THE COMPLEXITY OF NOWHERE DIFFERENTIABLE CONTINUOUS FUNCTIONS

T. I. RAMSAMUJH

Introduction. It was not always clear that there could exist a continuous function which was differentiable at no point. (Such functions are now known as nowhere differentiable continuous functions. By "differentiable" we mean having a finite derivative.) In fact in 1806 M . Ampere [2] even tried to show that no such function could exist but his reasonings were later discovered to be fallacious. Of the early attempts at constructing a nowhere differentiable continuous function mention must be made of B. Bolzano. In a manuscript dated around 1830, (see [21]) he constructed a continuous function on an interval and showed that it was not differentiable on a dense set of points. (It was later shown by K. Rychlik [21] that this function was in fact nowhere differentiable.)

Around 1873 K. Weierstrass gave the first legitimate example of a nowhere differentiable continuous function. This discovery was published by Du BoisReymond [6] and prior to this no such function was ever published. Another example published in 1890 (see [5]) was thought to have been discovered by C. Cellerier as early as 1850 but of this there is much doubt. Also a function studied by B. Riemann around 1860 and very often thought of as being nowhere differentiable turned out to be differentiable at certain points (see [7], [8] or [25]) So Weierstrass holds sole claim for the first discovery.

Later many more examples of nowhere differentiable continuous functions were constructed and it became fashionable to ask that more stringent requirements be satisfied (for instance, instead of being nowhere differentiable, the function might be required to have no derivative, finite or infinite). In 1925 A. Besicovitch [4] constructed a continuous function with no one-sided derivative, finite or infinite. Such functions are called Besicovitch functions in honour of their discoverer. There was, however, much controversy about Besicovitch's example because the construction was rather complicated and the reasoning could not be readily followed. E. D. Pepper [19] later examined the same example but there were still doubts in the minds of some as to the existence of such functions. These doubts were put to rest by A. P. Morse [17] who gave an example which satisfied even more stringent requirements than those of Besicovitch functions.

The studies on nowhere differentiable continuous functions took a different twist when in 1931 S. Mazurkiewicz [16] showed that the set of all such functions is a comeager subset of the set of all continuous functions of period 1. At about the same time Banach [3] found the same result except that in this case the functions were defined on the set $[0,1]$. So in the sense of Baire Category the continuous functions which are not nowhere differentiable are exceptional. This

[^0]provided an abstract proof of the existence of nowhere differentiable continuous functions. A little later S. Saks [22] showed that the set of all Besicovitch functions was a meager subset of the set of all continuous functions. So we cannot get an abstract existence proof as before. However J. Malý [13] recently showed that the Besicovitch functions were co-meager in a certain restricted class of continuous functions, thus retrieving the situation.

Let C be the Polish space of all real valued continuous functions on [0,1] with the metric obtained from the sup norm. Let ND and BF be the sets of all nowhere differentiable functions and Besicovitch functions in C respectively. It is easy to show that ND and BF are coanalytic subsets of C. Mauldin [14], [15] showed that ND was not a Borel subset, and in a communication with Kechris (see [9]) indicated that he also had a proof that BF was not Borel. Kechris [9] later showed that ND and BF were both complete coanalytic subsets (and hence they can't be Borel).

In this paper we shall investigate a natural rank function on ND, the definition of which is essentially due to Kechris and Woodin [10]. With each f in ND we associate a well-founded tree $T(f)$ and show that the height of $T(f)$ is always a limit ordinal. The rank of f is then defined as the unique ordinal such that the height of $T(f)$ is ω. α. This rank function provides a natural measure of the complexity of the functions in ND in the sense that functions of small rank are easily seen to be nowhere differentiable and vice versa. In fact the functions of rank 1 are precisely the set BC of the Banach functions in C. (A Banach function is one such that at each point, at least one of the Dini derivates is infinite. What Banach [3] had essentially shown in his proof of the comeagerness of ND was that BC was comeager, hence the name.) All of the classical examples of functions in ND also turn out to have rank 1 or 2.

We show that the rank function has the definability properties summarized in the concept of a coanalytic norm and that the it is unbounded in ω_{1} on BF. (With a little more effort we can actually show that for each $\alpha<\omega_{1}$ there is an f in BF with rank exactly α.) By using the Boundedness theorem [18, p. 196] we obtain proofs of the non-Borelness of BF and ND that are different from those of Mauldin and Kechris. Finally we give an alternative definition of the rank function by associating a transfinite sequence of nested closed sets with each f in ND . The rank of f is defined there as the least ordinal for which the sequences stabilizes at the empty set (in much the same spirit as the Cantor-Bendixson analysis of closed sets).

1. Preliminaries. Coanalytic subsets and coanalytic norms. A Polish space is a complete, separable metric space and in this section X will always be a Polish space. A subset A of X is a Borel subset of X if it belongs to the smallest σ-algebra of subsets of X which contains all the open sets of X. Let Y be a Polish space and $f: Y \rightarrow X$ be a function. We say that f is Borel measurable if for each open set E in X, the set of $f^{-1}[E]$ is a Borel subset of Y. A subset A of X is an analytic subset of X if there exists a Polish space Y and a Borel subset B of $X \times Y$ such that A is the projection of B onto X (i.e.,
$A=\{x \in X: \quad(\exists y \in Y)(\langle x, y\rangle \in B)\})$. A subset A of X is a coanalytic subset of X if its complement $X-A$ is an analytic subset of X.

A coanalytic subset A of X is said to be complete if for any Polish space Y and coanalytic subset B of Y, there is a Borel measurable function $f: Y \rightarrow X$ such that $y \in B$ if and only if $f(y) \in A$. Since the Polish space of real numbers has a coanalytic subset which is not Borel it follows that no complete coanalytic subset of X can be Borel.

A norm on a set $A \subseteq X$ is just a map $\varphi: A \rightarrow$ ORD, where ORD is the class of all ordinals. (A norm is also referred to as a rank function.) The map induces a pre-wellordering \leqq_{φ} on A which is defined by

$$
x \leqq_{\varphi} y \Leftrightarrow \varphi(x) \leqq \varphi(y)
$$

Two norms are said to be equivalent if they induce the same pre-wellordering. Now let A be a coanalytic subset of X. A norm $\varphi: A \rightarrow$ ORD is a coanalytic norm if there are analytic and coanalytic subsets B and C of X^{2} such that

$$
y \in A \Rightarrow(\forall x)[\{x \in A \& \varphi(x) \leqq \varphi(y)\} \Leftrightarrow\langle x, y\rangle \in B \Leftrightarrow\langle x, y\rangle \in C] .
$$

It is known that every coanalytic subset has at least one coanalytic norm. Moreover this coanalytic norm is always equivalent to one which takes values in ω_{1} (see [18]).

For the sake of convenience we list the main descriptive set theoretic results that we will need.

Proposition A. (Boundedness theorem) [$\mathbf{1 8} \mathbf{p}$. 196] Suppose A is a coanalytic subset of X and $\varphi: A \rightarrow \omega_{1}$ is a coanalytic norm. Then A is Borel if an only if $\varphi[A]$ is countable.

From Proposition A we immediately see that to show A is not Borel, it will suffice to show that φ is unbounded in ω_{1} on A. Such a proof of the nonBorelness of A is usually referred to as a rank argument. There is a slight extension of this rank argument which depends on the following result.

Proposition B. [10] Suppose A is a coanalytic subset of X and $\varphi: A \rightarrow \omega_{1}$ is a norm on A such that
(i) there is an analytic subset of B of X^{2} such that for all $x, y \in A$ we have $\varphi(x)<\varphi(y)$ if and only if $\langle x, y\rangle \in B$, and
(ii) φ is unbounded in ω_{1} on A. Then A is not a Borel subset of X.

Proposition C. [10] Let X, Y be Polish spaces and $A \subseteq X, B \subseteq Y$ be coanalytic subsets. If $\varphi: B \rightarrow \omega_{1}$ is a coanalytic norm and there is a Borel measurable function $f: X \rightarrow Y$ with $f^{-1}[B]=A$ then the map $\psi: A \rightarrow \omega_{1}$ defined by $\psi(x)=\varphi(f(x))$ is also a coanalytic norm.

Well-founded trees and their heights. Let A be any non-empty set. We define A^{*} to be the set of all finite sequences from A (including the empty sequence \emptyset).

A tree on A is any subset T of A^{*} such that for all a_{1}, \ldots, a_{n+1} in $A,\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is in T whenever $\left\langle a_{1}, \ldots, a_{n}, a_{n+1}\right\rangle$ is in T. The elements of T are called nodes. By definition \emptyset is always a node of any non-empty tree. We call \emptyset the root of the tree. A subset of S and T which is also a tree on A is called a subtree of T.

Let \mathbf{u} and \mathbf{v} be finite sequences from A and let T be a tree on A. We denote the concatenation of \mathbf{u} and \mathbf{v} by $\mathbf{u}^{\hat{v}} \mathbf{v}$. We define $T[\mathbf{u}]$ to be the set of all finite sequences \mathbf{v} in A such that $\mathbf{u}^{\prime} \mathbf{v}$ is in T. It is easy to verify that $T[\mathbf{u}]$ is always a tree. (Note that if \mathbf{u} is not in T then $T[\mathbf{u}]$ is empty.) When \mathbf{u} is in T we shall refer to $T[\mathbf{u}]$ as the tree at the node \mathbf{u} in T. A tree T on A is said to be well-founded provided there is no sequence $\left\langle a_{n}\right\rangle \quad(n=1,2,3, \ldots)$ from A such that $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is in T for each n.

Let T be a well-founded tree on A. We define a sequence of trees as follows. Put $T^{0}=T, T^{\lambda}=\cap\left\{T^{\alpha}: \alpha<\lambda\right\}$ for λ a limit ordinal, and

$$
T^{\alpha+1}=\{\mathbf{v} \in T:(\exists a \in A)(\mathbf{v}\langle a\rangle \in T\} .
$$

Observe that the sequence $\left\langle T^{\alpha}\right\rangle$ is strictly decreasing so for sufficiently large α, T^{α} is empty. Note also that if T is non-empty, then the least α such that T^{α} is empty must be a successor ordinal. We define the height $|T|$ of the tree T be the least α such that $T^{\alpha+1}$ is empty. (If T is the empty tree we adopt the convention that $|T|=-1$ and if T is not well-founded we put $|T|=\infty$.) If \mathbf{v} is a node in T we define the $\operatorname{rank}|\mathbf{v} ; T|$ of \mathbf{v} in T to be the height of the tree at \mathbf{v} in T (i.e., $|\mathbf{v} ; T|=|T[\mathbf{v}]|)$. It is easy to see that for any finite sequence \mathbf{u} from A that

$$
T^{\alpha}[\mathbf{u}]=(T[\mathbf{u}])^{\alpha} \quad \text { for each } \alpha
$$

Using this we get

$$
|T|=\sup \{|\mathbf{v} ; T|+1: \mathbf{v} \in T, \mathbf{v} \neq \emptyset\} .
$$

It turns out that the height is a coanalytic norm if we view the set of all well-founded trees on $P=\{1,2,3, \ldots\}$ as a subset of a certain Polish space. A tree on P is a subset of P^{*} and so can be identified with its characteristic function

$$
\chi_{T}: P^{*} \rightarrow\{0,1\}=2
$$

So a tree on P can be viewed as an element of the Polish space $F\left(P^{*}, 2\right)$ of all functions from P^{*} to 2 . Let WF be the set of all well-founded trees on P viewed as a subset of $F\left(P^{*}, 2\right)$. Then we have the following precise result.

Proposition D. [10] WF is a coanalytic subset of $F\left(P^{*}, 2\right)$ and $|\cdot|: \mathrm{WF} \rightarrow \omega_{1}$ is a coanalytic norm.
2. Basic properties of the rank function. In this section we define the rank function and investigate its basic properties. But first some notation. Let f be in
C and I be any interval with endpoints a and b (where $a \neq b$). We define the difference quotient of f on I by

$$
\Delta f(I)=(f(b)-f(a)) /(b-a) .
$$

Proposition 1. ND and BF are coanalytic subsets of C.
Proof. It will suffice to show that $C-\mathrm{ND}$ and $C-\mathrm{BF}$ are analytic. Now $C-$ ND is the set of all f in C such that there exists an x such that f is differentiable at x. But f is differentiable at x if and only iff for all n there is an m such that
${ }^{(*)}$ for all h_{i}, h_{2} with $0<\left|h_{1}\right|, h_{2} \mid<1 / m$ and $x+h_{1}, x+h_{2}$ in [0,1] we have

$$
\left|\Delta f\left(x+h_{1}, x\right)-\Delta f\left(x+h_{2}, x\right)\right| \leqq 1 / n
$$

Let $E(n, m)$ be the set of all $\langle f, x\rangle$ such that $\left(^{*}\right)$ holds. Then it is easy to see that $E(n, m)$ is closed and consequently $\cap_{n} \cup_{m} E(n, m)$ is Borel. C - ND is the projection of this Borel set onto C and so it is analytic.

Also $C-\mathrm{BF}$ is the set of all f in C such that there exists an x such that f has a one-sided derivative (possible infinite) at x. Now this is so if and only if for all n there is an m such that
(**) $\exists a \in\{-1,1\}$ such that $\forall h_{1}, h_{2}$ with $0<h_{1}, h_{2}<1 / m$ and $x+a h_{1}$, $x+a h_{2}$ in [0,1] we have

$$
\left|\Delta f\left(x+a h_{1}, x\right)-\Delta f\left(x+a h_{2}, x\right)\right| \leqq 1 / n
$$

or $\forall h$ with $0<h<1 / m$ with $x+a h$ in $[0,1]$

$$
\Delta f\left(x+a h_{1}, x\right) \geqq n,
$$

or $\forall h$ with $0<h<1 / m$ with $x+a h$ in $[0,1]$

$$
\Delta f\left(x+a h_{1}, x\right) \leqq-n
$$

Let $F(n, m)$ be the set of all $\langle f, x\rangle$ such that ${ }^{\left({ }^{* *}\right)}$ holds and proceed as above to conclude that $C-\mathrm{BF}$ is analytic.

Let $R[0,1]$ be the set of all nonempty intervals which are open with respect to the topology of $[0,1]$. Let also $Q[0,1]$ be the set of all intervals in $R[0,1]$ which have rational endpoints. If I is an interval we denote its closure by \bar{I} and its length by $|I|$.

Definition Let f be in C and $M>0$. We define the tree $T(M, f)$ on $Q[0,1]$ as follows. $\left\langle I_{1}, \ldots, I_{n}\right\rangle$ is in $T(M, f)$ if and only if
(i) $I_{1}=[0,1], \quad \bar{I}_{i+1} \subseteq I_{i}, \quad\left|I_{i}\right| \leqq 1 / i \quad$ and
(ii) for all K, L in $R[0,1]$ with $I_{n} \subseteq K, L \subseteq I_{i}$ we have

$$
|\Delta f(K)-\Delta f(L)| \leqq M / i .
$$

We define the tree $T(f)$ by

$$
T(f)=\{\emptyset\} \cup \bigcup_{N}\left\{\langle N\rangle^{\wedge} \mathbf{u}: \mathbf{u} \text { is in } \mathrm{T}(\mathrm{~N}, \mathrm{f})\right\} .
$$

Proposition 2. f is in ND if and only if $T(f)$ is well-founded.
Proof. " \Rightarrow " It will suffice to show that $T(M, f)$ is well-founded for each $M>0$. Suppose $T(M, f)$ is not well-founded. Then there is an infinite sequence $\left\langle I_{n}\right\rangle$ such that $\left\langle I_{1}, \ldots, I_{n}\right\rangle$ is in $T(M, f)$ for each $n \geqq 1$. Take x in $\cap\left\{\bar{I}_{n}: n \geqq 1\right\}$. We shall show that f is differentiable at x. Fix m and let $h_{1}, h_{2} \neq 0$ be such that $x+h_{1}, x+h_{2}$ are in I_{m}. Then $0<\left|h_{1}\right|,\left|h_{2}\right|<1 / m$. Let also K, L be intervals in $R[0,1]$ with endpoints $x+h_{1}, x+d_{1}$ and $x+h_{2}, x+d_{2}$ (respectively) where d_{1} and d_{2} are chosen so that

$$
\begin{aligned}
& x \in K, L \subseteq I_{m}, \quad\left|d_{1}\right|<\left|h_{1}\right|,\left|d_{2}\right|<\left|h_{2}\right| \quad \text { and } \\
& \left(h_{1}-d_{1}\right) / h_{1}=\left(h_{2}-d_{2}\right) / h_{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left|\frac{f\left(x+h_{1}\right)-f(x)}{h_{1}}-\frac{f\left(x+h_{2}\right)-f(x)}{h_{2}}\right| \\
& \leqq \left\lvert\, \frac{h_{1}-d_{1}}{h_{1}} \cdot \frac{f\left(x+h_{1}\right)-f\left(x+d_{1}\right)}{h_{1}-d_{1}}\right. \\
& \left.-\frac{h_{2}-d_{2}}{h_{2}} \cdot \frac{f\left(x+h_{2}\right)-f\left(x+d_{2}\right)}{h_{2}-d_{2}} \right\rvert\, \\
& +\left|\frac{f\left(x+d_{1}\right)-f(x)}{h_{1}}-\frac{f\left(x+d_{2}\right)-f(x)}{h_{2}}\right| \\
& \leqq\left|\frac{f\left(x+d_{1}\right)-f(x)}{h_{1}}\right|+\left|\frac{f\left(x+d_{2}\right)-f(x)}{h_{2}}\right| \\
& +|\Delta f(K)-\Delta f(L)| \cdot\left|\left(h_{1}-d_{1}\right) / h_{1}\right| .
\end{aligned}
$$

Now the first two terms tend to 0 as d_{1} tends to 0 by the continuity of f. Also $\left(h_{1}-d_{1}\right) / h_{1}$ tends to 1 as d_{1} tends to 0 and

$$
|\Delta f(K)-\Delta f(L)| \leqq M / m
$$

from the definition of the tree $T(M, f)$. So

$$
\left|\frac{f\left(x+h_{1}\right)-f(x)}{h_{1}}-\frac{f\left(x+h_{2}\right)-f(x)}{h_{2}}\right| \leqq \frac{M}{m} .
$$

But x is an interior point of I_{M} and $\left({ }^{*}\right)$ is true for each m. From this it follows that f is differentiable at x.
" \Leftarrow " Suppose now that f is not in ND. Choose x_{0} in $[0,1]$ such that f is differentiable at x_{0}. Then there is a positive integer c such that $f(x)$ always lies between $c .\left(x-x_{0}\right)$ and $-c .\left(x-x_{0}\right)$. Take $M=2 c$. Since f is differentiable at x_{0}, for all n there exists positive integers $m(n)$ such that for all h with $0<|h|<$ $1 / m(n)$ and $x_{0}+h$ in $[0,1]$ we have

$$
\left|\Delta f\left(x_{0}+h, x_{0}\right)-f^{\prime}\left(x_{0}\right)\right| \leqq M / 2 n
$$

We may assume without loss of generality that $m(n)$ is strictly increasing. Let

$$
p_{n}=\max \left\{0, x_{0}-1 / 2 m(n)\right\} \quad \text { and } \quad q_{n}=\min \left\{1, x_{0}+1 / 2 m(n)\right\} .
$$

Take $I_{1}=[0,1]$ and for each $n \geqq 2$ choose I_{n} in $Q[0,1]$ such that $I_{n} \subseteq\left[p_{n}, q_{n}\right]$ and $\bar{I}_{n} \subseteq I_{n-1}$. Then

$$
\left|I_{n}\right| \leqq q_{n}-p_{n} \leqq 1 / m(n) \leqq 1 / n .
$$

So for each $n,\left\langle I_{1}, \ldots, I_{n}\right\rangle$ satisfies condition (i) of the definition of $T(M, f)$. We will now show that condition (ii) is also satisfied.
Fix n. Since x_{0} is in I_{n} it will suffice to show that for all K, L in $R[0,1]$ with $x_{0} \in K, L \subseteq I_{i}$ we have

$$
|\Delta f(K)-\Delta f(L)| \leqq M / i
$$

For $i=1$ we have

$$
|\Delta f(K)-\Delta f(L)| \leqq|\Delta f(K)|+|\Delta f(L)| \leqq c+c=M / 1
$$

as required. For $i \geqq 2$ let $\{a, b\}$ and $\{c, d\}$ be the endpoints of K and L respectively. Then

$$
\begin{aligned}
\mid \Delta f & (K)-\Delta f(L)\left|=\left|\frac{f(b)-f(a)}{b-a}-\frac{f(d)-f(c)}{d-c}\right|\right. \\
& \leqq\left|\frac{f(b)-f(a)}{b-a}-f^{\prime}\left(x_{0}\right)\right|+\left|\frac{f(d)-f(c)}{d-c}-f^{\prime}\left(x_{0}\right)\right| \\
& \leqq\left|\frac{f(a)-f\left(x_{0}\right)}{a-x_{0}}-f^{\prime}\left(x_{0}\right)\right|+\left|\frac{f(b)-f\left(x_{0}\right)}{b-x_{0}}-f^{\prime}\left(x_{0}\right)\right| \\
& +\left|\frac{f(c)-f\left(x_{0}\right)}{c-x_{0}}-f^{\prime}\left(x_{0}\right)\right|+\left|\frac{f(d)-f\left(x_{0}\right)}{d-x_{0}}-f^{\prime}\left(x_{0}\right)\right| \\
& \leqq M / 4 i+M / 4 i+M / 4 i+M / 4 i=M / i .
\end{aligned}
$$

So $\left\langle I_{1}, \ldots, I_{n}\right\rangle$ is in $T(M, f)$ for each $n \geqq 1$. Thus $T(M, f)$ is not well founded and consequently (T) f is not well-founded.

Our next aim is to show that the height of $T(f)$ is always a limit ordinal. But first some definitions and two lemmas.

Definition. Let I be in $R[0,1]$ and T be a tree on $R[0,1]$. We define the subtree $T\rceil I$ to be set of all $\left\langle I_{1}, I_{2}, \ldots, I_{n}\right\rangle$ in T with $I_{2} \subseteq I$.

Let f be in ND and $M>0$. For each x in $[0,1]$ we define

$$
|T(M, f): x|=\min \{|T(M, f)| I \mid: x \in I \in R[0,1]\} .
$$

Lemma 3. If $|T(M, f)| \geqq \omega$. α then there is an x in $[0,1]$ such that

$$
|T(M, f): x| \geqq \omega \cdot \alpha .
$$

Proof. We will find a sequence of nested closed intervals $\left\langle L_{n}\right\rangle$ with $1 / n \leqq$ $\left|L_{n}\right| \leqq 2 / n$ such that

$$
|T(M, f)| L_{n} \mid \geqq \omega . \alpha \quad \text { for each } n \geqq 1 .
$$

Choosing x in $\cap\left\{L_{n}: n \geqq 1\right\}$ will then give

$$
|T(M, f): x| \geqq \omega \cdot \alpha .
$$

We construct L_{n} by induction on n. Take $L_{1}=[0,1]$. Given L_{n} choose closed intervals L^{\prime} and $L^{\prime \prime}$ such that

$$
L^{\prime} \cup L^{\prime \prime}=L_{n} ; \quad\left|L^{\prime}\right|,\left|L^{\prime \prime}\right|<2 / n+1 \quad \text { and } \quad\left|L^{\prime} \cap L^{\prime \prime}\right| \geqq 1 / n+1 .
$$

Now observe that if $\left\langle I_{1}, \ldots, I_{n+1}, \ldots, I_{k}\right\rangle$ is in $T(M, f)$ then $I_{n+1} \subseteq L^{\prime}$ or $I_{n+1} \subseteq L^{\prime \prime}$. So $\left\langle I_{1}, I_{n+1}, \ldots, I_{k}\right\rangle$ is in $T(M, f) \mid L^{\prime}$ or $T(M, f) \mid L^{\prime \prime}$. We claim that at least one of the latter two trees have height $\geqq \omega . \alpha$. Suppose that $|T(M, f)| L^{\prime} \mid$ and $|T(M, f)| L^{\prime \prime} \mid$ are both $\leqq \beta<\omega$. α. Then

$$
\begin{aligned}
|T(M, f)| L_{n} \mid & \leqq \sup \left\{|\mathbf{u} ; T(M, f)| L_{n}|+1:| \mathbf{u}=n+1\right\}+n \\
& \leqq \max \left\{\operatorname { s u p } \left\{|\mathbf{v} ; T(M, f)| L^{\prime}|+1:|\mathbf{v}|=2\}+n,\right.\right. \\
& \quad \sup \left\{|\mathbf{v} ; T(M, f)| L^{\prime \prime}|+1:|\mathbf{v}|=2\}+n\right\} \\
& \leqq \max \left\{|T(M, f)| L^{\prime}\left|,|T(M, f)| L^{\prime \prime}\right|\right\}+n \\
& \leqq \beta+n<\omega \cdot \alpha,
\end{aligned}
$$

which contradicts the induction hypothesis. Take L_{n+1} to be L^{\prime} if $\left|T(M, f) L^{\prime}\right|$ $\geqq \omega . \alpha$ and to be $L^{\prime \prime}$ otherwise. This completes the induction step.

Definition. Let T be a tree on $Q[0,1]$ and $k \geqq 1$. We define the subtree $[T]_{k}$ to be the set of all $\left\langle I_{1}, I_{2}, \ldots I_{n}\right\rangle$ in T such that there exists J_{2}, \ldots, J_{k} in $Q[0,1]$ such that the sequence $\left\langle I_{1}, J_{2}, \ldots, J_{k}, I_{2}, \ldots, I_{n}\right\rangle$ is also in T.

Lemma 4. Suppose $|T(M, f)| I \mid \geqq \omega$. α. Then for each $k \geqq 1$,

$$
\left|[T(M, f) \mid I]_{k}\right| \geqq \omega . \alpha .
$$

Proof. Observe from the definition of $T(M, f)$ that $\left\langle I_{1}, I_{2}, \ldots, I_{n}\right\rangle \in$ $T(M, f)$ implies $\left\langle I_{1}, J_{2}, \ldots, J_{m}\right\rangle$ is in $T(M, f)$ for any subsequence $\left\langle J_{2}, \ldots, J_{m}\right\rangle$ of $\left\langle I_{2}, \ldots, I_{n}\right\rangle$. Now

$$
\begin{aligned}
& \sup \left\{\mid \mathbf{v} ;\left[T(M, f)\lceil I]_{k}|:|\mathbf{v}|=2\}+k+1\right.\right. \\
& \geqq \mid\left\langle I_{1}\right\rangle ; T(M, f)\lceil I|+1=| T(M, f)\lceil I \mid \geqq \omega . \alpha .
\end{aligned}
$$

So

$$
\sup \left\{\left|\mathbf{v} ;[T(M, f) \mid I]_{k}\right|:|\mathbf{v}|=2\right\} \geqq \omega \cdot \alpha
$$

and hence

$$
\mid\left[T(M, f)\left|\lceil]_{k}\right| \geqq \omega . \alpha .\right.
$$

Proposition 5. For each f in ND the height of $T(f)$ is a limit ordinal.
Proof. It will suffice to show that $|T(f)| \geqq \omega$. $\alpha+1$ implies

$$
|T(f)| \geqq \omega \cdot(\alpha+1) .
$$

Suppose $|T(f)| \geqq \omega . \alpha+1$ then for some integer M we must have

$$
\mid(T(M, f) \mid \geqq \omega \cdot \alpha
$$

By Lemma 3 take x_{0} in [0,1] such that

$$
\left|T(M, f): x_{0}\right| \geqq \omega . \alpha .
$$

Fix $N \geqq 1$ and choose I_{2}, \ldots, I_{n} in $Q[0,1]$ such that $\left|I_{i}\right| \leqq 1 / i, \bar{I}_{i} \subseteq I_{i-1}$ and x_{0} is in I_{n}. (Here as always $I_{1}=[0,1]$.)

Now define the tree T_{n} as follows. $\left\langle I_{1}, \ldots I_{i}\right\rangle$ is in T_{n} for each $i=$ $1, \ldots, N-1$ and for each $\left\langle I_{1}, J_{n}, \ldots, J_{k}\right\rangle$ in $\left[T(M, f)\left\lceil I_{n}\right]_{n}\right.$ we let $\left\langle I_{1}, \ldots, I_{n-1}\right.$, $\left.J_{n}, \ldots, K_{k}\right\rangle$ be in T_{n}. Then it is easy to see that T_{n} is a subtree of $T(M N, f)$. But

$$
\begin{aligned}
\left|\left\langle I_{1}\right\rangle ; T_{n}\right| & \geqq \mid\left\langle I_{1}\right\rangle:\left[T(M, f)\left\lceil I_{n}\right]_{n} \mid+(N-2)\right. \\
& \geqq \omega \cdot \alpha+(N-2)
\end{aligned}
$$

by Lemma 4. Thus

$$
|T(M N, f)| \geqq \omega \cdot \alpha+(N-2)
$$

and so

$$
\begin{aligned}
|T(f)| & =\sup \{|T(M N, f)|+1: N \geqq 1\} \\
& \geqq \sup \{\omega \cdot \alpha+(N-1): N \geqq 1\}=\omega \cdot(\alpha+1) .
\end{aligned}
$$

Definition. For each f in ND we define the rank $|f|$ of f to be the unique ordinal α such that $|T(f)|=\omega$. α.

Since $Q[0,1]$ is countable, $T(f)$ is a countable tree, so $|f|<\omega_{1}$.
Proposition 6. $|\cdot|: N D \rightarrow \omega_{1}$ is a coanalytic norm.
Proof. It will suffice to show that the function h defined by $h(f)=|T(f)|$ is a coanalytic norm. Let $g: Q[0,1] \rightarrow P$ (where $P=\{1,2,3, \ldots\}$) be a Borel measurable bijection. Let $s(f)$ be the tree consisting of all $\left\langle N, g\left(I_{1}\right), \ldots, g\left(I_{n}\right)\right\rangle$ such that $\left\langle N, I_{1}, \ldots, I_{n}\right\rangle$ is in $T(f)$. Then $s: C \rightarrow F\left(P^{*}, 2\right)$ is a Borel measurable map (the tree $s(f)$ is viewed here as an element of the Polish space $F\left(P^{*}, 2\right)$). Also

$$
\mathrm{ND}=s^{-1}[\mathrm{WF}] \quad \text { and } \quad h(f)=|s(f)| .
$$

So it follows from Propositions C and D that h is a coanalytic norm.
Definition. Let f be in C. We define the amplitude of the difference quotient of f at x by

$$
A(f ; x)=\limsup _{h_{1}, h_{2} \rightarrow 0}\left|\frac{f\left(x+h_{1}\right)-f(x)}{h_{1}}-\frac{f\left(x+h_{2}\right)-f(x)}{h_{2}}\right| .
$$

So f is in ND if and only if $A(f ; x)>0$ for each x in $[0,1]$. Moreover $A(f ; x)$ is finite if and only if all the Dini derivates of f at x are finite. So f is a Banach function if and only if $A(f ; x)=+\infty$ for each x in $[0,1]$.

Proposition 7. $|f|=1$ if and only if f is a Banach function.
Proof. " \Rightarrow " Suppose f is not a Banach function. Then there is an x_{0} in $[0,1]$ such that $A\left(f ; x_{0}\right)$ is finite. We can thus find a positive integer M such that for all K, L in $R[0,1]$ with x_{0} in K, L we have

$$
|\Delta f(K)-\Delta f(L)| \leqq M
$$

We claim that $|T(M, f)| \geqq \omega$. Indeed let us fix n. Choose I_{2} in $Q[0,1]$ such that $\left|I_{2}\right| \leqq 1 / n$ and x_{o} is in I_{2}. By the continuity of f, we can find an I_{n} in $Q[0,1]$ with $\bar{I}_{n} \subseteq I_{2}$ and x_{0} in I_{n} such that

$$
|\Delta f(K)-\Delta f(L)| \leqq M / n
$$

for all K, L in $R[0,1]$ with $I_{n} \subseteq K, L \subseteq I_{2}$. (It suffices to choose I_{n} with endpoints close enough to I_{2}.)

Now take $I_{1}=[0,1]$ and I_{3}, \ldots, I_{n-1} in $Q[0,1]$ such that $\bar{I}_{i+1} \subseteq I_{i} \quad(i=$ $2, \ldots, n-1)$. Then it is easy to see that $\left\langle I_{1}, \ldots, I_{n}\right\rangle$ is in $T(M, f)$. (Note $\left\langle I_{1}, \ldots, I_{n}\right\rangle$ depends on n.) So

$$
|T(M, f)| \geqq n+1 .
$$

But this is true for each $n \geqq 1$, so

$$
|T(M, f)| \geqq \omega .
$$

Thus $|T(f)|>\omega$ and so $|f|>1$.
" \Leftarrow " Suppose now that $|f|>1$. Then $|f| \geqq 1$ and so by Proposition 5 $|T(f)| \geqq \omega \cdot 2$. Hence there is a positive integer M such that

$$
|T(M, f)| \geqq \omega+1 .
$$

So $T(M, f)$ must have a subtree as shown below.

Let x_{0} be a limit point of the set of all midpoints of the intervals $I_{n}^{(n)} \quad(n=$ $2,3, \ldots)$. Then we can find intervals $I_{n}^{(n)}$ arbitrarily close to x_{0}, for large enough
n. Let $h_{1}, h_{2} \neq 0$ be such that $x_{0}+h_{1}, x_{0}+h_{2}$ are in $[0,1]$. Then as in the " $\Rightarrow "$ part of the proof of Proposition 2 we get that

$$
\left|\frac{f\left(x_{0}+h_{1}\right)-f\left(x_{0}\right)}{h_{1}}-\frac{f\left(x_{0}+h_{2}\right)-f\left(x_{0}\right)}{h_{2}}\right| \leqq M .
$$

Since this is true for all h_{1}, h_{2} we get $A(f ; x) \leqq M$. So f is not a Banach function.

Proposition 8. If there is a constant $c>0$ such that $A(f ; x) \geqq c$ for all x in $[0,1]$, then $|f| \leqq 2$.

Proof. Suppose $|f|>2$. Then $|T(f)| \geqq \omega$. 3 . Hence there is an integer M such that

$$
|T(M, f)| \geqq \omega .2+1
$$

So $T(M, f)$ must have a subtree as shown below, where each of the nodes $\left\langle I_{1}, I_{2}^{(n)}, \ldots, I_{n}^{(n)}\right\rangle$ is of rank at least ω in $T(M, f)$.

Fix $n \geqq 2$ and consider the subtree T_{n} of $T(M, f)$ shown above. As in the " \Leftarrow " part of the proof of Proposition 7 we see that there is a point x_{n} in $\bar{I}_{n}^{(n)} \subseteq i_{n-1}^{(n)}$ such that $A(f ; x) \leqq M /(n-1)$.

But this is true for each $n \geqq 2$. So for large enough n we will get $A\left(f ; x_{n}\right)<c$, which is a contradiction. Hence $|f| \leqq 2$.

Remark. The converse of Proposition 8 is false. By using the techniques we will develop in the next section it will be easy to construct a function f with $|f|=2$ and $A\left(f ; x_{n}\right) \rightarrow 0$ for any given sequence $\left\langle x_{n}\right\rangle$ of distinct points in $[0,1]$ tending to zero. Using 8 it is not hard to check that all of the natural examples of functions in ND given in [4], [5], [6], [11], [12], [21], [23], [24], [26] have rank $\leqq 2$. A little more effort along with Proposition 7 shows that most of these functions in fact have rank 1 (see [20] for details).
3. Unboundedness of the rank function. In this section we will show that for each countable ordinal there is a Besicovitch function with rank $\geqq \alpha$. By refining this construction we also show that for each countable ordinal $\alpha \geqq 1$, there is a Besicovitch function f with $|f|=\alpha$. To this end we introduce the following definitions.

Definition . For each I in $Q[0,1]$ we define the subtree $T(M, f ; I)$ of $T(M, f)$ as the set of all $\left\langle I_{1}, \ldots, I_{n}\right\rangle$ in $T(M, f)$ such that there exists $J_{1}, \ldots J_{k}$ in $Q[0,1]$ such that $\left\langle I_{1}, \ldots, I_{n}, J_{1}, \ldots, J_{k}\right\rangle$ is in $T(M, f)$ and $J_{k} \subseteq I$.

For each x in $[0,1]$ we also define

$$
|T(M, f ; x)|=\min \{|T(M, f ; I)|: \quad x \in I \in Q[0,1]\} .
$$

The ordinal $|T(M, f ; x)|$ can be thought of as the local height of the tree $T(M, f)$ at x. The following result is therefore natural.
Lemma 9. Suppose $|T(M, f)| \geqq \omega$. Then there is an x in $[0,1]$ such that

$$
|T(M, f ; x)|=|T(M, f)| .
$$

Proof. The proof is very similar to that of Lemma 3. We shall find a nested sequence of closed intervals $\left\langle L_{2}\right\rangle$ with $1 / n<\left|L_{n}\right|<2 / n$ such that

$$
\left|T\left(M, f ; L_{n}\right)\right|=|T(M, f)| \quad \text { for each } n \geqq 1 .
$$

Taking x in $\cap\left\{L_{n}: n \geqq 1\right\}$ gives the result. Let $L_{1}=[0,1]$ and given L_{n} choose L^{\prime} and $L^{\prime \prime}$ as in Lemma 3. Now observe that if $\left\langle I_{1}, \ldots, I_{n+1}\right\rangle$ is a node of length $n+1$ in $T\left(M, f ; L_{n}\right)$ then $I_{n+1} \subseteq L^{\prime}$ or $I_{n+1} \subseteq L^{\prime \prime}$. So all the nodes in $T\left(M, f ; L_{n}\right)$ of length at least $n+1$ must lie in one of the trees $T\left(M, f ; L^{\prime}\right), T\left(M, f ; L^{\prime \prime}\right)$. Since

$$
\left|T\left(M, f ; L_{n}\right)\right|=|T(M, f)| \geqq \omega
$$

by the induction hypothesis, we must have

$$
\max \left\{\left|T\left(M, f ; L^{\prime}\right)\right|,\left|T\left(M, f ; L^{\prime \prime}\right)\right|\right\}=|T(M, f)| .
$$

We take L_{n+1} to be L^{\prime} if

$$
\left|T\left(M, f ; L^{\prime}\right)\right|=|T(M, f)|
$$

and $L_{n}^{\prime \prime}$ otherwise. This completes the proof.
Let S be the square in the plane with vertices at $(0,0),(1 / 2,1 / 2),(1,0)$ and $(1 / 2,-1 / 2)$. We define SF to be the collection of all Besicovitch functions whose graphs lie inside the square S. It is not difficult to see that SF is non-empty. Indeed all we need to do is to take a Morse-Besicovitch function f with $f(0)=$ $f(1)=0$ and $|f(x)| \leqq 1 / 2$ for all x in $[0,1]$ (see [17] and continuously squeeze it into a new function g whose graph lies in S. The squeezing transformation is given by

$$
g(x)=\left\{\begin{array}{lr}
x \cdot \tan \left[\frac{1}{2} \tan ^{-1}\{f(x) / x\}\right] & \text { for } 0<x \leqq 1 / 2 \\
(1-x) \cdot \tan \left[\frac{1}{2} \tan ^{-1}\{f(x) /(1-x)\}\right] & \text { for } 1 / 2<x<1 .
\end{array}\right.
$$

If f is in C we define a scaled copy of f onto the interval $[a, b]$ to be the function g given by

$$
\begin{aligned}
& g(x)=f(x-a) /(b-a)) \text { for } x \text { in }(a, b], \text { and } \\
& g(a)=f(0) .
\end{aligned}
$$

Let $I \subseteq[0,1]$ be a closed interval with rational endpoints and with $|I|>0$. Then there is an obvious way to define the tree $T(M, f \upharpoonright I)$. Let $R(I)$ be the set of all intervals which are open in I, and $Q(I)$ be the set of all intervals in $R(I)$ with rational endpoints.

Definition Let f be in C and $M>0$. We define the tree $T(M, f \upharpoonright I)$ as follows. $\left\langle I_{1}, \ldots, I_{n}\right\rangle$ is in $T(M, f \upharpoonright I)$ if and only if
(i) $I_{1}=I, I_{i} \in Q(I), \bar{I}_{i+1} \subseteq I_{i},\left|I_{i}\right| \leqq|I| / i$ and
(ii) for all K, L in $R(I)$ with $I_{n} \subseteq K, L \subseteq I_{i}$ we have

$$
|\Delta f(K)-\Delta f(L)| \leqq M / i
$$

Observe that if f and g are in C and $g \upharpoonright I$ is a scaled copy of f onto I, then $T(M, f)$ and $T(M, g\lceil I)$ are isomorphic trees.

Proposition 10. For each countable ordinal α there is an f in SF with $|f| \geqq$ α.

Proof. It will suffice to show that for each $\alpha<\omega_{1}$ there is an f in SF with $|T(f)| \geqq \omega$. α. We prove this by induction. By Proposition 7 we know that if f is in SF then $|T(f)| \geqq \omega .2$, so the result is clear for $\alpha=0,1$ and 2 . Suppose the result is true for $\alpha(\alpha \geqq 2)$. We have to prove it for $\alpha+1$. Let K_{n} be the interval $\left[2^{-n}, 2^{1-n}\right], n \geqq 1$. Choose f in SF with $|T(f)| \geqq \omega$. α. The basic idea is to put scaled copies of f / n onto K_{n} and so obtain a function g in C. Since

$$
T\left(1, g \mid K_{n}\right) \simeq T(1, f / n)=T(n, f)
$$

we would expect to get

$$
\begin{aligned}
\left(^{*}\right)|T(1, g)| & \geqq \sup \left\{\left|T\left(1, g \mid K_{n}\right)\right|: n \geqq 1\right\} \\
& =\sup \{|T(n, f)|: n \geqq 1\} \geqq \omega \cdot \alpha .
\end{aligned}
$$

So $|T(g)| \geqq \omega \cdot(\alpha+1)$ as required. But two things can go wrong here. Firstly the g obtained might not be in SF (in fact if we use the process above the g obtained would be differentiable at 0). Moreover if the rank of f is concentrated at the endpoints (i.e. if $T(M, f ; x)|<|T(M, f)|$ for all x except 0 and 1) the inequality $\left(^{*}\right)$ might not hold. So we need to modify our procedure accordingly.
Let H be the middle open third of $[0,1]$ (i.e., $H=(1 / 3,2 / 3)$) and H_{n} be the middle open third of K_{n}. Choose f in SF with $|T(f)| \geqq \omega . \alpha$ such that for each $M>0$ there is an x_{M} in H with

$$
\left|T\left(M, f ; x_{M}\right)\right|=|T(M, f)| .
$$

(This latter condition can be easily obtained by replacing f, if necessary, by five scaled copies of f, each onto a fifth of $[0,1]$.) Let g be the function defined by $g(0)=0, g \upharpoonright K_{n}$ is a scaled copy of f onto K_{n} for n even, and $g \upharpoonright K_{n}$ is a scaled copy of $f / 2 n$ onto K_{n} for n odd.

It is easy to see that g is in SF. (The only difficulty lies in showing that g has no right derivative at 0 , but this was ensured by choosing $g \upharpoonright K_{n}$ as scaled copies of f onto K_{n} for n even.)

Let n be odd and consider the function $g \upharpoonright K_{n}$. Let T_{n} be the tree $\left[T\left(1, g \upharpoonright K_{n}\right.\right.$; $\left.\left.H_{n}\right)\right]_{3}$ (recall that H_{n} is the middle open third of K_{n}). Observe that each interval in T_{n} is in $Q[0,1]$ and

$$
\left|T_{n}\right|+3 \geqq\left|T\left(1, g \upharpoonright K_{n}\right)\right| .
$$

Note also that

$$
T_{n} \simeq[T(1, f / 2 n ; H)]_{3}=[T(2 n, f ; H)]_{3} .
$$

So

$$
\sup \left\{\left|T_{n}\right|+4: n \geqq 1\right\} \geqq|T(f)| .
$$

Since $|T(f)|$ is a limit ordinal it follows that

$$
\sup \left\{\left|T_{n}\right|: n \geqq 1\right\} \geqq|T(f)| .
$$

Now let T_{n}^{\prime} be the tree defined by $\left\langle[0,1], I_{2}, \ldots, I_{n}\right\rangle$ is in T_{n}^{\prime} if and only if $\left\langle K_{n}, I_{2}, \ldots, I_{n}\right\rangle$ is in T_{n}. We claim that T_{n}^{\prime} is a subtree of $T(4, g)$. It will suffice to show that for any interval I_{m} in T_{n}^{\prime} and for all K, L in $R[0,1]$ with $I_{m} \subseteq K, L \subseteq[0,1]$ we have

$$
|\Delta g(K)-\Delta g(L)| \leqq 4
$$

Now if K contains an endpoint of some K_{n} then $|\Delta g(K)| \leqq 2$ by our construction; and if $K \subseteq K_{n}$ for some n then

$$
|\Delta g(K)|=\left|\Delta g(K)-\Delta g\left(K_{n}\right)\right| \leqq 1
$$

since T_{n} was a subtree $T\left(1, g \upharpoonright K_{n}\right)$ and g is zero at the endpoints of K_{n}. The same holds for L. So we always have

$$
|\Delta g(K)-\Delta g(L)| \leqq|\Delta g(K)|+|\Delta g(L)| \leqq 4 .
$$

Thus T_{n}^{\prime} is a subtree of $T(4, g)$. Hence

$$
\begin{aligned}
|T(4, g)| & \geqq \sup \left\{\left|T_{n}^{\prime}\right|: n \geqq 1, n \text { odd }\right\} \\
& =\sup \left\{\left|T_{n}\right|: n \geqq 1, n \text { odd }\right\} \\
& \geqq|T(f)| .
\end{aligned}
$$

So

$$
|T(g)|=\sup \{|T(N, g)|+1: N \geqq 1\}>|T(f)| \geqq \omega \cdot \alpha
$$

Since $|T(g)|$ is a limit ordinal it follows that $|T(g)| \geqq \omega \cdot(\alpha+1)$ and this part of the induction is complete.

Suppose now that the result is true for all $\alpha<\lambda$, where λ is a limit ordinal. We have to show that the result is true for λ. Let $\left\langle\alpha_{n}\right\rangle$ be an increasing sequence of ordinals with $\lim \alpha_{n}=\lambda$. For each $n \geqq 1$ choose h_{n} in SF with

$$
\left|T\left(h_{n}\right)\right| \geqq \omega \cdot \alpha_{n}+1
$$

such that for each $M>0$ there is an $x_{M}^{(n)}$ in H with

$$
\left|T\left(M, h_{n}: x_{M}^{(n)}\right)\right|=\left|T\left(M, h_{n}\right)\right|
$$

Then for each $n \geqq 1$ there is a positive integer $M(n)$ such that

$$
\left|T\left(M(n), h_{n}\right)\right| \geqq \omega . \alpha_{n}
$$

Let $f_{n}=h_{n} / M(n)$. Then for each $n \geqq 1$ there exists an x_{n} in H such that

$$
\left|T\left(1, f_{n} ; x_{n}\right)\right|=\left|T\left(1, f_{n}\right)\right| \geqq \omega \cdot \alpha_{n} .
$$

We now define g as in the case for successor ordinals. Let $g(0)=0, g \upharpoonright K_{n}$ be a scaled copy of f_{2} onto K_{n} for n even, and $g \upharpoonright K_{n}$ be a scaled copy of f_{n} for n odd. As before the scaled copies of f_{2} onto K_{n} for n even, ensure that g has no derivative at $x=0$. It is thus clear that g is in SF. Finally by the same argument as in the successor ordinal case we get

$$
\begin{aligned}
|T(4, g)| & \geqq \sup \left\{\left|T\left(1, f_{n}\right)\right|: n \geqq 1\right\} \\
& \geqq \sup \left\{\omega \cdot \alpha_{n}: n \geqq 1\right\}=\omega . \lambda
\end{aligned}
$$

So

$$
|T(g)|=\sup \{|T(n, g)|+1: N \geqq 1\} \geqq \omega \cdot \lambda+1 \geqq \omega \cdot \lambda
$$

and hence the result is true for λ. This completes the proof.
Proposition 11. For each countable ordinal $\alpha \geqq 1$ there is an f in $B F$ with $|f|=\alpha$.

Proof. For $\alpha=1$ we simply take an f in $\mathrm{BC} \cap \mathrm{BF}$, a Morse-Besicovitch function (see [17]) would do nicely. We will now show by induction that for each $\alpha \geqq 2$ there is an f in SF with $|f|=\alpha$. For $\alpha=2$ take an f in SF with $A(f ; x)=+\infty$ for each x in $(0,1)$. Since $A(f ; 0)$ and $A(f ; 1)$ are finite we see that $|f|=2$.

Now suppose the result is true for $\alpha \quad(\alpha \geqq 2)$. We must show that it is true for $\alpha+1$. Choose f in SF such that $|f|=\alpha$ and for each $M>0$ there is an x_{M} in H with

$$
\left|T\left(M, f ; x_{M}\right)\right|=|T(M, f)|
$$

Let g be constructed from f as in Proposition 10. We claim that $|g|=\alpha+1$. In view of Proposition 10 it will suffice to show that

$$
|T(M, g)| \leqq \omega \cdot(\alpha+1)
$$

Suppose $|T(g)|>\omega \cdot(\alpha+1)$. Then there is a positive integer M such that

$$
|T(M, g)| \geqq \omega \cdot(\alpha+1) .
$$

So $T(M, g)$ must have a subtree as shown below with each of the nodes

$$
\mathbf{v}_{n}=\left\langle I_{1}, I_{2}^{(n)}, \ldots, I_{n}^{(n)}\right\rangle
$$

having rank at least $\omega . \alpha$ in $T(M, g)$.

Fix $n \geqq 2$ and consider the subtree T_{n} through the node \mathbf{v}_{n} as shown on the right. Since $\left|\mathbf{v}_{n}: T_{n}\right| \geqq \omega . \alpha$ it follows as in Lemma 3 that there is an x_{n} in $\bar{I}_{n} \subseteq I_{n-1}$ with

$$
\left|T(M, g) ; x_{n}\right| \geqq \omega . \alpha .
$$

But from the way g was constructed we know that x_{n} must be 0 (because in each K_{n} we had $\mid T\left(M, g\left\lceil K_{n}\right) \mid<\omega . \alpha\right)$. Now as in Proposition 8 we see that

$$
A(g ; 0) \leqq M /(n-1) .
$$

Since this is true for each n we get that $A(g ; 0)=0$ which contradicts the fact that g is in ND. So we must have $|T(g)| \leqq \omega \cdot(\alpha+1)$.

Now suppose the result is true for all $\alpha<\lambda$, where λ is a limit ordinal. We must show that it is true for λ. In order to do this we need to modify the construction in Proposition 10 (because the g we obtained there always has rank $\geqq \lambda+1$). Let $\left\langle\alpha_{n}\right\rangle$ be a strictly increasing sequence of ordinals with $\lim \alpha_{n}=\lambda$. Choose f_{n} in SF as in Proposition 10 and let L_{n} be the interval [$1 /(n+1), 1 / n$] for $n \geqq 1$. Define g by $g(0)=0, g\left\lceil L_{n}\right.$ is a scaled copy of $2 n f$ onto L_{n} for n even, and $g \upharpoonright L_{n}$ is a scaled copy of f_{n} onto L_{n} for n odd.

It is once again easy to see that f is in SF. Also for each odd n we can show exactly as in Proposition 10 that

$$
|T(16 n, g)| \geqq \omega \cdot \alpha_{n} .
$$

Thus

$$
\begin{aligned}
|T(g)|= & \sup \{|T(16 n, g)|+1: n \geqq 1, n \text { odd } \\
& \geqq \sup \left\{\omega \cdot \alpha_{n}: n \geqq 1, n \text { odd }\right\}=\omega \cdot \lambda .
\end{aligned}
$$

It will thus suffice to show that $|T(g)| \leqq \omega \cdot \lambda$ in order to complete the proof.
Fix $M>0$ and consider the intervals L_{n} for n even. Let

$$
B=\sup \left\{f_{2}(x) \mid: x \in[0,1]\right\}
$$

and choose x_{0} such that $\left|f\left(x_{0}\right)\right|=B$. Let x_{n} be the image of x_{0} in L_{n} when $2 n f_{2}$ is scaled onto L_{n}. Then

$$
g\left(x_{n}\right)=2 n B /(n(n+1))=2 B /(n+1) .
$$

So

$$
\left|\Delta g\left(x_{n}, 1 /(n+2)\right)\right|=[2 B /(n+1)] /\left[x_{n}-1 /(n+2)\right] \geqq n B
$$

whenever n is even. Let $N=2[M / B]+1$. We claim that for all odd n 's with $n \geqq N$ the subintervals of L_{n} cannot be in the tree $T(M, g)$. Indeed suppose $J \subseteq L_{n+1}$ (where $n+1$ is odd) and J is in $T(M, g)$. Let

$$
K=(1 /(n+2), 1 /(n+1)) \quad \text { and } \quad L=\left(1 /(n+2), x_{n}\right) .
$$

Then $J \subseteq K, L \subseteq[0,1]$ but

$$
|\Delta g(K)-\Delta g(L)|=n B>M,
$$

which contradicts the definition of the tree $T(M, g)$.
So for each x in $[0,1]$ we have

$$
\begin{aligned}
|T(M, g) ; x| & \leqq \sup \left\{\left|T\left(M, f_{n}\right) ; x\right|: n \leqq N\right\} \\
& \leqq \sup \left\{\left|T\left(f_{n}\right)\right|: n \leqq N\right\} \\
& \leqq\left|T\left(f_{N}\right)\right|
\end{aligned}
$$

since N is odd and $\left|T\left(f_{n}\right)\right|$ is increasing. Hence by Lemma 3 we get

$$
|T(M, g)|<\left|T\left(f_{N}\right)\right|+\omega \leqq \omega \cdot \alpha_{N}+\omega<\omega \cdot \lambda .
$$

So $|T(M, g)|<\omega . \lambda$. Thus

$$
|T(g)|=\sup \{T(M, g) \mid+1: M>0\} \leqq \omega \cdot \lambda
$$

This completes the proof.
Corollary 12. ND and BF are not Borel Subsets of C.
Proof. Let φ be our rank function which maps ND onto ω_{1}. Then φ is a coanalytic norm which is unbounded in ω_{1}. So by Proposition A, ND is not Borel. Let ψ be the restriction of φ to BF . Then BF and ψ satisfy the conditions of Proposition B. Hence BF is not Borel.
4. An alternative definition. In this section we give an alternative definition of our rank function. Let $J \subseteq[0,1]$ be any closed interval with rational endpoints and recall the definition of $\bar{R}(J)$ and $Q(J)$. Let $\bar{Q}(J)$ be the set of all \bar{I} such that $I \in Q(J)$. If $H \subseteq J$ we denote the interior of H with respect to the topology of J by int ${ }_{J}(H)$. For each f in $C, M>0$ and $J \in \bar{Q}[0,1]$ we will define a sequence $\left\langle P^{\alpha}(M, f \upharpoonright J)\right\rangle$ of closed subsets of J and a relation

$$
S\left[x, P^{\alpha}(M, f\lceil J)](W)=S(W)\right.
$$

on the closed subsets of J which reflect the properties of $f \uparrow J . M$ is to be thought of as being large and $S(W)$ is to be interpreted as the relation " W witnesses that x is in $P^{\alpha}(M, f \mid J)$ ".

We define $p^{\alpha}(M, f \upharpoonright J)$ and $S\left[x, P^{\alpha}(M, f \upharpoonright J)(W)\right.$ by induction. Let $P^{1}(M$, $f \upharpoonright J)$ be the set of all x in J with

$$
\sup \{|\Delta f(K)-\Delta f(L)|: x \in K, L \in R(J)\} \leqq M
$$

and let $S\left[x, P^{1}(M, f\lceil J)](W)\right.$ hold if and only if x is in $W \cap P^{1}(M, f\lceil J)$. Let $P^{\alpha+1}(M, f \upharpoonright J)$ be the set of all x in J such that for all I in $Q(J)$ with $x \in I$ there exist H in $\bar{Q}(I), y$ in int (H) and $V \subseteq P^{1}(M, f \upharpoonright J)$ such that

$$
S\left[y, P^{\alpha}(M .|I|, f \upharpoonright H)\right](V) .
$$

Let $S\left[x, P^{\alpha+1}(M, f \upharpoonright J)\right](W)$ hold \Leftrightarrow for all I in $Q(J)$ with $x \in I$ there exist H in $\bar{Q}(I), y$ in int ${ }_{J}(H)$ and $V \subseteq W \cap P^{1}(M, f \upharpoonright J)$ such that

$$
S\left[y, P^{\alpha}(M .|I|, f \upharpoonright H)\right](V)
$$

holds. Finally if λ is a limit ordinal we let

$$
P^{\lambda}(M, f \upharpoonright J)=\cap\left\{P^{\alpha}(M, f\lceil J): \alpha<\lambda\},\right.
$$

and let

$$
S\left[x, P^{\lambda}(M, f \upharpoonright J)\right](W)
$$

hold if and only if

$$
(\forall \alpha<\lambda) S\left[x, P^{\alpha}(M, f\lceil J \mid)](W)\right.
$$

holds.
Observe that our definition is made by use of simultaneous induction on α, M and J. For fixed M and J it is easy to see that $P^{\alpha}(M, f \mid J)$ decreases as α increases. Also for fixed α and $J, P^{\alpha}(M, f \upharpoonright J)$ increases as M increases. When $J=[0,1]$ we shall refer to $P^{\alpha}(M, f \uparrow J)$ simply as $P^{\alpha}(M, f)$. We have the following result.

Proposition 13. f is in $\mathrm{ND} \Leftrightarrow$ for each $M>0$ there exists $\alpha<\omega_{1}$ such that $P^{\alpha}(M, f)=\emptyset$.

The " \Leftarrow " part of this result is very easy because if f is differentiable at x_{0} then it is easy to verify that for a fixed large enough M, x_{0} is in $P^{\alpha}(M, f)$ for all α. The other part is much more complicated and tedious so we omit the proof (see [20] for details). Proposition 13 allows us to make the following definition and the proof implicitly gives the next result.

Definition. For each f in ND we define $r(f)$ to be the least ordinal α such that $P^{\alpha}(M, f)=\emptyset$ for all positive integers M.

Proposition 14. For each f in ND, $|f|=r(f)$.
Concluding remarks. It is clear that our alternative definition is very complicated as compared with those in [1] and [10] (where for instance parametric induction is used instead of simultaneous induction). So the question arises as to whether there is a simpler definition. We feel that a simpler definition is not
possible because the trees $T(M, f)$ have a nested-like structure which makes the use of simultaneous induction necessary.

This paper was taken in part from the author's Ph.D. thesis [20]. The author would like to take this opportunity to express his sincere thanks to his thesis adviser Professor A. Kechris.

References

1. M. Ajtai and A. Kechris, The set of continuous functions with everywhere convergent Fourier series, Trans. Amer. Math. Soc. 302 (1987), 207-221.
2. M. Ampére, Recherches sur quelques points de la theorie des fonctions derivées etc., Ecole Polytechnique, Band 6, Cahier 13 (1806), 148-181.
3. S. Banach, Über die Baire'sche Kategorie gewisser Funktionenmengen, Studia Math. 3 (1931), 174-179.
4. A. Besicovitch, Diskussion der steitgen Funktionen im Zusamenhang mit der Frage über ihre Differentiierbarkeit, Isvestiya Akad. Nauk SSSR 19 (1925), 527-540.
5. C. Cellerier, Note sur les principes fondamentaux de l'analyse, Bull. des Sci. Math., ser. 2, 4 (1890), 142-160.
6. P. Du Bois-Reymond, Versuch einer Klassification der willKurlurchen Funktionen reeler Argumente, J. fur Math. 79 (1874), 21-37.
7. J. Gerver, The differentiability of the Riemann function at certain rational multiples of pi, Amer. J. of Math. 92 (1970), 35-55.
8. -_More on the differentiability of the Riemann function, Amer. J. of Math. 93 (1971) 33-41.
9. A. Kechris, Sets of everywhere singular functions, Lecture Notes in Math. 1141 (SpringerVerlag, Berlin, 1985), 233-244.
10. A. Kechris and H. Woodin, Ranks of differentiable functions, Mathematika 33 (1986), 252-278.
11. K. Knopp, Ein einfaches Verfahren zur Bildung stetiger nirgends differenzier barer Funktionen, Math Zeit. 2 (1918), 1-26.
12. G. Kowalewski, Ueber Bolzanos Nicht-differenzierbare stetige Funktion, Acta Math. 44 (1923), 315-319.
13. J. Maly, Where the continuous functions without unilateral derivatives are typical, Trans. Amer. Math. Soc. 283 (1984), 169-175.
14. R. Mauldin, The set of continuous nowhere differentiable functions, Pacific J. of Math. 83 (1979), 199-205.
15. The set of continuous nowhere differentiable function: A correction, Pacific J. of Math. 121 (1986), 119-120.
16. S. Mazurkiewicz, Sur les fonctions non derivables, Studia Math. 3 (1931), 92-94.
17. A. Morse, A continuous function with no unilateral derivatives, Trans. Amer. Math. Soc. 44 (1938), 496-507.
18. Y. N. Moschovakis, Descriptive set theory (North Holland Publ., New York, 1980).
19. E. D. Pepper, On continuous functions without derivatives, Fund. Math. 12 (1928), 244-253.
20. T. I. Ramsamujh, Some topics in descriptive set theory and analysis, Ph.D. thesis, Calif. Inst. of Tech., Pasadena, California (1986).
21. K. Rychlik, Ueber eine Funktion aus Bolzanos hand-schriftlichen Nachlasse, Ceska Spolenost nauk, Prague Trida matematicko pritodoved Vestik (1921-22), 1-20.
22. S. Saks, On the functions of Besicovitch in the space of continuous functions, Fund. Math. 19 (1932), 211-219.
23. A. N. Singh, On Bolzano's non-differentiable functions, Bull. de l'Acad. Polonaise des Sci. (1928), 191-220.
24. The theory and construction of non-differentiable functions, Lucknow University Studies, l (1935).
25. A. Smith, The differentiability of Riemann's function, Proc. Amer. Math. Soc. 34 (1972), 463468.
26. T. Takagi, A simple example of a continuous function with no derivative, Proc. Physico-Math. Soc. of Japan, Ser. II, No. 1 (1903), 176-177.

Florida International University,
Miami, Florida

[^0]: Received October 22, 1987 and in revised form July 18, 1988.

