 be the first eigenvalue of the negative

p-Laplacian operator on W 1,p
0 (Ω), with first positive eigenfunction ϕ1 satisfying

‖ϕ1‖ = 1. The following variational characterization holds

λ1 = inf
{‖u‖p

‖u‖p
p

: u ∈ W 1,p
0 (Ω), u �= 0

}
.

It is well known that the cone of nonnegative functions

C1
0 (Ω)+={u ∈ C1

0 (Ω) : u � 0 in Ω}
has a nonempty interior in the Banach space C1

0 (Ω) given by

int(C1
0 (Ω)+) =

{
u ∈ C1

0 (Ω) : u > 0 in Ω,
∂u

∂ν
< 0 on ∂Ω

}
,

where ν stands for the outward normal unit vector to ∂Ω.
Our first set of assumptions is:

(f 1) there exist positive constants k0, θ0, θ1 with θ0 + θ1λ
1/p′

1 < λ1 such that

|f(x, s, ξ)| � k0 + θ0|s|p−1 + θ1|ξ|p−1

for all x ∈ Ω, s ∈ R, and ξ ∈ R
N ;

(f 2) for every M > 0 there exists a constant ηM > λ1 such that

lim inf
s→0

f(x, s, ξ)
|s|p−2s

� ηM

uniformly for all x ∈ Ω and all ξ ∈ R
N with |ξ| � M ;

(f 3) for every M > 0 there exists a constant ζM > 0 such that

lim sup
s→0

f(x, s, ξ)
|s|p−2s

� ζM

uniformly for all x ∈ Ω and all ξ ∈ R
N with |ξ| � M ;

(f 4) for every M > 0 there exists a constant mM > 0 such that

s → f(x, s, ξ) + mM |s|p−2s

is increasing for all x ∈ Ω and all ξ ∈ R
N with |ξ| � M .

Under such assumptions we prove the following.
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Theorem 1.1. Let Ω be a smooth bounded domain in R
N and f : Ω × R × R

N → R

a continuous function satisfying (f1) − (f4). Then, problem (P ) has a nodal solution
in C1

0 (Ω).

Combining such conclusion with [13, Theorem 1.3, Corollary 1.1] we can state
the following multiplicity result:

Corollary 1.1. Let Ω be a smooth bounded domain in R
N and f : Ω × R ×

R
N → R a continuous function satisfying (f1) − (f4). Then, problem (P ) has the

smallest positive solution uP ∈ int(C1
0 (Ω)+), the biggest negative solution uN ∈

−int(C1
0 (Ω)+) and a nodal solution ũ ∈ C1

0 (Ω).

In the last part of the paper, still exploiting the same iterative approach, we
deduce the existence of a nodal solution for the quasilinear elliptic eigenvalue
problem {−Δpu = λf(x, u,∇u) in Ω,

u = 0 on ∂Ω.
(Pλ)

Let us introduce the following assumptions:

(f̃1)

lim
(s,ξ)→∞

f(x, s, ξ)
|s|p−1 + |ξ|p−1

= 0

uniformly for all x ∈ Ω;

(f̃2) for every M > 0,

lim
s→0

f(x, s, ξ)
|s|p−1

= 0

uniformly for all x ∈ Ω and all ξ ∈ R
N with |ξ| � M ;

(f̃3) for every M > 0,

lim
s→∞

f(x, s, ξ)
|s|p−1

= 0

uniformly for all x ∈ Ω and all ξ ∈ R
N with |ξ| � M ;

(f̃4) for every M > 0, there exists RM > 0 such that sf(x, s, ξ) > 0 for all
x ∈ Ω, |s| > RM and all ξ ∈ R

N with |ξ| � M ;

(f̃5) there exist s− < 0 < s+ such that

inf
(x,ξ)∈Ω×RN

F (x, s±, ξ) > 0,

where F (x, s, ξ) =
∫ s

0

f(x, t, ξ)dt.

Our second result states the following.
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Theorem 1.2. Let Ω be a smooth bounded domain in R
N and f : Ω × R × R

N → R

a continuous function satisfying (f̃1) − (f̃5). Then, there exists λ̃ such that for each
λ > λ̃, problem (Pλ) has a nodal solution in C1

0 (Ω).

The plan of the paper is the following: in Section 2 we introduce some common
preliminaries. Sections 3 and 4 are devoted to prove our main theorems. Finally, in
Section 5 some open questions and final remarks are discussed.

2. Preliminaries

In this section we collect some common preliminaries which will be useful in our
study. We introduce the following quasilinear problem

{−Δpu = g(x, u,∇u) in Ω
u = 0 on ∂Ω.

(P̃ )

where Ω is a smooth bounded domain in R
N , 1 < p < N , g : Ω × R × R

N → R is a
continuous function such that g(x, 0, ξ) = 0 for all x, ξ and

(H) there exist positive constants k0, θ0, θ1 with θ0 + θ1λ
1/p′

1 < λ1 such that

|g(x, s, ξ)| � k0 + θ0|s|p−1 + θ1|ξ|p−1

for all x ∈ Ω, s ∈ R, and ξ ∈ R
N .

For every w ∈ C1
0 (Ω), let us also consider the parametrized Dirichlet problem

{−Δpu = g(x, u,∇w) in Ω
u = 0 on ∂Ω.

(P̃w)

Notice that since w ∈ C1
0 (Ω), classical regularity results implies that each solution

u of (Pw) is in L∞(Ω), thus in C1
0 (Ω) (see [16, 17]).

Moreover, from g(x, 0, ξ) = 0 for all x, ξ we observe that the zero function is a
solution of both (P̃ ) and (P̃w) for each w ∈ C1

0 (Ω).
Proposition 2.1 below proves an a priori uniform boundedness which will

be crucial for our purposes. It makes use of the following gradient regularity result
([9, Theorem 4.3]):

Lemma 2.1. Let Ω be a smooth bounded domain in R
N , N � 2, and let u ∈

W 1,p
0 (Ω), 1 < p < N , be a weak solution of the problem

{−Δpu = h(x) in Ω
u = 0 on ∂Ω.

with h ∈ Lq(Ω), q � (p∗)′.

(i) If q < N , then

‖∇u‖q∗(p−1) � C‖h‖
1

p−1
q .
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(ii) If q = N , then

‖∇u‖r � C‖h‖
1

p−1
q for any r < ∞.

(iii) If q > N , then

‖∇u‖∞ � C‖h‖
1

p−1
q .

In what stated above, C is a constant that depends only on p,N, q.

Proposition 2.1. Assume (H). Then, for every u0 ∈ C1
0 (Ω), there exists α ∈]0, 1[

and a positive constant M depending on k0, θ0, θ1, ‖u0‖ such that if un is a solution
of (Pun−1) one has

‖un‖C1,α(Ω) � M for every n ∈ N.

Proof. Let us fix u0 ∈ C1
0 (Ω). We first prove that if un is a solution of (P̃un−1), then

‖un‖ � M0 for some constant M0 = M0(‖u0‖) independent on n. Indeed, acting
with un as test function in (P̃un−1),

‖un‖p �
∫

Ω

|g(x, un,∇un−1)||un|dx

� k0‖un‖1 + θ0‖un‖p
p + θ1‖un−1‖p−1‖un‖p

� k0|Ω|1/pλ
−1/p
1 ‖un‖ + θ0λ

−1
1 ‖un‖p + θ1λ

−1/p
1 ‖un−1‖p−1‖un‖

which implies
(
1 − θ0λ

−1
1

) ‖un‖p−1 � k0|Ω|1/pλ
−1/p
1 + θ1λ

−1/p
1 ‖un−1‖p−1.

Denote by

γ :=
k0|Ω|1/pλ

−1/p
1

1 − θ0λ
−1
1

, δ :=
θ1λ

−1/p
1

1 − θ0λ
−1
1

.

Notice that γ > 0 and 0 < δ < 1. Thus, using the above notation, we can rewrite

‖un‖p−1 � γ + δ‖un−1‖p−1.

Iterating this inequality, we obtain

‖un‖p−1 � γ
n−1∑
i=0

δi + δn‖u0‖p−1

� γ

1 − δ
+ ‖u0‖p−1,

which means that there exists a constant M0 (depending on ‖u0‖) such that

‖un‖ � M0 for every n ∈ N.

Denote hn(x) = g(x, un(x),∇un−1(x)) and fix q with (p∗)′ � q � p′ such that N
q /∈

N. Using the fact that |un|p−1, |∇un−1|p−1 ∈ Lq(Ω) (recall that un ∈ L∞(Ω)), and
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(H), we deduce that hn ∈ Lq(Ω) and its norm ‖hn‖q can be estimated by a constant
which does not depend on n:

‖hn‖q
q � k′

0 + θ′0‖un‖q(p−1)
q(p−1) + θ′1‖∇un−1‖q(p−1)

q(p−1) �

� k′
0 + θ′′0‖un‖

q
p′
p + θ′′1‖∇un−1‖

q
p′
p

Hence

‖hn‖q � M ′
0 for every n ∈ N.

We can assume q � N , otherwise we are done by lemma 2.1 (iii).
From lemma 2.1 (i) − (ii) we deduce that |∇un| ∈ Lq∗(p−1)(Ω) and that

‖∇un‖q∗(p−1) � C‖hn‖
1

p−1
q � C1.

Since un ∈ L∞(Ω) we have that |un|p−1 ∈ Lq∗
(Ω). Moreover, by the previous

inequality we also have |∇un−1|p−1 ∈ Lq∗
(Ω), thus hn ∈ Lq∗

(Ω) and, as above
‖hn‖q∗ � M ′

1.

It is easily seen by induction that (((q∗)∗)···)∗ = q
k∗∗···∗ = Nq

N−kq provided k < N
q .

We choose then k = [N
q ] (the maximum integer contained in N

q ). Recall that since
N
q /∈ N,

N

q
− 1 < k <

N

q

Iterating the previous argument k times, since Nq
N−kq > N , by lemma 2.1 (iii)

‖∇un‖∞ � C‖hn‖
1

p−1
Nq

N−kq

� Ck.

The uniform boundedness of the gradient of un in L∞(Ω), implies the uniform
boundedness of un’s in L∞(Ω) (see [16]). Finally, from [17, Theorem 1] we obtain
the existence of α ∈]0, 1[ and a positive constant M independent on n such that

‖un‖C1,α(Ω) � M for every n ∈ N.

�

We introduce now the following abstract setting. Let X be a Banach space,
A : X −→ X continuous and compact operator, J : X → R a functional of class
C1(X, R), p > 1.

Let us introduce the following conditions:

(J1) There exist 1 < p < 2, d1, d2 > 0 such that

〈J ′(u), u − A(u)〉 � d1‖u − A(u)‖2(‖u‖ + ‖A(u)‖)p−2

and

‖J ′(u)‖ � d2‖u − A(u)‖p−1,

for every u ∈ X.
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(J2) There exist p � 2, d3, d4 > 0 such that

〈J ′(u), u − A(u)〉 � d3‖u − A(u)‖p

and

‖J ′(u)‖ � d4‖u − A(u)‖(‖u‖ + ‖A(u)‖)p−2,

for every u ∈ X.

Denote by K the set of critical points of J : it is clear that under either (J1) or
(J2) K coincides with the set of fixed points of A.

The next lemma allows to replace A with a locally Lipschitz operator B which
fulfils the same properties as A.

Lemma 2.2. ([5, Lemma 2.1], [4, Lemma 4.1]) Assume either (J1) or (J2). Let D
be a closed convex subset of X. Then, there exists a locally Lipschitz continuous
compact operator B : X → X which is a convex combination of A such that

(i) A(u) = B(u) for each u ∈ D;

(ii)

1
2
‖u − B(u)‖ � ‖u − A(u)‖ � 2‖u − B(u)‖

for all u ∈ X;

(iii) if 1 < p < 2 then

〈J ′(u), u − B(u)〉 � d1

2
‖u − A(u)‖2(‖u‖ + ‖A(u)‖)p−2,

and if p � 2 then

〈J ′(u), u − B(u)〉 � d1

2
‖u − A(u)‖p

for all u ∈ X.

Clearly, critical points of J turn out to be fixed points of B.
In our setting X = W 1,p

0 (Ω) endowed with the equivalent norm

‖u‖μ :=
(∫

Ω

(|∇u|p + μ|u|p) dx

)1/p

,

for μ > 0. For fixed w ∈ C1
0 (Ω), put A = Aμ

w : W 1,p
0 (Ω) −→ W 1,p

0 (Ω) the operator
defined by

Aμ
w(u) := (−Δp + μhp(·))−1(g(x, u,∇w) + μhp(u)),

where hp(t) = |t|p−2t for each t ∈ R.
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Let us note that

Aμ
w|C1

0 (Ω) : C1
0 (Ω) −→ C1

0 (Ω).

Since problem (P̃w) has variational form, we can consider the associated energy
functional Jw ∈ C1(W 1,p

0 (Ω)), defined by

Jw(u) =
1
p

∫
Ω

|∇u|p dx −
∫

Ω

G(x, u,∇w) dx, for u ∈ W 1,p
0 (Ω),

where G(x, t, ξ) =
∫ t

0
g(x, s, ξ) ds. Because of (H), Jw is coercive, thus bounded from

below.
The following inequalities (see [10]) ensure properties (J1) and (J2) above:

Proposition 2.2. There exist positive constants ci, i = 1, . . . , 4, such that for all
ξ, η ∈ R

N

||ξ|p−2ξ − |η|p−2η| � c1(|ξ| + |η|)p−2|ξ − η|,
(|ξ|p−2ξ − |η|p−2η) · (ξ − η) � c2(|ξ| + |η|)p−2|ξ − η|2,
||ξ|p−2ξ − |η|p−2η| � c3|ξ − η|p−1 if 1 < p � 2,

(|ξ|p−2ξ − |η|p−2η) · (ξ − η) � c4|ξ − η|p if p > 2.

Thus, lemma 2.2 applies. We will exploit it in the next sections with different
choices of D, μ and g.

3. Nodal solution for a quasilinear elliptic problem

In this section we assume conditions (f1) − (f4) and prove theorem 1.1. Using the
theory of invariant sets of descending flow, we will construct first a nodal solution of
a parametrized problem and then, following an iterative approach, we will exhibit
the existence of a nodal solution for (P ).

3.1. On a parametrized problem

Throughout the sequel we will take into account the results of Section 2 with
g = f . Thus, for every w ∈ C1

0 (Ω), the parametrized Dirichlet problem reads as
follows {−Δpu = f(x, u,∇w) in Ω

u = 0 on ∂Ω.
(Pw)

Recall that each solution u of (Pw) is in C1
0 (Ω). Also, assumptions (f2) and (f3)

imply that f(x, 0, ξ) = 0 for all x, ξ, thus the zero function is a solution of (P ) and
(Pw) for each w ∈ C1

0 (Ω).
In [13], we have proved the following

Lemma 3.1. ([13, Lemma 2.2]) Assume (f2). Then, for every M > 0 and w ∈
C1

0 (Ω) with ‖w‖C1 � M , there exists δ = δ(M) > 0 such that if 0 < ε < δ, then
εϕ1 and −εϕ1 are subsolution and supersolution of (Pw).
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Theorem 3.1. ([13, Theorem 2.1]) Assume (f1), (f2), (f3). Then, for every w ∈
C1

0 (Ω), there exist uw
P ∈ int(C1

0 (Ω)+) and uw
N ∈ −int(C1

0 (Ω)+) the smallest positive
solution and the biggest negative solution of (Pw) respectively.

From the proof of [13, Theorem 2.1] we deduce that

Remark 3.1. uw
P � εϕ1 and uw

N � −εϕ1 with ε = ε(M) uniform with respect to
w ∈ C1

0 (Ω) with ‖w‖C1 � M .

We conclude this subsection recalling the strong comparison principle for the p-
Laplace operator ([2]). For h1, h2 ∈ L∞(Ω), we say that h1 ≺ h2 if for any Ω0 ⊆ Ω
compact subset, there exists ε > 0 such that h1(x) + ε < h2(x) for almost every
x ∈ Ω0. In particular, if h1 and h2 are continuous functions such that h1(x) < h2(x)
for all x ∈ Ω, then h1 ≺ h2.

Proposition 3.1. [2, Proposition 2.6] For λ � 0 and f, g ∈ L∞(Ω), let v, u be
solutions of the problems:{−Δpv + λ|v|p−2v = f in Ω

u = 0 on ∂Ω,{−Δpu + λ|u|p−2u = g in Ω
u = 0 on ∂Ω,

If f ≺ g and u ∈ int(C1
0 (Ω)+), then u − v ∈ int(C1

0 (Ω)+).

3.2. A pseudogradient vector field

Throughout the sequel, u0 ∈ C1
0 (Ω) is a fixed function, M > 0 is given by

proposition 2.1 and we choose m = mM in assumption (f4). Thus, following the
notation of Section 2 with g = f and μ = m one has

‖u‖m :=
(∫

Ω

(|∇u|p + m|u|p) dx

)1/p

,

Aw(u) := (−Δp + mhp(·))−1(f(x, u,∇w) + mhp(u)),

Jw(u) =
1
p

∫
Ω

|∇u|p dx −
∫

Ω

F (x, u,∇w) dx,

where F (x, t, ξ) =
∫ t

0
f(x, s, ξ) ds.

Let us introduce the set Λw which will be crucial in our argument. Let uw
P ∈

int(C1
0 (Ω)+) and uw

N ∈ −int(C1
0 (Ω)+) the smallest positive solution and the biggest

negative solution of (Pw) (see theorem 3.1). Let us denote by [uw
N , uw

P ] the set of all
C1

0 -functions u such that uw
N � u � uw

P .
Consider then, the following set

Λw = {u ∈ C1
0 (Ω) : u ∈ intC1

0
[uw

N , uw
P ]}.

Proposition 3.2.

Aw(Λw) ⊆ Λw and Aw(int(C1
0 (Ω)+)) ⊆ int(C1

0 (Ω)+).
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Proof. First, we show that Aw(Λw) ⊆ Λw. Let u ∈ Λw and v = Aw(u):

−Δpv + mhp(v) = f(x, u,∇w) + mhp(u)

(by (f4) and continuity of f) ≺ f(x, uw
P ,∇w) + mhp(uw

P )

= −Δpu
w
P + mhp(uw

P ).

By proposition 3.1, we conclude that uw
P − v ∈ int(C1

0 (Ω)+). Analogously one
obtains that v − uw

N ∈ int(C1
0 (Ω)+). For the other inclusion, let u ∈ int(C1

0 (Ω)+)
and v = Aw(u). Thus,

−Δpv + mhp(v) = f(x, u,∇w) + mhp(u) > 0

By the strong maximum principle [23], we conclude that v ∈ int(C1
0 (Ω)+). �

Let B = Bw be as in lemma 2.2 with D = Λw. Thus, since Bw is a convex
combination of Aw, one has

Bw(Λw) ⊆ Λw and Bw(int(C1
0 (Ω)+)) ⊆ int(C1

0 (Ω)+). (3.1)

For every u ∈ C1
0 (Ω) \ Kw (where Kw is the set of all fixed points of Aw) consider

the following Cauchy problem
⎧⎨
⎩

d
dt

ϕ(t) = −ϕ(t) + Bw(ϕ(t))

ϕ(0) = u.

(3.2)

Since Bw is locally Lipschitz, the above problem admits a unique solution ϕt(u)
in C1

0 (Ω) called descending flow curve with maximal interval of existence [0, τ(u)[.
Notice that τ(u) can be either a positive number or +∞.

By lemma 2.2 (iii),

d
dt

Jw(ϕt(u)) = 〈J ′
w(ϕt(u)),

d
dt

ϕt(u)〉
= −〈J ′

w(ϕt(u)), ϕt(u) − Bw(ϕt(u)〉
< 0

and the inequality is strict since u /∈ Kw so that it is not a fixed point of Bw. Thus,
Jw(ϕt(u)) is strictly decreasing. Recall also that Jw is coercive, hence bounded from
below.

Moreover from (3.2), we have
∫ t

0

es d
ds

ϕs(u) ds = −
∫ t

0

esϕs(u) ds +
∫ t

0

esBw(ϕs(u)) ds,

or

ϕt(u) = e−tu + e−t

∫ t

0

esBw(ϕs(u)) ds. (3.3)

By (3.1), one has the following (see [19, proof of Lemma 3.2]).
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12 F. Faraci and D. Puglisi

Lemma 3.2. If u ∈ Λw, then ϕt(u) ∈ Λw and if u ∈ int(C1
0 (Ω)+), then ϕt(u) ∈

int(C1
0 (Ω)+) for all 0 < t < τ(u).

For D ⊆ C1
0 (Ω), let us denote by

C(D) = D ∪ {u ∈ C1
0 (Ω) \ Kw : there exists t̄ � 0 such that ϕt̄(u) ∈ D}.

We recall that D is called an invariant set of descending flow for Jw, if whenever u ∈
D \ Kw, the flow {ϕt(u) : t ∈ [0, τ(u)[} ⊂ D. If D = C(D), then D is said complete.

If D is invariant then, by the definition above, C(D) is invariant. Moreover it
is easy to see that C(D) is complete as C(C(D)) = C(D). Then ∂C(D) is also an
invariant set of descending flow [19, Lemma 2.3]. If D is also open then C(D) is
open [19, Lemma 2.4(i)].

By lemma 3.2, Λw and int(C1
0 (Ω)+) are invariant sets of descending flow for Jw, so

C(Λw) and C(int(C1
0 (Ω)+)) are invariant, as well as ∂C(Λw) and ∂C(int(C1

0 (Ω)+)).
Moreover, C(Λw) is open in C1

0 (Ω) and C(Λw) �= C1
0 (Ω) (indeed uw

P , uw
N ∈ Kw \

Λw, so they cannot lie in C(Λw)). Also, C(int(C1
0 (Ω)+)) is open in C1

0 (Ω)
and C(int(C1

0 (Ω)+)) �= C1
0 (Ω) (indeed 0 ∈ Kw \ int(C1

0 (Ω)+)). Since C1
0 (Ω)+ ⊆

C(int(C1
0 (Ω)+)) and ∂C(Λw) ∩ C1

0 (Ω)+ �= ∅, we have ∂C(Λw) ∩ C(int(C1
0 (Ω)+)) �= ∅.

Because ∂C(Λw) ∩ (−C1
0 (Ω)+) �= ∅, we obtain that ∂C(Λw) ∩ ∂C(int(C1

0 (Ω)+)) �= ∅.
Let us fix

u∗ ∈ ∂C(Λw) ∩ ∂C(int(C1
0 (Ω)+)).

Lemma 3.3. There exists uw ∈ Kw and an increasing sequence of positive numbers
(tn)n with tn → τ(u∗) such that limn ‖ϕtn(u∗) − uw‖m = 0.

Proof. Let 0 < t1 < t2 < τ(u∗). Then,

‖ϕt2(u∗) − ϕt1(u∗)‖m �
∫ t2

t1

‖ d
dt

ϕt(u∗)‖m dt

=
∫ t2

t1

‖ϕt(u∗) − Bw(ϕt(u∗))‖m

(by lemma 2.2, (ii)) � 2
∫ t2

t1

‖ϕt(u∗) − Aw(ϕt(u∗))‖m.

Assume that p � 2.
Applying Hölder inequality, lemma 2.2 (iii), the monotonicity of the flow t →

Jw(ϕt(u∗)) and the boundedness from below of Jw, we obtain
∫ t2

t1

‖ϕt(u∗) − Aw(ϕt(u∗))‖m �
(∫ t2

t1

‖ϕt(u∗) − Aw(ϕt(u∗))‖p
m

)1/p

(t2 − t1)1/p′

� c1

(∫ t2

t1

d
dt

Jw(ϕt(u∗)) dt

)1/p

(t2 − t1)1/p′

= c1(Jw(ϕt2(u∗)) − Jw(ϕt1(u∗)))1/p (t2 − t1)1/p′

� c2(t2 − t1)1/p′
.
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Putting together the above outcomes we get that

‖ϕt2(u∗) − ϕt1(u∗)‖m � c(t2 − t1)1/p′
.

Assume now 1 < p < 2. By coercivity of Jw, we deduce that the set {u :
Jw(u) � Jw(ϕ0(u∗)) = Jw(u∗)} ⊂ B(0, b) for some b > 0 where B(0, b) denotes
the closed ball in W 1,p

0 (Ω) centred at zero of radius b. By the monotonicity
of the flow, Jw(ϕt(u∗) � Jw(u∗), thus there exists a constant b1 > 0, such that
‖ϕt(u∗)‖m, ‖Aw(ϕt(u∗))‖m � b1 for each t.

Then, by Hölder inequality, lemma 2.2 (iii)
∫ t2

t1

‖ϕt(u∗) − Aw(ϕt(u∗))‖m �
(∫ t2

t1

‖ϕt(u∗) − Aw(ϕt(u∗))‖2
m(‖ϕt(u∗)‖m

+ ‖Aw(ϕt(u∗))‖m)p−2 dt
)1/2

·
(∫ t2

t1

(‖ϕt(u∗)‖m + ‖Aw(ϕt(u∗))‖m)2−p dt

)1/2

� c1

(∫ t2

t1

d
dt

Jw(ϕt(u∗))
)1/2

(t2 − t1)1/2

= c1(Jw(ϕt2(u∗)) − Jw(ϕt1(u∗)))1/2(t2 − t1)1/2

� c2(t2 − t1)1/2.

Thus, in both cases (p � 2 and 1 < p < 2), if τ(u∗) < ∞, there exists uw ∈ W 1,p
0 (Ω)

such that

lim
t→τ(u∗)

‖ϕt(u∗) − uw‖m = 0.

Since the interval [0, τ(u∗)[ is maximal it has to be uw ∈ Kw.
If τ(u∗) = ∞, the boundedness from below of Jw allows us to fix an increasing

sequence of positive numbers (tn)n, tn → ∞ such that

lim
n

d
dt

Jw(ϕt(u∗))|t=tn
= 0.

If p � 2, one has

d
dt

Jw(ϕt(u∗))|t=tn
= −〈J ′

w(ϕtn(u∗)), ϕtn(u∗) − Bw(ϕtn(u∗))〉
(by lemma 2.2, (iii)) � −c1‖ϕtn(u∗) − Aw(ϕtn(u∗))‖p

m,

which says that

lim
n

‖ϕtn(u∗) − Aw(ϕtn(u∗))‖m = 0.

Now, let us observe that (ϕtn(u∗))n is bounded in W 1,p
0 (Ω). Indeed, by the

monotonicity of the flow, Jw(ϕtn(u∗) � Jw(u∗) for every n ∈ N, that means that
ϕtn(u∗) ∈ J−1

w (] −∞, Jw(u∗)]) for every n ∈ N, and the latter is a bounded set
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14 F. Faraci and D. Puglisi

because of the coercivity of Jw. Moreover, since Aw is a compact operator, it
follows (eventually passing to a subsequence) that there exists uw ∈ W 1,p

0 (Ω) such
that

lim
n

‖ϕtn(u∗) − uw‖m = lim
n

‖Aw(ϕtn(u∗)) − uw‖m = 0.

In particular, uw ∈ Kw. Also, for some b2 > 0, one has ‖ϕtn(u∗)‖m, ‖Aw(ϕtn(u∗))‖m

� b2.
If 1 < p < 2,

d
dt

Jw(ϕt(u∗))|t=tn
= −〈J ′

w(ϕtn(u∗)), ϕtn(u∗) − Bw(ϕtn(u∗))〉
(by lemma 2.2, (iii)) � −c1‖ϕtn(u∗) − Aw(ϕtn(u∗))‖2

m(‖ϕtn(u∗)‖m

+ ‖Aw(ϕtn(u∗))‖m)p−2

� −c2‖ϕtn(u∗) − Aw(ϕtn(u∗))‖2
m

which says that

lim
n

‖ϕtn(u∗) − A(ϕ
tn(u∗))‖m = 0

and we conclude as above. �

In the next lemma we refine the previous result.

Lemma 3.4. With the notation of lemma 3.3, one has that uw ∈ C1
0 (Ω) and

limn ‖ϕtn(u∗) − uw‖C1
0

= 0.

Proof. As in the proof of lemma 3.3, we first observe that the set {ϕt(u∗) : t ∈
[0, τ(u∗)[} is bounded in W 1,p

0 (Ω). Recalling (3.3),

ϕt(u∗) = e−tu∗ + e−t

∫ t

0

esBw(ϕs(u∗)) ds.

Since Bw : C1
0 (Ω) → C1

0 (Ω) is a compact operator, the set
{

e−t

∫ t

0

esBw(ϕs(u∗)) ds : t ∈ [0, τ(u∗)[
}

is bounded in C1,α(Ω), thus relatively compact in C1
0 (Ω). This clearly implies that

{ϕt(u∗) : t ∈ [0, τ(u∗)[} is relatively compact in C1
0 (Ω). The thesis follows from

lemma 3.3. �

We are ready to prove the main result of this subsection.

Theorem 3.2. uw is a nodal solution of (Pw).

Proof. Clearly uw is a solution of (Pw) since it belongs to Kw. Since the initial point
u∗ belongs to ∂C(Λw) ∩ ∂C(int(C1

0 (Ω)+)), and both sets ∂C(Λw), ∂C(int(C1
0 (Ω)+))

are invariant sets of descending flow, then (ϕtn(u∗))n ⊆ ∂C(Λw) ∩ ∂C(int(C1
0 (Ω)+)).
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Moreover, ∂C(Λw) ∩ ∂C(int(C1
0 (Ω)+)) is a closed set, so that uw ∈ ∂C(Λw) ∩

∂C(int(C1
0 (Ω)+)). Being uw ∈ ∂C(Λw), we obtain that uw �∈ intC1

0
[uw

N , uw
P ], in par-

ticular uw �= 0. Actually, by remark 3.1, uw �∈ intC1
0
[−εϕ1, εϕ1]. On the other hand,

since uw ∈ ∂C(int(C1
0 (Ω)+)), we also have uw �∈ int(C1

0 (Ω)+) ∪ (−int(C1
0 (Ω)+)).

This ensures that uw can not have constant sign. Indeed, if uw � 0, it would be a
non negative, non trivial solution of

{−Δpu + mhp(u) = f(x, u,∇w) + mhp(u) in Ω
u = 0 on ∂Ω.

and by assumption (f4) and the strong maximum principle by Vazquez [23], we
would deduce uw ∈ int(C1

0 (Ω)+). Thus, uw is a nodal solution of (Pw). �

3.3. Existence of a nodal solution for (P )

In this subsection through an iteration procedure we prove our first main result.
Proof of theorem 1.1. In theorem 3.2 choose w = u0, where u0 is the function

we fixed at the beginning of Section 3.2. Thus, the existence of a nodal solution u1 of
(Pu0) follows. Proceeding in such way, for each n ∈ N denote by un the nodal solu-
tion of (Pun−1) given by theorem 3.2. Hence, we construct a sequence of functions
un ∈ C1

0 (Ω) such that

un �∈ intC1
0
[−εϕ1, εϕ1] (3.4)

un �∈ int(C1
0 (Ω)+) ∪ (−int(C1

0 (Ω)+)) (3.5)

By proposition 2.1, ‖un‖C1,α(Ω) � M , and by the compactness of the embed-
ding C1,α(Ω) ↪→ C1

0 (Ω), (un)n is relatively compact in C1
0 (Ω). Unless to pass to a

subsequence, let

ũ := lim
n→∞un in C1

0 (Ω).

Let us prove that ũ is the solution of (P ) we are looking for. Since un is a solution
of (Pun−1), for every ϕ ∈ W 1,p

0 (Ω) we have

∫
Ω

|∇un|p−2∇un∇ϕ dx =
∫

Ω

f(x, un,∇un−1)ϕ dx.

Since un → ũ in C1
0 (Ω), we have that f(x, un,∇un−1) → f(x, ũ,∇ũ) in Lp′

(Ω) and
passing to the limit in the above equality we get

∫
Ω

|∇ũ|p−2∇ũ∇ϕ dx =
∫

Ω

f(x, ũ,∇ũ)ϕ dx,

which is our claim. By (3.4) and (3.5), it follows that ũ �∈ intC1
0
[−εϕ1, εϕ1] and

ũ �∈ int(C1
0 (Ω)+) ∪ (−int(C1

0 (Ω)+)). Thus, ũ �= 0, and as in the proof of theorem
3.2, ũ can not have constant sign.
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4. Nodal solution for a quasilinear eigenvalue problem

The goal of the present section is to prove the existence of a nodal solution for
(Pλ) under assumptions (f̃1) − (f̃5). While in theorem 1.1 the construction of
the nodal solution was based on the existence of the extremal solutions for the
parametrized problem (Pw), here, exploiting the dependence on the parameter λ,
we apply an abstract theorem by [5], which still relies on the theory of invariant
sets of descending flow. After deducing the existence of a sign changing solution for
the parametrized problem, we conclude as in the previous section.

4.1. On a parametrized problem

Throughout the sequel we will take into account the results of Section 2 with
g = λf and μ = λm for some m to be chosen later. For every w ∈ C1

0 (Ω), let us
consider the parametrized Dirichlet problem{−Δpu = λf(x, u,∇w) in Ω

u = 0 on ∂Ω.
(Pλ,w)

From hypothesis (f̃1), it follows that for each λ > 0 we can fix ε = ε(λ) > 0 with

ε(1 + λ
1
p′
1 )λ < λ1 and k0(λ) ∈ R such that

λ|f(x, s, ξ)| � k0(λ) + ελ|s|p−1 + ελ|ξ|p−1

for all x ∈ Ω, s ∈ R, and ξ ∈ R
N . This ensures that under the above conditions, the

function g = λf fulfils assumption (H) of Section 2 and proposition 2.1 applies, i.e.
for every λ > 0 and u0 ∈ C1

0 (Ω), there exists α ∈]0, 1[ and a positive constant M
depending on λ and ‖u0‖ such that if un is a solution of (Pλ,un−1), ‖un‖C1,α(Ω) � M .

Remark 4.1. Notice that assumption (f̃2) implies that f(x, 0, ξ) = 0 for all x, ξ.
Thus the zero function is a solution of both (Pλ,w) and (Pλ).

We will need the following abstract result.
Let X be a Banach space, D± closed convex subsets of X, A : X −→ X continu-

ous and compact operator and J : X → R a functional of class C1(X, R). Introduce
the following conditions.

(D1) O =int(D+) ∩ int(D−) �= ∅.
(D2) A(D±) ⊆ int(D±).

(J3) For any b ∈ R there exists a constant a = a(b) > 0 such that if u ∈ {u ∈
X : J(u) � b} then

‖u‖ + ‖A(u)‖ � a(1 + ‖u − A(u)‖).
(J4) There exists a path h : [0, 1] −→ X such that h(0) ∈ int(D+) \ D− and
h(1) ∈ int(D−) \ D+ and

max
0�t�1

J(h(t)) < α0 := inf
D+∩D−

J(u).

https://doi.org/10.1017/prm.2023.135 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.135


On the existence of a nodal solution 17

The next theorem is the abstract tool we will exploit to deduce the existence
of a nodal solution for the parametrized problem (Pλ,w), which we state here in a
convenient form for our purposes.

Theorem 4.1. [5, Theorem 2.2] Assume (D1), (D2), (J3), (J4) and either (J1) or
(J2) from Section 2. Then J has a critical point in ∂C(O) \ (D+ ∪ D−).

Following the notation of Section 2, X = W 1,p
0 (Ω) endowed with the equivalent

norm

‖u‖λ
m :=

(∫
Ω

(|∇u|p + λm|u|p) dx

)1/p

,

where λ and m will be chosen later in a convenient way,

Aλ
w(u) := (−Δp + λmhp(·))−1(λf(x, u,∇w) + λmhp(u)),

and Bλ
w as in lemma 2.2. Denote also by Jλ

w : W 1,p
0 (Ω) −→ R

Jλ
w(u) =

1
p

∫
Ω

|∇u|p dx − λ

∫
Ω

F (x, u,∇w) dx,

P = {u ∈ W 1,p
0 (Ω) : u � 0 a.e. in Ω}

and for ε > 0

D±
ε = {u ∈ W 1,p

0 (Ω) : distm(u,±P ) � ε}.

Proposition 4.1. For ε > 0 small enough,

Aλ
w(D±

ε ) ⊆ intD±
ε .

Proof. Let us prove Aλ
w(D+

ε ) ⊆ intD+
ε . Notice that by assumptions (f̃2) − (f̃4), for

any M � ‖w‖C1 there exists mM > 0 such that

sf(x, s, ξ) + mMshp(s) > 0 for each x ∈ Ω, s �= 0, |ξ| � M. (4.1)

In the sequel put m := mM .
By (f̃2) and (f̃3), for each ε > 0 and q > p there exists another constant cM > 0

such that

|f(x, s, ξ) + mhp(s)| � (ε + m)|s|p−1 + cM |s|q−1, (4.2)

for each x ∈ Ω, s �= 0, |ξ| � M .
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Let u ∈ D+
ε and v = Aλ

w(u). Thus,

−Δpv + λmhp(v) = λf(x, u,∇w) + λmhp(u)

and so testing the above equation with −v−, where v− = max{−v, 0}, we deduce

‖v−‖p
m = λ

∫
Ω

(f(x, u,∇w) + mhp(u))(−v−)

[by (4.1), (4.2)] � λ(ε + m)
∫

Ω

(u−)p−1v−+λcM

∫
Ω

(u−)q−1v−

� λ(ε + m)‖u−‖p−1
p ‖v−‖p + λcM‖u−‖q−1

q ‖v−‖q

� λ(ε + m)
(λ1 + λm)1/p

‖u−‖p−1
p ‖v−‖m +

λcM

(λ1 + λm)1/p
‖u−‖q−1

q ‖v−‖m.

Hence,

dm(v, P )p−1 � ‖v−‖p−1
m � λ(ε + m)

(λ1 + λm)1/p
‖u−‖p−1

p +
λcM

(λ1 + λm)1/p
‖u−‖q−1

q .

Since ‖u−‖p � ‖u − w‖p for all w ∈ P , we get

dm(v, P )p−1 � λ(ε + m)
(λ1 + λm)1/p

‖u − w‖p−1
p +

λcM

(λ1 + λm)1/p
‖u − w‖q−1

p

� λ(ε + m)
(λ1 + λm)

‖u − w‖p−1
m +

λcM

(λ1 + λm)
q
p

‖u − w‖q−1
m .

Thus,

dm(v, P )p−1 � λ(ε + m)
(λ1 + λm)

dm(u, P )p−1 +
λcM

(λ1 + λm)
q
p

dm(u, P )q−1.

Thus, since q > p, there exists ε0 > 0 such that

dm(v, P ) < dm(u, P ) if 0 < dm(u, P ) � ε0, (4.3)

and the proof is concluded. �

Remark 4.2. From the above construction, ε > 0 depends on λ and M � ‖w‖C1 .
In the sequel, our choice of M will be uniform with respect to w (see proposition
2.1).

Theorem 4.2. Let Ω be a smooth bounded domain in R
N and f : Ω × R × R

N → R

a continuous function satisfying (f̃1) − (f̃5). Then, there exists λ̃ such that for each
λ > λ̃, and w ∈ C1

0 (Ω), problem (Pλ,w) has a nodal solution in C1
0 (Ω).

Proof. Fix w ∈ C1
0 (Ω). Let us show that all the hypotheses of theorem 4.1 are

verified with A = Aλ
w, J = Jλ

w, D+ = D+
ε , D− = D−

ε and λ big enough.
Condition (D1) is trivial, (D2) follows by proposition 4.1 and (J1), (J2) by

proposition 2.2. Moreover, the map Aλ
w is compact (see [13, Lemma 2.3]) and
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assumption (J3) is implied by the coercivity of Jλ
w. It remains to check the validity

of condition (J4). By (4.3), we have that

K ∩ (D+
ε ∩D−

ε ) = {0}.

Since Jλ
w is decreasing over the flow and D+

ε ∩ D−
ε is an invariant set, it follows

that for every u ∈ D+
ε ∩ D−

ε

Jλ
w(u) � Jλ

w(ϕt(u)) � Jλ
w(u∗)

where u∗ = limt→τ(u) ϕt(u) ∈ K ∩ (D+
ε ∩ D−

ε ) = {0}. Therefore

Jλ
w(u) � Jλ

w(0) = 0 for every u ∈ D+
ε ∩D−

ε .

Let us show that there exists λ̃ such that for all λ � λ̃ (J4) holds; we follow the
construction of [4, Lemma 3.2]. Let

a := inf{x1 : x = (x1, . . . , xN ) ∈ Ω} and b := sup{x1 : x = (x1, . . . , xN ) ∈ Ω}.

we consider

Ωt := {x ∈ Ω : (1 − t)a + tb < x1 < b} for t ∈ [0, 1].

Thus Ω0 = Ω and Ω1 = ∅. We define

h∗(t) = s+χΩt
+ s−χΩ\Ωt

.

Let

δ := |Ω| inf
(x,ξ)∈Ω×RN

F (x, s±, ξ) > 0

(see (f̃5)). We can approximate h∗ by a function h ∈ C([0, 1],W 1,p
0 (Ω) ∩ C1(Ω))

such that ∫
Ω

F (x, h(t),∇w) dx � δ/2 > 0.

We choose ε > 0 such that s− < −ε < 0 < ε < s+, so that h(0) ∈ int(D+
ε ) \ D−

ε and
h(1) ∈ int(D−

ε ) \ D+
ε . Finally

Jλ
w(h(t) � 1

p
‖∇h(t)‖p

p − 1
2
λδ � C − 1

2
λδ.

Choose λ̃ = 2C/δ. Notice that λ̃ does not depend on w. The existence of a nodal
solution for (Pλ,w) follows at once by theorem 4.1. �

4.2. Nodal solution of (Pλ)

In this subsection we prove theorem 1.2 using an iterative procedure.
Proof of theorem 1.2. Let us choose λ > λ̃, where λ̃ is as in theorem 4.2. Fix

u0 and let M > 0, depending on λ and u0, be as in proposition 2.1. For each n ∈ N
+
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denote by un the nodal solution in C1
0 (Ω) of (Pλ,un−1) given by theorem 4.2. From

its proof,

un ∈ ∂C(int(D+
ε ) ∩ int(D+

ε )) \ (int(D+
ε ) ∪ int(D−

ε )). (4.4)

Let us stress that ε depends on M which is independent on n (remark 4.2). Thus
the set ∂C(int(D+

ε ) ∩ int(D+
ε )) \ (int(D+

ε ) ∪ int(D−
ε )) is a closed invariant set and

does not depend on n.
By proposition 2.1, ‖un‖C1,α � M , and by the compactness of the embedding

C1,α(Ω) ↪→ C1
0 (Ω), (un)n is relatively compact in C1

0 (Ω). Unless to pass to a
subsequence, let

ũ := lim
n→∞un in C1

0 (Ω).

As in the proof of theorem 1.1, ũ is a solution of (Pλ). By the closedness of the set
∂C(int(D+

ε ) ∩ int(D+
ε )) \ (int(D+

ε ) ∪ int(D−
ε )), it follows from (4.4) that ũ is a sign

changing function as we claimed.

5. Examples and open questions

This section is devoted to some examples of applications of our main theorems and
a few open questions.

Example 5.1. Let k0, θ0, θ1 positive numbers with θ0 + θ1λ
1/p′

1 < λ1, g : Ω ×
R

N → R a continuous, positive function such that g(x, ξ) � k0 + θ1|ξ|p−1. Define
f : Ω × R × R

N → R such that

f(x, s, ξ) =

⎧⎨
⎩

(λ1 + g(x, ξ))|s|p−2s if |s| � 1

[λ1 + g(x, ξ)) + θ0(|s| − 1)]
|s|p−2

s
if |s| > 1

Then, theorem 1.1 applies.

Example 5.2. Let r, q, t � 1 such that max{r, q} < p < t, r + q < p + 1, and g :
Ω × R

N → R a continuous function such that infΩ×RN g(x, ξ) > 0 and

lim
|ξ|→+∞

g(x, ξ)
|ξ|q−1

= � �= 0.

Define f : Ω × R × R
N → R such that

f(x, s, ξ) =
{|s|r−2s g(x, ξ) if |s| > 1
|s|t−2s g(x, ξ) if |s| � 1

Then, theorem 1.2 applies.

Question 5.1. Because of the extremality of uN and uP in corollary 1.1, a non
trivial solution of (P ) in between, would be a nodal solution. It still remains an
open question whether this situation occurs. We believe that in order to prove that
such solution exists, extra assumptions would be needed. Indeed, in [11] for p = 2
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it has been proved that, when f does not depend on the gradient, is sublinear,
and its derivative at zero is greater than λ2 (being λ2 the second eigenvalue of
the negative Laplacian), the problem admits the biggest negative and the smallest
positive solution which turn out to be also minimizers of the energy functional.
The existence of a mountain pass critical point in between follows at once. The
variational characterization of λ2 allows finally to prove that such critical value is
non zero (see also [8] for an extension to p-Laplace equations for p �= 2).

Question 5.2. Is it possible to find a positive and a negative solution of (Pλ)? We
underline that, under our assumption, for fixed w ∈ C1

0 (Ω) the energy functional Jλ
w

has the mountain pass geometry for big λ, and a positive /negative solution follows
for problem (Pλ,w). It should then be proved that the limit of the approximated
sequence is not zero.
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