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Abstract

We consider finite groups in which, for all primes p, the p-part of the length of any conjugacy class is
trivial or fixed. We obtain a full description in the case in which for each prime divisor p of the order of
the group there exists a noncentral conjugacy class of p-power size.
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1. Introduction

Let G be a finite group, and g ∈G; we denote by xG the conjugacy class of x, that
is, xG = {g−1xg | g ∈G}. Then |xG | = |G : CG(x)| is the conjugacy class size (sometimes
called the index) of x. We let

cl(G) = {|xG | | x ∈G}.

It is of some interest to investigate the relationship between the structure of a finite
group G and the arithmetical properties of cl(G). The earliest and best-known instance
of such a relationship is Burnside’s pα-lemma: a group which admits a conjugacy
class whose order is a nontrivial prime-power cannot be simple. More recently, there
have appeared a number of papers addressing the question of the recognition of certain
classes of groups (for example nilpotent or soluble) by the set of conjugacy class sizes,
and particular effort has been devoted to direct products. Before mentioning some of
the known results, it is convenient to set a specific notation. If π1, π2 are nonempty
sets of positive integers, their product is defined to be the set

π1 × π2 = {n1n2 | n1 ∈ π1, n2 ∈ π2}.

Thus, given finite groups H and G, one has cl(H ×G) = cl(H) × cl(G). In particular,
the set of class sizes of a finite nilpotent group is the product of sets all of whose
elements are powers of the same prime. The converse of this fact seems indeed
rather far from being true: in [7] A. R. Camina and R. D. Camina produce examples
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of nonnilpotent groups with the same class sizes of a nilpotent group (the smallest
example being a nonnilpotent group G with cl(G) = {1, 2, 4} × {1, 5}). However,
in [4], Camina proves that if cl(G) = {1, pa} × {1, qb}, for primes p and q, then G
is nilpotent: a result that has later been generalized by Beltrán and Felipe [2, 3],
by showing that the same conclusion holds when n and m are coprime and cl(G) =

{1, n} × {1, m}. Moreover, in [5], A. R. Camina and R. D. Camina prove that if
cl(G) = {1, p1} × {1, p2} × · · · × {1, pk}, with distinct primes p1, p2, . . . , pk, then G is
nilpotent (further results in this direction may be found in [6]). The aim of this note
is to extend this kind of result. As a special case, we shall obtain the following theorem.

T 1.1. Let pm1
1 , pm2

2 , . . . , pmk
k be powers of distinct primes, and let G be a group

with
cl(G) = {1, pm1

1 } × {1, pm2
2 } × · · · × {1, pmk

k }.

Then G is nilpotent.

Let us now explain the more general result that we in fact establish.
For k ≥ 1, and given nontrivial powers pm1

1 , . . . , pmk
k of distinct primes, we denote

byD(pm1
1 , . . . , pmk

k ) the class of all finite groups G such that

cl(G) ⊆ {1, pm1
1 } × · · · × {1, pmk

k },

and we say that a group G is a D-group if G belongs to one of such classes. The
object of this paper is a strict subclass of D (but containing, for instance, all nilpotent
D-groups). Namely, we denote by D(pm1

1 , pm2
2 , . . . , pmk

k ) the class of those groups G
such that

{pm1
1 , . . . , pmk

k } ⊆ cl(G) ⊆ {1, pm1
1 } × · · · × {1, pmk

k }.

We then say that a group G is aD-group if it belongs to one of these last classes. Our
aim is to give a complete description of all D-groups. Now, the basic examples of
D-groups are the following:

(I) p-groups with a unique nontrivial conjugacy class size;
(II) semidirect products G = PQ, where p, q are distinct primes, P is a normal abelian

p-subgroup of G, Q is an abelian Sylow q-subgroup, CQ(P) = Z(G), and Q/Z(G)
is a cyclic group acting fixed point freely on P.

Ito [10] proved that if cl(G) = {1, m}, then m = pα for some prime p and G = A × P,
with A abelian and P a group of type (I). Groups of type (I) have been subject to
a rather intensive study; in particular, Ishikawa [9] proved that they have nilpotency
class at most 3. Relevant extensions of Ishikawa’s work may be found in a series of
papers of Mann; in particular, we shall make use of results in [12]. The proof that
a group G such that cl(G) = {1, pα, qβ}, with p, q distinct primes, is a direct product
G = A × H with A abelian and H a group of type (II) essentially goes back to Baer [1].

We call groups of type (I) and type (II), described above, basicD-groups. Our main
result (Theorem 3.10), is then the following theorem.
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T 1.2. Any D-group is the direct product of basic D-groups of pairwise
coprime order.

We have not attempted to generalize the Beltrán–Felipe theorem, although it does
not seem implausible that our approach may prove useful also in that direction. All
groups considered in this paper are finite. For a group G, Z(G) and F(G) will denote,
respectively, the centre and the Fitting subgroup of G.

2. Preliminaries

Let us start by recalling a standard and elementary fact, which we will use without
any further reference.

L 2.1. Suppose that the prime p does not divide any conjugacy class size of the
group G. Then G has a central Sylow p-subgroup (possibly trivial).

We now introduce a weaker condition than D, which refers to a single prime. It is
hoped that, in its generality, the main result of this section (Theorem 2.3), might be
useful in further investigation. Given a group G and a prime p, we denote by cl(G)p

the set of all p-parts of the conjugacy class sizes of G, and by ep(G) the number of
elements of cl(G)p which are distinct from 1, that is,

ep(G) = |{|xG |p | x ∈G, p divides |xG |}| = |cl(G)p| − 1.

Thus, ep(G) = 0 if and only if G has central Sylow p-subgroup. The following is a
simple but very useful remark, whose proof is rather easy.

L 2.2. Let p be a prime, and let N be a normal subgroup of the group G.

(i) If (p, |N|) = 1, then cl(G/N)p ⊆ cl(G)p; in particular, ep(G/N) ≤ ep(G).
(ii) If (p, |G/N|) = 1, then cl(N)p ⊆ cl(G)p: in particular, ep(N) ≤ ep(G).

Our interest is in groups G such that ep(G) = 1. If this is the case, we denote by
pα(p) the only nontrivial power of p that may occur as the p-part of a conjugacy class
size of G. Thus, ep(G) ≤ 1 if and only if cl(G) ⊆ ∆ × {1, pα(p)}, where ∆ is a set of
p′-numbers. Observe also that every group G in which the Sylow p-subgroups have
prime order p satisfies ep(G) = 1, and there are plenty of groups with this condition
that are not p-soluble. However, for p-soluble groups, the condition ep(G) = 1 has
strong consequences.

T 2.3. Let G be a p-soluble group with ep(G) = 1. Then G has p-length 1.
If, furthermore, the Sylow p-subgroups of G are not abelian, G has a normal
p-complement.

P. Let G and p satisfy the hypotheses of the theorem. Denote by pa = pα(p) the
only nonidentity power of p that divides some conjugacy class size of G, and let
pb = |G|p. We first show that G has p-length one. By Lemma 2.2 we may well assume
Op′(G) = 1. Let A = Op(G); then A = F(G) and, in particular, CG(A) = Z(A). We want
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to show that A is a Sylow p-subgroup of G. If G = A there is nothing to prove. Thus,
assume G has p′-elements.

Let x be a p′-element of G, and let P0 be a Sylow p-subgroup of CG(x). First,
observe that P0 centralizes CG(x) ∩ A. In fact let y ∈ P0; then y commutes with
the p′-element x, and so CG(xy) = CG(x) ∩CG(y) ≤CG(x). Thus p does not divide
|CG(x) : CG(xy)|, which means that y centralizes a Sylow p-subgroup of CG(x), in
particular, y centralizes CG(x) ∩ A. Now we have the following result.

(i) P0 ≤ Z(A).

Suppose, in contradiction, that there exists g ∈ P0 \ Z(A). Let X = CG(x) ∩ A =

P0 ∩ A; then, as x < Z(A) = CG(A), X < A; in particular, Y = NA(X) > X. Clearly,
X and Y are CG(x)-invariant: let S/X = CY/X(g). As g is a p-element, and Y/X a
p-group, we have S/X , 1 (that is, S > X). Now, [〈g〉, 〈x〉, S ] = 1 (as g centralizes
x), and [S , 〈g〉, 〈x〉] ≤ [X, 〈x〉] = 1. Consequently, by the three subgroups lemma,
[S , 〈x〉, 〈g〉] = 1. Thus, [S , 〈x〉] ≤CG(g) ∩ A. Now, we know that g centralizes a Sylow
p-subgroup of CG(x); since g does not centralize A, we deduce that CG(g) ∩ A = X.
Thus, [S , 〈x〉] ≤ X, and so [S , 〈x〉, 〈x〉] = 1. Since x is a p′-element, this forces
[S , 〈x〉] = 1, and we have the contradiction S ≤CG(x) ∩ A = X. Hence P0 \ Z(A) = ∅,
and (i) is proved.

Let P be a Sylow p-subgroup of G, containing P0. Observe that, assuming such x
exists, point (i) implies that pa = |xG |p = |P : P0| ≥ |P/Z(A)|.

We also have the following result.

(ii) A = Z(A).

Suppose, in contradiction, that there exists u ∈ A \ Z(A). Then Z(A) <CA(u) < A,
and so 1 < |G : CG(u)|p ≤ |P : CP(u)| ≤ |P : Z(A)|. By the remark just made above, this
is a contradiction. Hence, we have proved (ii). Again, notice that, as A 6≤CG(x), this
implies the following result.

(iii) pa = |P : P0| > |P/A|.

Now, let P be a Sylow p-subgroup of G, and suppose, in contradiction, that
P > A. Let L/A = Op′(G/A), and let H be a complement of A in L (that is, a
Hall p′-subgroup of L). Now, it follows from (i) that if g ∈ P \ A, then CG(g) is a
p-subgroup. Thus, P/A acts as a group of fixed point free automorphisms of L/A.
In particular, since CG(G/A) ≤ L/A, P/A is either cyclic or a quaternion group. In
any case, LP/L = Op(G/L), and so (as, by Lemma 2.2, we may suppose Op′(G) = G)
G = LP. Then G/A is a Frobenius group with kernel L/A and complement P/A. In
particular, we have P = NG(P), and so P has h = |H| distinct conjugates in G, any two
of which intersect in A.

Observe that, if y ∈ A, then CG(y) ≥ A, and so |yG |p < |P : A|. Hence, by (iii),
y centralizes some Sylow p-subgroup of G, that is, some Ph with h ∈ H. We thus
get

A =
⋃
h∈H

CA(Ph). (2.1)
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Also, if g ∈ P \ A, then g does not centralize A, and CG(g) ≤ P, so, as g ∈CG(g),

|P/CA(P)| ≥ |P : CA(g)| > |P : CP(g)| = pa. (2.2)

Denoting by t the number of distinct orbits of the action by conjugation of H on A,
from (2.1) and (2.2), we get

t ≤ |CA(P)| < |P|/pa. (2.3)

On the other hand, for every 1 , h ∈ H, we have that CA(h) is a Sylow p-subgroup of
CG(h), and so |CA(h)| = |P|/pa. Then Burnside’s counting lemma yields

t|H| =
∑
h∈H

|CA(h)| = |A| + (|H| − 1)|P|/pa,

therefore
(t − |P|/pa)|H| = |A| − |P|/pa > 0,

and hence, finally, t > |P|/pa, which contradicts (2.3). This completes the proof that
P = A and, consequently, that G has p-length 1.

Now assume that a Sylow p-subgroup P of G is not abelian. As before, we may
suppose Op′(G) = 1, and thus aim at proving P = G. If, in contradiction, G contains
a nontrivial p′-element x, the same argument as in the proof of point (i) above shows
that, since P = Op(G),

pa = |P : CP(x)| ≥ |P/Z(P)|.

On the other hand, there exists y ∈ P \ Z(P), and hence

pa = |yG |p = |P : CP(y)| < |P : Z(P)|.

This contradiction proves the second claim of the theorem. �

In the case in which the Sylow p-subgroups are not abelian a little more can easily
be established.

L 2.4. Let G be a p-soluble group with ep(G) = 1 and let P be a Sylow
p-subgroup of G. Assume that P is not abelian. Then Z(P) ≤ Z(G).

P. Let G and p satisfy the hypotheses of the lemma. Then, by Theorem 2.3, G has
a normal p-complement N. Thus, G = NP and CP(N) = Op(G). Let a ∈ P \ Z(P), then
CG(a) = CN(a)CP(a), and so |P : CP(a)| = |G : CG(a)|p = pα(p).

Let b ∈ N, let Y be a Sylow p-subgroup of CG(b), and let x ∈ N such that Y ≤ Px.
If Y = Px then, in particular, b centralizes Z(P)x. Otherwise, |Px : Y | = pα(p). Take
y ∈ Y; then CG(by) = CG(b) ∩CG(y). Thus, by centralizes some conjugate of Y in
CG(b) = CN(b)Y , say Yc with c ∈CN(b). Hence, [NY, y] = [NYc, y] ≤ N[Yc, y] = N.
This holds for every y ∈ Y and so Y ' YN/N is abelian. Let a ∈ Y \ Z(Px). Then
CPx (a) ≥ YZ(Px) and, by the initial observation,

pα(p) = |Px : CPx (a)| ≤ |Px : YZ(Px)| ≤ |Px : Y | = pα(p).

Hence Y = CPx (a) and so Z(Px) ≤ Y . We have thus shown that every element of
N centralizes a N-conjugate of Z(P). It then follows that Z(P) centralizes N, and,
consequently Z(P) ≤ Z(G). �
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We end this section with two lemmas from the literature. The first is a
straightforward application of results of Dolfi and Lucido, and of Camina; we remark
that it does not assume p-solubility.

L 2.5. Let p be a prime, G a group, and let pa = max(cl(G)p). Let x ∈G be such
that pa divides |xG |. Assume that x is a q-element for some prime q. Then we have the
following results.

(i) (Dolfi and Lucido [8]) If q , p, CG(x) is p-soluble with abelian Sylow
p-subgroups; moreover Oq(CG(x)) has a normal p-complement.

(ii) (Camina [4]) If q = p, a Sylow p-subgroup of CG(x) is a direct factor of CG(x).

P. Let G and x satisfy the hypotheses of the lemma, and write H = CG(x).
Let y be a any q′-element of H. Then, since (|x|, |y|) = 1 and xy = yx, we have
CG(xy) = H ∩CG(y) = CH(y). Thus, by the assumption on x, p does not divide
|H : CG(xy)| = |H : CH(y)|. Hence, we conclude that every q′-element of H centralizes
some Sylow p-subgroup of H. Point (i) now follows from [8, Theorem 5], and point
(ii) from [4, Theorem 1]. �

The second result we quote, due to Mann, dealing with 2-groups, is strictly related
to the theory of p-groups with only two class sizes.

L 2.6 (Mann [12, Theorem 7]). Let G be a 2-group, and let x ∈G \ Z(G) be such
that the conjugacy class of x has minimal size for noncentral classes of G. Then 〈x〉G

is abelian.

3. D-groups

Clearly, the classD defined in the introduction is just the class of all groups G such
that ep(G) = 1 for every prime p ∈ π(G/Z(G)). Observe that the following corollary is
an immediate consequence of Theorem 2.3.

C 3.1. Let G be a soluble D-group, and assume that G does not have any
abelian Sylow subgroups. Then G is nilpotent.

Another simple but useful fact is the following lemma, whose proof is immediate.

L 3.2. Let G be a D-group, and let x, y ∈G. If CG(y) ≤CG(x), then |G : CG(x)|
and |CG(x) : CG(y)| are coprime.

It is not difficult to show that D is a proper (and indeed, much stricter) subclass
of D. For instance, cl(A5) = {1, 12, 15, 20} and so A5 belongs to D but not to D
(indeed, we shall show in due course that every D-group is soluble). We will not
pursue here the study of the more general class D, though it is not unlikely that much
could be said about it too, at least in the soluble context. However, as we shall see
from the proofs, the condition that G contains classes of prime power size is essential
to make our arguments effective. An indication of how decisive this extra condition
might be is Burnside’s lemma, a recent development of which, due to A. R. Camina
and R. D. Camina, will be important in our proofs.

https://doi.org/10.1017/S0004972711002735 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002735


[7] Conjugacy class sizes of certain direct products 223

L 3.3 [5, Proposition 1]. Let u be an element of the group G such that |uG | is a
power of the prime p. Then 〈uG〉′ ≤ Op(G).

We now establish that anyD-group is soluble. In fact we prove slightly more.

T 3.4. Let G be a group with e2(G) = 1 and 2α(2) ∈ cl(G). Then G is soluble.

P. Let G be a counterexample of minimal order, and write 2α = 2α(2).
Let u ∈G be such that |uG | = 2α, and set C = CG(u). Let P be a Sylow 2-subgroup

of G, and Y = P ∩C, so that |P : Y | = |G : C| = 2α and G = CP. Since C is maximal
among proper centralizers, we may suppose that u is a q-element for some prime q.

(1) q , 2.

In fact, if u is a 2-element, it follows by Lemma 2.5(ii) that Y is a direct factor of C.
Then u ∈ Y = CP(u); thus Z(P) ≤ Y , and consequently Z(P) ≤ Z(G). Let g ∈ P, and
suppose |gP| < 2α; then g centralizes some Sylow 2-subgroup of G, that is, g ∈ Z(P).
It follows that u is a noncentral element of P with minimal conjugacy class size; by
Lemma 2.6, 〈u〉P = 〈u〉G is abelian. Hence 〈u〉G ≤ Y , and C = CG(〈u〉G) is normal in G,
which is thus soluble.

Now, as q , 2, point (i) of Lemma 2.5 applies, yielding the following result.

(2) Y is abelian and Oq(C) has a normal 2-complement.

The next step is to show the following result.

(3) Y E P or CP(Y) = Y .

Write R =
⋂

x∈P Y x. Then Y E P if and only if Y = R. Now, every element
of G may be written as g = ha with h ∈ P, a ∈C, hence, as R E P, Rg = Ra, and so
RG = 〈Rg | g ∈G〉 = RC ≤ YC ≤C. Observe that RC ∩ P is a normal subgroup of P
contained in C ∩ P = Y; thus RC ∩ P = R. Let y ∈ Y be such that CP(y) > Y . Then
|yG |2 ≤ |P : CP(y)| < |P : Y | = 2α, and so CG(y) contains a Sylow 2-subgroup of G, that
is, y ∈ Z(Pc) for some c ∈C. Also, as CG(y) ≥ Y , we may take Pc to contain Y , and
hence Yc ≤ Pc ∩C = Y . Then c ∈ NC(Y), and we obtain

y ∈ Y ∩ Z(Pc) = Y ∩ Z(P)c = (Y ∩ Z(P))c ≤ Rc ∩ Y ≤ R.

Since Y is abelian, this proves claim (3).

(4) Y E P.

Suppose Y 6E P, and, as before, let R be the largest normal subgroup of P contained
in Y . Then, as CP(Y) = Y , we have Z(P) ≤ R. Now, RG = RC ≤ YC , and so, by
Lemma 2.5(i), RG has a normal 2-complement M. Then M EG, and RG = M(RG ∩ P)
= M(RG ∩ Y) = MR. Now, Y is abelian and not normal in P, so Y <CP(R) E P. Also,
[RG,CP(R)] ≤ M.

Suppose CP(R) < P, and let D = CG(RG/M). Then CP(R) ≤ D and [D ∩ P, R] ≤
M ∩ P = 1; therefore D ∩ P = CP(R) < P. In particular, 2 divides |G/D|. Now, by [8,
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Theorem 5], [Oq(C), Y] ≤ Op′(C). Hence, [Oq(C), RG] ≤ Op′(C) ∩ RG ≤ M, that is,
Oq(C) ≤ D. Therefore, G/D is a q, p-group. In fact G/D = (CD/D)(PD/D), where
CD/D is a q-group.

Let a ∈ R; then |aP| ≤ |P/CP(R)| < |P : Y | = pα. Thus, a ∈ Z(Px) for some x ∈C and,
a fortiori, a ∈ Z(P)G. Therefore, R ≤ Z(P)G ∩ P ≤ R, and so RG = Z(P)G.

Now, consider the faithful action of G/D on the abelian 2-group V = RG/M. As
CD/D is a q-group, there is a q-element y ∈C such that 1 , yD ∈ Z(CD/D). Suppose
that CV (yD) ≥ Z(P)M/M. Then, for every x ∈C,

[yD, Z(Px)] = [(yD)x, Z(P)] = [yD, Z(P)] ≤ M,

and so yD centralizes Z(P)xM/M; as this holds for every x ∈C, y centralizes
Z(P)G M/M = RG/M, which contradicts yD , 1. Thus CV (y) does not contain any
conjugate of Z(P)M/M. In particular, as RG/M is a normal 2-subgroup of G/M,
|yG |2 , 1, and so |yG |2 = 2α.

Let S be a Sylow 2-subgroup of CG(y), which, by possibly replacing y with a
conjugate, we may assume to be contained in P. By Lemma 2.5, S is abelian, and
by what we proved above, Z(P) 6≤ S . Then, if b ∈ S , CP(s) ≥ S Z(P) > S . Hence
|sG |2 ≤ |P : CP(s)| < |P : S | = 2α, and therefore s centralizes some Sylow 2-subgroup
of G, that is, s ∈ Z(P)G ∩ P = R. Thus S ≤ R, and so |P : R| ≤ |P : S | = 2α = |P : Y |.
This implies the contradiction R = Y .

We are left with the case CP(R) = P. Then R = Z(P), and RG = MZ(P). Let g ∈ P,
with |gP| < 2α = |P : Y |. We have the fact that g centralizes some Sylow 2-subgroup
of G, and so there exists x ∈C such that

g ∈ Z(Px) ∩ P ≤ MZ(P) ∩ P = Z(P).

Thus, 2α is the minimal size among the noncentral conjugacy classes of P. Now, if
y ∈ Y \ Z(P), then, since Y is abelian, Y ≤CP(y) < P; that is, 1 < |yP| ≤ |P : Y | = 2α.
Hence y is a noncentral element of P with minimal class size. By Lemma 2.6, we have
the fact that 〈y〉P is abelian; thus 〈y〉P ≤CP(y) = Y , and so 〈y〉P ≤ R = Z(P), which is a
contradiction. This concludes the proof of claim (4).

As Y E P, we have YG = YC ≤C = CG(u), and so, in particular, YG ≤
⋂

x∈P Cx =

CG(〈u〉G). Let M = O2(YG). We know that M is a normal 2′-subgroup of G. We next
prove the following result.

(5) [YG,G] ≤ M, and Y ≤ Z(P).

Again let D = CG(YG/M); as before, we have Oq(C) ≤ D, so G/D is a {q, 2}-group
and thus it is soluble. Let g ∈ D, and let Q be a Sylow 2-subgroup of CG(g). Then, as
D EG, Q ∩ D is a Sylow 2-subgroup of CD(g). Thus, if Q is a Sylow 2-subgroup of
G, Q ∩ D is a Sylow 2-subgroup of D as well. Otherwise, |Q| = |P|/2α = |Y | = |YG/M|.
Now, g centralizes the normal 2-section YG/M, and so QM ≥ YG, yielding, by order
reasons, Q ≤ YG = MY; thus, Q is a conjugate of Y and is already contained in D.
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This shows that e2(D) ≤ 1. If e2(D) = 0, D is a central Sylow 2-subgroup, and so it
is soluble; since G/D is also soluble, we obtain a contradiction with the choice of G.
Thus, e2(D) = 1; this, in particular, means that the Sylow 2-subgroups of D have order
2b > |Y |. Now, u ∈ D, and Y is a Sylow 2-subgroup of CD(u). Thus |uD| = 2b/|Y |, and
D satisfies the hypotheses of the theorem. If D <G, D is soluble, and therefore G is
also soluble. Thus, D = G. Consequently, [P, Y] ≤ P ∩ [P, YG] ≤ P ∩ M = 1, and point
(5) follows.

(6) Y ≤ Z(G).

With the same notation as before, let L = NG(Y). By (5) and the Frattini argument,
we have G = ML and L = CG(Y). Observe that u ∈ L, and, as M ≤C, C = M(C ∩ L) =

MCL(u); hence
|uL| = |L : CL(u)| = |G : CG(u)| = 2α.

Let g ∈ L, then [Y, g] = 1, so there exists a Sylow 2-subgroup Q of CG(g) with
Y ≤ Q. Then, however, by (5), [Y, Q] ≤ Q ∩ M = 1 and so Q ≤ L. This shows that
cl(L)2 = cl(G)2, and therefore that L satisfies the hypotheses of the theorem. If L <G,
it is then soluble by the choice of G; consequently G/M is soluble and therefore, since
M is a group of odd order, G is soluble, contrary to its choice. Thus L = G.

(7) Let g be a 2-element of G \ Y; then CG(g) contains a unique Sylow 2-subgroup
of G as a direct factor.

In fact, let g be a 2-element of G \ Y and let h be a 2′-element in CG(g)
(possibly h = 1). Then, by (6), CG(hg) = CG(h) ∩CG(g) ≥ Y〈g〉 > Y . Thus, |(hg)G |2 <
|P|/|Y | = 2α, and therefore hg centralizes a Sylow 2-subgroup Q of G, with Q ≤CG(g).
It follows that every 2′-element of CG(g) centralizes a Sylow 2-subgroup of CG(g).
By [4, Theorem 1], CG(g) has a unique Sylow 2-subgroup Q which is a direct factor;
by what we observed before, Q is a Sylow 2-subgroup of G.

(8) Y = O2(G).

Indeed, for every x ∈G, Z(Px) centralizes O2(G); but it follows from (7) that
every 2-element of G is contained in the centre of some Sylow 2-subgroup, and so
PG ≤CG(O2(G)). If O2(G) > Y it then follows from (7) that O2(G) is contained in
a unique Sylow 2-subgroup, and this means that P EG, and consequently that G is
soluble. Therefore, by choice of G, we have O2(G) = Y .

(9) Conclusion.

Let A = 〈uG〉. Then, since u is a q-element, A/A′ is an abelian q-group. Now,
by Lemma 3.3, A′ ≤ O2(G). Thus, by point (8), A′ ≤ Y , and since (by point (6)) Y
is central in G, we deduce that A′ = 1 and so that A is a normal abelian q-subgroup
of G. Consider the action of P on A, observing that, since Y = CP(u), Y is the kernel
of this action. Suppose that, for some g ∈ P \ Y , CA(g) , 1, and let 1 , x ∈CA(g).
Then, by point (7), g is centralized by a unique Sylow 2-subgroup of G, which clearly
contains Z(P), and which centralizes x as well. Thus, CA(g) ≤CA(Z(P)). From this it
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follows that P/Y acts as a group of fixed point free automorphisms on [A, Z(P)]. Since
Z(P) > Y , [A, Z(P)] is not trivial. Therefore, P/Y is either cyclic or a quaternion group.
Now, that P cannot be a quaternion group follows from point (7), which implies, in
particular, that every 2-element of G is central in some Sylow 2-subgroup. Hence P/Y
is cyclic, and so G/Y is soluble, yielding the final contradiction. �

C 3.5. EveryD-group is soluble.

E. (1) Theorem 3.4 does not hold for primes p ≥ 5, even with respect to
p-solubility. In fact, for p ≥ 5, let H = S p be the full symmetric group on p points,
choose a prime q , p, and let M be the natural permutational module for GF(q)[H].
Then consider the semidirect product G = MH: one has cl(G)p = {1, p}, p ∈ cl(G),
but G is not p-nilpotent. (I believe that e3(G) = 1 and 3α(3) ∈ cl(G) together imply
3-solubility, but do not have a complete proof of this.)

(2) For p = 2, none of the assumptions on 2-parts of conjugacy class sizes in
Theorem 3.4 may be dropped. We have already observed that e2(A5) = 1 (although,
I have not been able to decide whether, in the case of nonabelian Sylow 2-subgroups,
the hypothesis that 2α(2) ∈ cl(G) is necessary to get the conclusion of Theorem 3.4).
On the other hand, let p be an odd prime and let H = PSL(2, 7). Then H has a
2-transitive action on a set of eight points (for example the set of points of the
projective line P(1, 7)); let M be the permutational GF(p)[H]-module with respect to
this action and G = MH the resulting semidirect product. While G is not soluble, one
checks that cl(G)2 = {2, 4, 8} and 8 ∈ cl(G). Observe that 8 is the largest 2-part of the
conjugacy class sizes, so this group also provides an example that [7, Theorem 1] does
not hold without the assumption of the group being an A-group. Finally, let K be the
direct product of three copies of S 3, and G as before; then cl(K ×G)2 = {2i | 0 ≤ i ≤ 6}
and K ×G admits a conjugacy class of size 2i for each 0 ≤ i ≤ 6.

We now turn to the soluble case, and start by looking at a single prime. We recall
that a group G is an A-group if all Sylow subgroups of G are abelian. Let us remind
ourselves of an elementary and well-known fact about A-groups (see for example [11,
Section 7, Exercise 3]).

L 3.6. Let G be an A-group. Then G′ ∩ Z(G) = 1.

The following statement could be proved without restricting ourselves to A-groups,
but in this form it is simpler to prove, and is enough for our applications.

L 3.7. Let G be a soluble A-group in D, and p a prime divisor of the order of G
such that pα(p) ∈ cl(G). Let P be a Sylow p-subgroup of G. Then one of the following
properties is true.

(1) P ≤ F(G).
(2) Op(G) ≤ Z(G), and P/Op(G) is cyclic of order pα(p).

P. Let G be as in the statement; write A = Op′(G), and let P be a Sylow
p-subgroup of G. By Theorem 2.3, AP EG, whence CP(A) = F(G) ∩ P = Op(G),
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and G = ANG(P). By assumption, there exists an element u ∈G, of p′-order, such
that |G : CG(u)| = pα(p). Observe that A ≤CG(u), and so u ∈CG(A).

Set C = CG(u), and let Y be a Sylow p-subgroup of C; by possibly replacing u with a
conjugate we may well assume Y ≤ P (and consequently |P : Y | = pα(p)). Observe also
that AY = A(P ∩C) = AP ∩C and so, being P abelian, AY E APC = G. Furthermore,
u ∈CG(AY) EG. Since AY is an A-group we have, by Lemma 3.6,

(AY) ∩CG(AY) = (AY)′ ∩ Z(AY) = 1.

Let a ∈ (AY)′; then a and u belong to trivially intersecting normal subgroups, and hence

CG(au) = CG(a) ∩CG(u) ≤C.

By Lemma 3.2, p does not divide |C : CG(au)|, which means that a centralizes a Sylow
p-subgroup of C. Now, since AY EG, all Sylow p-subgroups of C are contained in
AY and so are conjugates of Y by elements in [A, Y]. However, [A, Y] ≤ (AY)′, and so
we have that every element of [A, Y]A centralizes some Y x with x ∈ [A, Y). This forces
[A, Y] to be centralized by Y; thus [A, Y, Y] = 1, and so, by coprime action, [A, Y] = 1.
Hence Y ≤CP(A) = Op(G).

If Op(G) = P, then P ≤ F(G) and we are in case (1) of the statement.
Thus assume from now on that CP(A) = Op(G) < P. Then there exists an element

a ∈ A which is not centralized by any conjugate of P, and so

Y ≤ Op(G) ≤CG(a) ∩ P < P,

but also
pα(p) = |P : P ∩CG(a)| ≤ |P : Y | = pα(p).

Hence P ∩CG(x) = Y , showing that Y = CP(A) = Op(G).
This, in particular, implies that u centralizes F(G) ≤ AY , and consequently u ∈

F(G) ∩ A, that is, u ∈ Z(A). Thus P/Y is an abelian p-group acting faithfully on Z(A).
Suppose that there exists b ∈ Z(A) such that CP(b) > Y . Then b must centralize some
Sylow p-subgroup of G, that is, some conjugate Px with x ∈ A. Since b ∈ Z(A), this
implies that b centralizes P. Hence P/Y acts faithfully on [Z(A), P] as a group of fixed
point free automorphisms and therefore it is a cyclic p-group.

It remains to show that Y ≤ Z(G).
Observe that, C being maximal among the centralizers of noncentral elements of G,

we may suppose that u is a q-element for some prime q , p. Let b ∈C be a q′-element.
Then, as we have already argued, b centralizes a Sylow p-subgroup of C. However,
Y = Op(G) is the only such Sylow subgroup, and so b ∈CG(Y). Set R = CG(Y); it
follows that

R ≥ APOq(C) ≥ Oq(C).

Hence, G/R is a q-group.
We will show that R = G. Now, since G/R is an abelian q-group, it has a regular

orbit on the p-group Y; that is, there exists y ∈ Y such that CG(y) = R. In particular,
|G/R| = qα(q). By Lemma 3.6, R′ ∩ Y ≤ R′ ∩ Z(R) = 1, and so, by the same argument
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used in the first part of the proof, every element of R′ centralizes a Sylow q-subgroup
of R. In particular, as u ∈ Z(A) E R is a q-element, we conclude that R′ ≤CG(u) = C.

Let N = NG(P). Then R = A(N ∩ R) = ACN(Y) (observe that P ≤ N ∩ R). We have

[P, N ∩ R] ≤ R′ ∩ P ≤C ∩ P = Y

and, consequently, [P, N ∩ R, N ∩ R] ≤ [Y, R] = 1. Therefore, as P is abelian, N ∩ R =

CN(P) = CA(P)P, yielding

R = A(N ∩ R) = AP and |G/AP| = qα(q).

Now let g ∈ P such that P = Y〈g〉 (remember that P/Y is cyclic), and let ax ∈CG(b),
with a ∈ A, x ∈ N; then 1 = [ax, b] = [a, b]x[x, b], and so [a, b]x = [b, x] ∈ A ∩ P = 1:
in particular, a ∈CG(g). Thus a centralizes Y〈g〉 = P, and so a ∈ N. Therefore
CG(b) ≤ N. Write S = CN(P/Y); then P = YCP(S ), and we may take b as above,
with [B, S ] = 1. Let y ∈ Y with CG(y) = CG(Y) = R; then yb generates P modulo Y
and so, as we have seen for b, CG(yb) ≤ N. Now, as yb generates P modulo Y ,
CG(yb) = CN(yb) ≤ S ≤CG(b). Hence, CG(yb) = CG(b) ∩CG(b) = R ∩ N = CG(P).
As CG(P) ≤ R = CG(y), we then have that q does not divide |R : CG(P)| = |A : CA(P)|.
However, this is a contradiction, because u ∈ Oq(A) does not centralize P, and this
proves R = CG(Y) = G. �

To proceed, we have now to impose the fullD property.

L 3.8. Let G be a soluble A-group inD, and p a prime divisor of |G| such that G
has a normal Sylow p-subgroup P. Then we have the following results.

(i) |P/(P ∩ Z(G))| = pα(p).
(ii) G/CG(P) is a q-group for some prime q , p.

P. Since P is a normal Sylow subgroup of G, it admits a complement H; and,
as P is abelian, by coprime action we have P = (P ∩ Z(G)) × [P, H]. Thus, G =

(P ∩ Z(G)) × [P, H]H, and we may therefore assume P ∩ Z(G) = 1, that is, CP(H) = 1.
Now, there exists x ∈G such that |G : CG(x)| = pα(p), and since P is abelian we may

assume that x is a q-element for some prime q , p. By replacing x with a conjugate,
we may also suppose x ∈ Z(H). Write C = CG(x) ∩ P = CP(x). Then |P : C| = pα(p)

and C EG.
(i) By the standard argument, every q′-element of H centralizes the unique Sylow

p-subgroup of CG(x) which is C. Hence Oq(H) ≤CG(C). Let Q be a Sylow q-subgroup
of H; then, as x ∈ Q does not centralize P, Q is not contained in F(G), and thus, by
Lemma 3.7, |Q/Oq(G)| = qα(q). Now, H = CH(C)Q and so |H/CH(C)| = |Q/CQ(C)|.
However, x ∈CQ(C) \ Oq(G), hence |CQ(C)| > |Oq(G)|, therefore

|G : CG(C)| = |H : CH(C)| < |Q : Oq(G)| = pα(p),

and so |G : CG(C)| is a power of q strictly smaller than |G : CG(C)|. It then follows that
G = CG(g) for every g ∈C, and we conclude that C ≤ Z(G) = 1, proving (i).
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(ii) We have |G : CG(x)| = |P| = pα(p) and CG(x) ∩ P = 1, and hence CG(x) = H. Let
F(G) = P × N, where N is the p′-component of F(G). Then N = F(G) ∩ H. As before,
let Q be a Sylow q-subgroup of H with x ∈ Q. By Lemma 3.7, Op(G) ≤ Z(G), and
thus Oq(G)〈x〉 ≤ Z(H). In particular, Oq(G)〈x〉 centralizes N. Since, by Lemma 3.7,
|Q/Oq(G)| = qα(q), we have |G/CG(N)|q < qα(q); thus q does not divide |G : CG(y)| for
every y ∈ N. Now, let b ∈G be such that |G : CG(b)| = qα(q). Then CG(b) ≥ NOp(G)
and so b ∈ F(G). Let b = ac with a ∈ P and c ∈ N. Then CG(c) ≥CG(b), and, on the
other hand, we know that c centralizes some Sylow q-subgroup of G. Hence c ∈ Z(G).
We may thus assume b ∈ P. Finally, let g ∈CG(b); then CP(g) , 1, and so

|G : CG(g)|p = |P : CP(g)| < |P| = pα(p),

yielding P ≤CG(g), which proves point (ii). �

L 3.9. Let G be a group in D(pm1
1 , pm2

2 , . . . , pmk
k ). Let p = p1, P a Sylow

p-subgroup of G, and A = Op′(G). Suppose that P is not abelian. Then we have the
following results.

(i) A is a group inD(pm2
2 , . . . , pmk

k ).
(ii) Z(A) is centralized by P.

P. (i) Write α = α(p) = m1. Let a ∈ A, and m = |aA| = |A : CA(a)|. Then, since
by Theorem 2.3 A EG = AP, we clearly have |aG | = mpi, where i ∈ {0, pα}. Thus
cl(A) ⊆ {1, pm2

2 } × · · · × {1, pmk
k }.

Let now i ∈ {2, . . . , k}. There exists r ∈G such that |gG | = pmi
i . Write g = bx, with

b ∈ A, x a p-element, and [a, x] = 1. As CG(x) contains CG(g) which has p′-index in
G, x is central in some Sylow p-subgroup of G. By Lemma 2.4, x ∈ Z(G). Hence
CG(g) = CG(b), and from this it follows that |b| = pmi . This holds for every prime pi

with i ∈ {2, . . . , k}, and thus (i) is proved.

(ii) It is enough to show that P centralizes every q-element a ∈ Z(A), for any prime q.
If q < {p2, . . . , pk}, then a ∈ Z(G) and there is nothing to show. Thus, let q = pi for
some i = 2, . . . k. By (i) there exists b ∈ A such that |bG | = pmi

i . Hence a ∈CG(b)
and, up to conjugation, P ≤CG(b). Then, for every x ∈ P, bx centralizes a Sylow
pi-subgroup of CG(b); in particular, as a ∈ Opi (G), x centralizes a. Thus [P, a] = 1, and
(ii) follows. �

We are now in a position to prove our main result.

T 3.10. Let G be aD-group. Then G is a direct product,

G = A ×G1 ×G2 × · · · ×Gt,

where A is abelian, each Gi is a basic group of type D (that is, groups of type (I) and
(II) described in the introduction), and (|Gi|, |G j|) = 1 for i , j.

P. Let G belong to D(pm1
1 , . . . , pmk

k ), for distinct primes p1, . . . , pk. This, in
particular, implies that π(G/Z(G)) = {p1, . . . , pk}. If k = 1, the group G is, up to a
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central factor, a p-group, and so it must be a basic D-group of type (I). We then
proceed by induction on k. Thus, suppose k ≥ 2.

(A) Assume that, for some i ∈ {1, . . . , k}, the Sylow pi-subgroups of G are not
abelian. We may as well suppose that i = 1, and write P for a fixed Sylow p1-subgroup
of G. By Theorem 2.3, G has a normal p1-complement N, and by Lemma 3.9, N is a
group belonging to D(pm2

2 , . . . , pmk
k ). By inductive assumption, N is a direct product

N = A ×G2 × · · · ×Gk, with A ≤ Z(N) and G2, . . . ,Gn basic D-groups of coprime
orders. Then each Gi is normalized by P. Also, by Lemma 3.9, P centralizes A,
and so A ≤ Z(G).

Let i ∈ {2, . . . , k}. Suppose that Gi is a q-group for some prime q. Then N (and
consequently G) has a unique nonabelian Sylow q-subgroup Q ≥Gi. By Theorem 2.3,
P commutes with Q, and thus with Gi.

Suppose now that Gi is a basic D-group of type (II). Then, say, Gi = T Q, T is a
normal abelian t-subgroup, Q is an abelian Sylow q-subgroup (t, q are distinct primes
belonging to {p2, . . . , pk}), CQ(T ) = Z(Gi), and Q/Z(Gi) is a cyclic group acting fixed
point freely on T . It is then clear that |T | = tα(t), and |Q/CQ(T )| = qα(q). Let g be an
element of G such that |gG | = qα(q). It is easy to see that g must have a nontrivial
t-component a ∈ T and that |aG | = qα(q). Up to conjugation, we may suppose that a is
centralized by P. Thus, for every y ∈ P, CT (y) , 1, and so |yG |t < |T | = tα(t), forcing y to
centralize T . Hence [T, P] = 1. Thus [T, P,Gi] = 1, [Gi, T, P] = 1, and so, by the three
subgroup lemma, [Gi, P] ≤CGi (T ) = TZ(Gi). It follows, by also applying Lemma 3.9,
that [Gi, P, P] ≤ [Gi, TZ(Gi)] = 1, whence, by coprime action, [Gi, P] = 1.

We have thus shown that P centralizes N. Hence G = N × P, and we are done.

(B) We now assume that G is an A-group. Clearly, G is not nilpotent; hence,
by Lemma 3.7, there exists a prime p = pi such that G has a normal (noncentral)
Sylow p-subgroup P. Let H be a p′-complement of P in G; then, since P is
abelian, P = [P, H] ×CP(H). Thus, CP(H) = CP(G) is a central direct factor of G,
and so we may well assume CP(G) = 1. Then, by Lemma 3.8, |P| = pα(p) = pmi

i and
H/CH(P) 'G/CG(P) is a q-group for some prime q = p j , p. Let Q be a Sylow
q-subgroup of H. Then clearly, Q 6≤ F(G), and so, by Lemma 3.7, Q/(Q ∩ Z(G)) is
cyclic of order qα(q). It follows that H/CH(P) is cyclic of order qα(q), and this implies,
in particular, that H/CH(P) acts as a group of fixed point free automorphisms of P.
Moreover, CH(P) = Oq(G) × N, where N is a (normal) q′-Hall subgroup of CH(P).
Therefore, G = NG1, where N EG, N ∩G1 = 1, and G1 = PQ is a basic D-group of
type (II). Now, the same remark as used in case (A) guarantees the existence of an
element u ∈ Q such that |uG | = pα(p). Thus, in particular, [N, u] = 1. Since u does not
belong to CG(P) = Q ∩ Z(G), and Q/CQ(P) is cyclic, it follows that [N, Q] = 1. Thus
N centralizes G1, and therefore G = G1 × N. Since (|G1|, |N|) = 1, the conclusion now
follows by inductive assumption. �

Observe that the statement of Theorem 3.10 provides also, in principle, a way of
describing, given prime powers pm1

1 , pm2
2 , . . . , pmk

k , the possible class size patterns of
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groups in the class D(pm1
1 , pm2

2 , . . . , pmk
k ). In particular, nonnilpotent direct factors in

the decomposition of G provided by the theorem correspond to pairs of distinct primes
pi, p j such that the product pi p j does not divide any conjugacy class size. If no such
pair exists, the group G is nilpotent, and this proves Theorem 1.1.
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