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THE COMPLEXITY OF NOWHERE 
DIFFERENTIABLE CONTINUOUS FUNCTIONS 

T. I. RAMSAMUJH 

Introduction. It was not always clear that there could exist a continuous 
function which was differentiable at no point. (Such functions are now known 
as nowhere differentiable continuous functions. By "differentiable" we mean 
having a finite derivative.) In fact in 1806 M. Ampere [2] even tried to show 
that no such function could exist but his reasonings were later discovered to 
be fallacious. Of the early attempts at constructing a nowhere differentiable 
continuous function mention must be made of B. Bolzano. In a manuscript dated 
around 1830, (see [21]) he constructed a continuous function on an interval and 
showed that it was not differentiable on a dense set of points. (It was later shown 
by K. Rychlik [21] that this function was in fact nowhere differentiable.) 

Around 1873 K. Weierstrass gave the first legitimate example of a nowhere 
differentiable continuous function. This discovery was published by Du Bois-
Reymond [6] and prior to this no such function was ever published. Another 
example published in 1890 (see [5]) was thought to have been discovered by 
C. Cellerier as early as 1850 but of this there is much doubt. Also a function 
studied by B. Riemann around 1860 and very often thought of as being nowhere 
differentiable turned out to be differentiable at certain points (see [7], [8] or [25]). 
So Weierstrass holds sole claim for the first discovery. 

Later many more examples of nowhere differentiable continuous functions 
were constructed and it became fashionable to ask that more stringent require
ments be satisfied (for instance, instead of being nowhere differentiable, the 
function might be required to have no derivative, finite or infinite). In 1925 A. 
Besicovitch [4] constructed a continuous function with no one-sided derivative, 
finite or infinite. Such functions are called Besicovitch functions in honour of 
their discoverer. There was, however, much controversy about Besicovitch's ex
ample because the construction was rather complicated and the reasoning could 
not be readily followed. E. D. Pepper [19] later examined the same example but 
there were still doubts in the minds of some as to the existence of such functions. 
These doubts were put to rest by A. P. Morse [17] who gave an example which 
satisfied even more stringent requirements than those of Besicovitch functions. 

The studies on nowhere differentiable continuous functions took a different 
twist when in 1931 S. Mazurkiewicz [16] showed that the set of all such functions 
is a comeager subset of the set of all continuous functions of period 1. At about 
the same time Banach [3] found the same result except that in this case the 
functions were defined on the set [0,1]. So in the sense of Baire Category the 
continuous functions which are not nowhere differentiable are exceptional. This 
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provided an abstract proof of the existence of nowhere differentiable continuous 
functions. A little later S. Saks [22] showed that the set of all Besicovitch 
functions was a meager subset of the set of all continuous functions. So we 
cannot get an abstract existence proof as before. However J. Maly [13] recently 
showed that the Besicovitch functions were co-meager in a certain restricted 
class of continuous functions, thus retrieving the situation. 

Let C be the Polish space of all real valued continuous functions on [0,1] 
with the metric obtained from the sup norm. Let ND and BF be the sets of all 
nowhere differentiable functions and Besicovitch functions in C respectively. It 
is easy to show that ND and BF are coanalytic subsets of C. Mauldin [14], [15] 
showed that ND was not a Borel subset, and in a communication with Kechris 
(see [9]) indicated that he also had a proof that BF was not Borel. Kechris [9] 
later showed that ND and BF were both complete coanalytic subsets (and hence 
they can't be Borel). 

In this paper we shall investigate a natural rank function on ND, the definition 
of which is essentially due to Kechris and Woodin [10]. With each/ in ND we 
associate a well-founded tree T(f) and show that the height of T(f) is always 
a limit ordinal. The rank of / is then defined as the unique ordinal such that 
the height of T(f) is UJ. a. This rank function provides a natural measure of the 
complexity of the functions in ND in the sense that functions of small rank are 
easily seen to be nowhere differentiable and vice versa. In fact the functions 
of rank 1 are precisely the set BC of the Banach functions in C. (A Banach 
function is one such that at each point, at least one of the Dini dérivâtes is infinite. 
What Banach [3] had essentially shown in his proof of the comeagerness of ND 
was that BC was comeager, hence the name.) All of the classical examples of 
functions in ND also turn out to have rank 1 or 2. 

We show that the rank function has the definability properties summarized in 
the concept of a coanalytic norm and that the it is unbounded in uj\ on BF. (With 
a little more effort we can actually show that for each a < UJ\ there is a n / in 
BF with rank exactly a.) By using the Boundedness theorem [18, p. 196] we 
obtain proofs of the non-Borelness of BF and ND that are different from those 
of Mauldin and Kechris. Finally we give an alternative definition of the rank 
function by associating a transfinite sequence of nested closed sets with each/ in 
ND. The rank of/ is defined there as the least ordinal for which the sequences 
stabilizes at the empty set (in much the same spirit as the Cantor-Bendixson 
analysis of closed sets). 

1. Preliminaries. Coanalytic subsets and coanalytic norms. A Polish space 
is a complete, separable metric space and in this section X will always be 
a Polish space. A subset A of X is a Borel subset of X if it belongs to the 
smallest cr-algebra of subsets of X which contains all the open sets of X. Let 
y be a Polish space and / : Y —» X be a function. We say that / is Borel 
measurable if for each open set E in X, the set of f~l[E] is a Borel subset of 
Y. A subset A of X is an analytic subset of X if there exists a Polish space Y 
and a Borel subset B of X x Y such that A is the projection of B onto X (i.e., 
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A = {x EX : (3y £ Y)((x,y) G B)}). A subset A of X is a coanalytic subset 
of X if its complement X — A is an analytic subset of X. 
, A coanalytic subset A of X is said to be complete if for any Polish space Y 
and coanalytic subset B of 7, there is a Borel measurable function/ : Y —• X 
such that y G B if and only if /(y) € A. Since the Polish space of real numbers 
has a coanalytic subset which is not Borel it follows that no complete coanalytic 
subset of X can be Borel. 

A norm on a set A C X is just a map ip :A—> ORD, where ORD is the class 
of all ordinals. (A norm is also referred to as a rank function.) The map induces 
a pre-wellordering ^^ onA which is defined by 

x ^ y & <p(x) ^ <p(y). 

Two norms are said to be equivalent if they induce the same pre-wellordering. 
Now let A be a coanalytic subset of X. A norm ip : A —• ORD is a coanalytic 
norm if there are analytic and coanalytic subsets B and C of X2 such that 

y G A =» (V*)[{* € A&<p(x) Û <p(y)} & (x,y) £B& (x,y) G C]. 

It is known that every coanalytic subset has at least one coanalytic norm. More
over this coanalytic norm is always equivalent to one which takes values in uj\ 
(see [18]). 

For the sake of convenience we list the main descriptive set theoretic results 
that we will need. 

PROPOSITION A. (Boundedness theorem) [18 p. 196] Suppose A is a coanalytic 
subset ofX and <p : A —• uj\ is a coanalytic norm. Then A is Borel if an only if 
ip[A] is countable. 

From Proposition A we immediately see that to show A is not Borel, it will 
suffice to show that ip is unbounded in wi on A. Such a proof of the non-
Borelness of A is usually referred to as a rank argument. There is a slight 
extension of this rank argument which depends on the following result. 

PROPOSITION B. [10] Suppose A is a coanalytic subset ofX and (p : A —> u\ 
is a norm on A such that 

(i) there is an analytic subset of B of X2 such that for all x^y G A we have 
(p(x) < (p(y) if and only if (x,y) G B, and 

(ii) <p is unbounded in u\ on A. Then A is not a Borel subset ofX. 

PROPOSITION C. [10] Let X, Y be Polish spaces and A Ç X,B Ç Y be co-
analytic subsets. If (p : B —• uj\ is a coanalytic norm and there is a Borel 
measurable function f : X —• Y with f~l[B] = A then the map xjj : A —-> u\ 
defined by \j)(x) — (p(f(x)) is also a coanalytic norm. 

Well-founded trees and their heights. Let A be any non-empty set. We define 
A* to be the set of all finite sequences from A (including the empty sequence 0). 
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A tree on A is any subset 7 of A* such that for all a\,..., an+\ in A, (a\,..., an) 
is in 7 whenever (a\,.. .,an,an+\) is in 7. The elements of 7 are called nodes. 
By definition 0 is always a node of any non-empty tree. We call 0 the root of 
the tree. A subset of S and 7 which is also a tree on A is called a subtree of 7. 

Let u and v be finite sequences from A and let 7 be a tree on A. We denote 
the concatenation of u and v by if v . We define 7[u] to be the set of all finite 
sequences v in A such that uv is in 7. It is easy to verify that 7[u] is always 
a tree. (Note that if u is not in 7 then 7[u] is empty.) When u is in 7 we 
shall refer to 7[u] as the tree at the node u in 7. A tree 7 on A is said to be 
well-founded provided there is no sequence (an) (n = 1,2, 3 , . . . ) from A such 
that (a i , . . . ,a n ) is in 7 for each n. 

Let 7 be a well-founded tree on A. We define a sequence of trees as follows. 
Put 7° = T,TX = n{Ta : a < A} for A a limit ordinal, and 

r*+1 = {v G 7 : (3A G A ) ( v » G 7} . 

Observe that the sequence (7") is strictly decreasing so for sufficiently large 
a, Ta is empty. Note also that if 7 is non-empty, then the least a such that Ta is 
empty must be a successor ordinal. We define the height |7| of the tree 7 be the 
least a such that Ta+l is empty. (If 7 is the empty tree we adopt the convention 
that |7| = —1 and if 7 is not well-founded we put |7| = oo. ) If v is a node in 
7 we define the rank |v; 7| of v in 7 to be the height of the tree at v in 7 (i.e., 
|v;7| = |7[v]|). It is easy to see that for any finite sequence u from A that 

Ta[u] = (7[u]y* for each a. 

Using this we get 

\T\ =sup{|v;7| + l : v G 7 , v ^ 0}. 

It turns out that the height is a coanalytic norm if we view the set of all 
well-founded trees on P — {1,2, 3 , . . . } as a subset of a certain Polish space. 
A tree on P is a subset of P* and so can be identified with its characteristic 
function 

X r : / > * - { 0 , l } = 2. 

So a tree on P can be viewed as an element of the Polish space F(P*, 2) of all 
functions from P* to 2. Let WF be the set of all well-founded trees on P viewed 
as a subset of F(P*, 2). Then we have the following precise result. 

PROPOSITION D. [10] WF is a coanalytic subset ofF(P*, 2) and | • | : WF —• UJ\ 

is a coanalytic norm. 

2. Basic properties of the rank function. In this section we define the rank 
function and investigate its basic properties. But first some notation. Let / be in 
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C and / be any interval with endpoints a and b (where a ^ b). We define the 
difference quotient off on / by 

&f(I) = (f(b)-f(a))/(b-a). 

PROPOSITION 1. ND and BF are coanalytic subsets of C. 

Proof It will suffice to show that C— ND and C— BF are analytic. Now C— 
ND is the set of a l l / in C such that there exists an x such that/ is differentiable 
at x. Bu t / is differentiable at x if and only iff for all n there is an m such that 

(*) for all hi, hi with 0 < \h\ |, h2\ < l/m and x + h\,x + hi in [0, 1] we have 

\\f(x + hux)-kf(x + h2,x)\^ l/n. 

Let E(n,m) be the set of all (f,x) such that (*) holds. Then it is easy to see 
that E(n,m) is closed and consequently C\n Um E(n,m) is Borel. C— ND is the 
projection of this Borel set onto C and so it is analytic. 

Also C — BF is the set of all / in C such that there exists an x such that / 
has a one-sided derivative (possible infinite) at x. Now this is so if and only if 
for all n there is an m such that 

(**) Eta G {—1,1} such that V/*i,/*2 with 0 < /*i,/*2 < l/m and x + ah\, 
x + ahi in [0,1] we have 

\bf(x+ahx,x)-kf(x+ah2,x)\ ^ l/n, 

or VA with 0 < h < \/m with x + ah in [0,1] 

Af(x + ah\,x) ^ n, 

or V/z with 0 < h < \/m with x + ah in [0,1] 

Af(x + ahux) ^ —n. 

Let F(n, m) be the set of all (f,x) such that (**) holds and proceed as above 
to conclude that C— BF is analytic. 

Let R[0,1] be the set of all nonempty intervals which are open with respect 
to the topology of [0,1]. Let also Q[0,1] be the set of all intervals in R[0,1] 
which have rational endpoints. If / is an interval we denote its closure by 7 and 
its length by |/|. 

Definition Let / be in C and M > 0. We define the tree T(MJ) on g[0,1] 
as follows. ( / i , . . . ,/„) is in T(M,f) if and only if 

( i) /! = [0,l], lMCIh \Ii\£l/i and 
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(ii) for all K, L in R[0,1] with InQK,LQ /,- we have 

|A/(/Q - A/(L)| ^ Af//. 

We define the tree T(f) by 

*X/) = W u |J{ Wu : u is in T(N> f)>-

PROPOSITION 2. / w in ND // am/ tfwfy if T(f) is well-founded. 

Proof. "=>" It will suffice to show that 7\M,/) is well-founded for each 
M > 0. Suppose T(M,f) is not well-founded. Then there is an infinite sequence 
(/„) such that ( / i , . . . ,/„) is in T{MJ) for each n ^ 1. Take JC in n{/„ : n ^ 1}. 
We shall show that / is differentiable at x. Fix m and let /ii,/12 ^ 0 be such 
thatx + /*i,;t + /z2 are in/w . Then 0 < \h\\, \h2\ < \/m. Let also^T,L be intervals 
in /?[0,1] with endpoints x + h\, x + d\ and x + /*2, * + d2 (respectively) where 
d\ and d2 are chosen so that 

xeK,LCIm, \dx\ < \hi\,\d2\ < \h2\ and 

(hx-dx)/hx =(h2-d2)/h2. 

K 

f 
x + h2 

-i—•-
x + d\ x x + d2 

+ 

Then 

f(x + hO-fix) f(x + h2)-f(x) 

< 

hi h2 

hx-dx f{x + hx)-f(x+dx) 

hx hx — dx 

h2~d2 f(x + h2)-f(x + d2) 

h2 h2 - d2 

fix + dû-f(x) fix + d2)-fix) 

< 
fix+dx)-fix) 

hx 

fix + d2)-fix) 

h2 

+\Af(K)-bfiL)\-\ihx-dx)/hx 
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Now the first two terms tend to 0 as d\ tends to 0 by the continuity of/. Also 
(h\ — d\)/h\ tends to 1 as d\ tends to 0 and 

\Af(K) - A/(L)| ^ M/m 

from the definition of the tree T{MJ). So 

fix + hO-fix) f(x + h2)-f(x) M 

m h\ hi 

But x is an interior point of IM and (*) is true for each m. From this it follows 
that/ is differentiable at x. 

"-<=" Suppose now tha t / is not in ND. Choose xo in [0,1] such tha t / is 
differentiable at xo. Then there is a positive integer c such that/(x) always lies 
between c.(x —xo) and — c.(x —xo). Take M = 2c. Since/ is differentiable at 
xo, for all n there exists positive integers m(n) such that for all h with 0 < \h\ < 
l/m(n) and xo + h in [0,1] we have 

|A/(*0 + M o ) - / W | ^ A f / 2 / i . 

We may assume without loss of generality that m(n) is strictly increasing. Let 

pn = max{0,xo — l/2m(n)} and qn — min{l?xo + \/2m(n)}. 

Take I\ = [0,1] and for each n ^ 2 choose /„ in (?[0, 1] such that In Ç [/?„,#„] 
and 7„ Ç /„_!. Then 

| / „ | ^ < 7 „ - p „ ^ l/m(n)ûl/n. 

So for each «, ( / i , . . . , /„) satisfies condition (i) of the definition of T(M,/). We 
will now show that condition (ii) is also satisfied. 

Fix A2. Since *o is in In it will suffice to show that for all K,L in /?[0,1] with 
jto G ÂT,L Ç /, we have 

\Af(K)-Af(L)\^M/i. 

For / = 1 we have 

\Af(K) - A/(L)| ^ |A/(AT)| + |A/(L)| ^ c + c = M / l 

as required. For / ^ 2 let {#, b} and {c,d} be the endpoints of K and L 
respectively. Then 

\f(b)-f(a) f(d)-f(c)\ 
\Af(K)-Af(L)\ = 

\f(b) -f(a) 
< 

< 

b — a 

f(a) -f(x0) 

a—xo 
f(c) -f(x0) 

C-XQ 

b-a d-c 

f(d) -f(c) 
d-c 

f(b) - / (xo) 
b-x0 

f(d) -f(x0) 
d-xo 

•f\xo) 

-f'(*o) 

-f'(x0) 

^ M/4i + M/4i + M/4i+M/4i = M/i. 
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So (/i, . . . , /„ ) is in T(MJ) for each « ^ 1. Thus T{MJ) is not well founded 
and consequently (T)f is not well-founded. 

Our next aim is to show that the height of T(f) is always a limit ordinal. But 
first some definitions and two lemmas. 

Definition. Let / be in /?[0,1] and T be a tree on /?[0,1]. We define the subtree 
T\I to be set of all (I{, / 2 , . . . , /„) in T with /2 Ç / . 

Le t / be in ND and M > 0. For each x in [0,1] we define 

\T(MJ) : JC| - min{|7W,/) t / | : x G / E tf [0,1]}. 

LEMMA 3. If |7(M , / ) | ^ a;, a f/*e« r/zere w a/? x in [0,1] swc/z that 

\T{M,f): x\^u).a. 

Proof. We will find a sequence of nested closed intervals (Ln) with \jn ^ 
|L„| S 2/n such that 

\T(M ,f)\Ln\ ^ a;, a for each « ^ 1. 

Choosing JC in n{Ln : n ^ 1} will then give 

\T(MJ):x\^u.a. 

We construct L„ by induction on n. Take Lj = [0,1]. Given Ln choose closed 
intervals U and L" such that 

L'UL" = L„; \L'l\L"\ <2/n+\ and \Lf C\L"\ ^ \/n + 1. 

Now observe that if ( / i , . . .,/„+!,.. .,/*) is in T(M,f) then /w+1 Ç L' or 
/„+i Ç L". So (/i,/w+i , . . . ,/*) is in T(M,f)\L' or T(M,f)\L". We claim that at 
least one of the latter two trees have height ^ uj.a. Suppose that \T(M,f)\L'\ 
and |7(Af ,/)|X"| are both ^ j3 < u. a. Then 

\T(MJ)\Ln\ g sup{|u;7(Af ,/)tLn | + 1 : |u = n + 1} + AZ 

^ max{sup{|v; 7(Af ,/) |X'| + 1 : |v| = 2} + n, 

sup{|v;7XAf,/)fL"| + 1 : |v| = 2}+ 4 

^mzx{\T{MJ)\L%\T{MJ)\L"\} + n 

^ (3 + n < uj.a, 

which contradicts the induction hypothesis. Take Ln+\ to be L' if |7XAf,/)L'| 
^ Lj.a and to be L" otherwise. This completes the induction step. 
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Definition. Let T be a tree on g[0,1] and k ^ 1. We define the subtree [T]k 

to be the set of all (/ i , /2 , . . ./„) in 7 such that there exists / 2 , . . . ,Jk in g[0,1] 
such that the sequence (7i , / 2 , . . . , / ^ / 2 , • • • , M is also in T. 

LEMMA 4. Suppose |7(M,/)|7| ^ a;, a. Then for each k ^ 1, 

| [ 7 W , / ) t / ] * | ^ . a . 

Proof. Observe from the definition of T(M,f) that (/i,/2, • • •,/«) £ 
T{M,f) implies ( / i , / 2 , . . . , /m) is in T(MJ) for any subsequence ( /2 , . . . , /m) 
of (/2, . . . , / * ) . Now 

sup{ |v ; [ r (Af , / ) t /k | : |v |=2} + t + l 

^ K/^^CAf,/)^! + 1 = |7W,/)f/ | ^ a;, a. 

So 

sup{ |v ; [ r (M, / ) f / ] , | : | v |=2}^a ; . a 

and hence 

\[T(MJ)\I]k\^uj.a. 

PROPOSITION 5. For eachf in ND the height ofT(f) is a limit ordinal. 

Proof. It will suffice to show that \T(f)\ ^ UJ. a + 1 implies 

\T(f)\^u>.(a+l). 

Suppose \T(f)\ ^ UJ. a + 1 then for some integer M we must have 

| C T ( M , / ) | ^ . a . 

By Lemma 3 take xo in [0,1 ] such that 

\T(MJ):xo\^u.a. 

Fix N ^ 1 and choose / 2 , . . . ,/„ in Q[0,1] such that |//| ^ l//,// Ç /,_! and JCO 
is in /„. (Here as always I\ = [0,1]. ) 

Now define the tree Tn as follows, (/j,...//) is in Tn for each / = 
l,...,Af - 1 and for each (IuJn,...,Jk) in [T(M,f)\In]n we let (Iu ... ,/„_,, 
Jn,...,Kk) be in 7n. Then it is easy to see that Tn is a subtree of T(MN,/). But 

K/i);rn | ^ |(/i) : [r(Af,/)t/n]i,| + (tf - 2 ) 
^ a;, a + (N - 2) 

https://doi.org/10.4153/CJM-1989-004-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-004-9


92 T. I. RAMSAMUJH 

by Lemma 4. Thus 

\T(MNJ)\ ^u.a + (N - 2 ) 

and so 

\T(f)\=sup{\T(MN,f)\ + l:N^l} 

^ sup{u;.a + ( N - I) : N ^ l} = a ; . (a+l ) . 

Definition . For each/ in ND we define the rank | / | of/ to be the unique 
ordinal a such that | JT(/) | = u. a. 

Since g[0,1] is countable, T(f) is a countable tree, so | / | < UJ\. 

PROPOSITION 6. | • | : ND —• uj\ is a coanalytic norm. 

Proof. It will suffice to show that the function h defined by h(f) = \T(f)\ is 
a coanalytic norm. Let g : Q[0,1] —> F (where F = {1 ,2 ,3 , . . . }) be a Borel 
measurable bijection. Let s(f) be the tree consisting of all (N,g(I\),...,g(In)) 
such that (N11\ , . . . , / „ ) is in T(/). Then s : C —•» F(P*, 2) is a Borel measurable 
map (the tree ^(/) is viewed here as an element of the Polish space F(P*,2)). 
Also 

ND = r l [ W F ] and h(f) = | j ( / ) | . 

So it follows from Propositions C and D that h is a coanalytic norm. 

Definition . Let / be in C. We define the amplitude of the difference quotient 
of/ at JC by 

f{x + hx)-f{x) f(x + h2)-f{x)\ 

S o / is in ND if and only if A(f; x) > 0 for each x in [0,1]. Moreover A(f;x) 
is finite if and only if all the Dini dérivâtes of/ at x are finite. S o / is a Banach 
function if and only if A(f\x) = +oo for each x in [0,1]. 

PROPOSITION 7. | / | = 1 if and only iff is a Banach function. 

Proof. "=»" Suppose/ is not a Banach function. Then there is an xo in [0,1] 
such that A(f;xo) is finite. We can thus find a positive integer M such that for 
all K,L in 7?[0, 1] with XQ in K,L we have 

\Af(K)-Af(L)\^M. 

We claim that \T(M,f)\ ^ u. Indeed let us fix n. Choose I2 in Q[0,1] such that 
I/2I = l/n and x0 is in I2. By the continuity of/, we can find an In in g[0, 1] 
with Jn Ç /2 and xç> in /„ such that 

|A / ( t f ) -A/ (L) | ^Af / / i 

A ( / ; J C ) : 
lim sup 

h\,h2 0 
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for all K, L in R[0,1] with /„ Ç K,LC I2. (It suffices to choose /„ with endpoints 
close enough to I2.) 

L 

•f-f- j — ^ 

Now take Ix = [0,1] and / 3 , . . . ,/„_i in Q[0,1] such that 7/+1 Ç /, (/ = 
2, ...,AZ — 1). Then it is easy to see that ( / i , . . . , /n) is in T(M,f). (Note 
( / i , . . . ,/w) depends on «.) So 

| r ( A / , / ) | â / i + i . 

But this is true for each AZ ^ 1, so 

| 7 W , / ) | ^ w. 

Thus |7( / ) | > a; and so | / | > 1. 
"<=" Suppose now that | / | > 1. Then | / | ^ 1 and so by Proposition 5 

|7 \ / ) | ^ LU • 2. Hence there is a positive integer M such that 

|7XAf,/)|^o;+l. 

So T(M,f) must have a subtree as shown below. 

h 

(n) 

Let JCO be a limit point of the set of all midpoints of the intervals I^n) (n — 
2, 3 , . . . ). Then we can find intervals I^n) arbitrarily close to XQ, for large enough 
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n. Let h\,lî2 ^ 0 be such that xo + /*i,xo + ^2 are in [0,1]. Then as in the "=>" 
part of the proof of Proposition 2 we get that 

f(x0 + Ai) - / (*o) /(x0 + A2) - / (*o) 
* 2 

S M . 

Since this is true for all h\,hi we get A(f\x) ^ M. So / is not a Banach 
function. 

PROPOSITION 8. If there is a constant c > 0 swc/z f/wtf A(f;x) ^ c/or a// JC in 
[0,l],then\f\£2. 

Proof. Suppose \f\ > 2. Then |7X/)| ^ a;. 3. Hence there is an integer M 
such that 

\T(M,f)\^Lj.2+l. 

So T{M,f) must have a subtree as shown below, where each of the nodes 
( / i , /£° , . . . ,I(

n
n)) is of rank at least u in T(M,f). 

l2 • • • 

l /„ ("> 

Fix AZ ^ 2 and consider the subtree Tn of T(M',/) shown above. As in the "<=" 
part of the proof of Proposition 7 we see that there is a point jt„ in l^n) Ç /J^ 
such that A(/; JC) ^ M/(« - 1). 

/ (n) 
1 n 

«—e • J — > -
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But this is true for each n ^ 2. So for large enough n we will get A(f;xn) < c, 
which is a contradiction. Hence | / | ^ 2. 

Remark. The converse of Proposition 8 is false. By using the techniques we 
will develop in the next section it will be easy to construct a function / with 
l/l — 2 and A(f;xn) —• 0 for any given sequence (xn) of distinct points in [0, 1] 
tending to zero. Using 8 it is not hard to check that all of the natural examples 
of functions in ND given in [4], [5], [6], [11], [12], [21], [23], [24], [26] have 
rank ^ 2. A little more effort along with Proposition 7 shows that most of these 
functions in fact have rank 1 (see [20] for details). 

3. Unboundedness of the rank function. In this section we will show that 
for each countable ordinal there is a Besicovitch function with rank ^ a. By 
refining this construction we also show that for each countable ordinal a ^ 1, 
there is a Besicovitch function/ with | / | — a. To this end we introduce the 
following definitions. 

Definition . For each / in (?[0,1] we define the subtree T(M,f\I) of T(M,f) 
as the set of all ( / i , . . . ,/„) in T(M,f) such that there exists / i , . . ./* in Q[0,1] 
such that ( / j , . . . , / n , / i , . . . ,/*) is in T(MJ) and Jk Q / . 

For each x in [0,1 ] we also define 

| 7 W , / ; x ) | = min{ |7W,/ ; / ) | : x G / G fi[0,1]}. 

The ordinal |r(Af,/;jc)| can be thought of as the local height of the tree 
T(M,f) at x. The following result is therefore natural. 

LEMMA 9. Suppose |7(Af , / ) | ^ UJ. Then there is an x in [0,1] such that 

\T(MJ-x)\ = | r (M,/) | . 

Proof. The proof is very similar to that of Lemma 3. We shall find a nested 
sequence of closed intervals (L2) with \/n < \Ln\ < 2/n such that 

| 7W, / ;L n ) | = \T(MJ)\ for each n^l. 

Taking x in H{Ln : n ^ 1} gives the result. Let L\ = [0,1] and given Ln choose 
Ll and L" as in Lemma 3. Now observe that if ( /1 , . . . ,/w+i) is a node of length 
n + 1 in T(MJ;Ln) then In+i C L' or In+l Ç L". So all the nodes in T(M,f;Ln) 
of length at least n +1 must lie in one of the trees T(M,/; Z/), T(M,/; L"). Since 

|7(Af,/;LB)| = | r (Af , / ) | ^a ; 

by the induction hypothesis, we must have 

max{ |7W,/ ;L% \T(MJ;L")\} = | 7W, / ) | . 

https://doi.org/10.4153/CJM-1989-004-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-004-9


96 T. I. RAMSAMUJH 

We take Ln+\ to be L' if 

\T(MJ;L')\ = \T(MJ% 

and L" otherwise. This completes the proof. 
Let S be the square in the plane with vertices at (0,0), (1/2,1/2), (1,0) and 

(1/2, —1/2). We define SF to be the collection of all Besicovitch functions whose 
graphs lie inside the square S. It is not difficult to see that SF is non-empty. 
Indeed all we need to do is to take a Morse-Besicovitch function / with /(0) = 
f(\) = 0 and \f(x)\ ^ 1/2 for all x in [0,1] (see [17] and continuously squeeze 
it into a new function g whose graph lies in S. The squeezing transformation is 
given by 

( x.t<m[{ tan'1 {f(x)/x}] f o r 0 < x ^ 1/2 
1(1 -x).tim[±tim-l{f(x)/(\-x)}] for \/2<x< 1. 

If/ is in C we define a scaled copy off onto the interval [a, b] to be the function 
g given by 

g(x) — f(x — a)/(b — a)) for x in (a, /?], and 

S(a)= / (0) . 

Let / Ç [0,1] be a closed interval with rational endpoints and with |/| > 0. 
Then there is an obvious way to define the tree T(M,f\I). Let R(I) be the set 
of all intervals which are open in / , and Q(I) be the set of all intervals in R(I) 
with rational endpoints. 

Definition Let/ be in C and M > 0. We define the tree T(M,/f/) as follows. 
( / i , . . . ,/„) is in T{M,f\I) if and only if 

(i) h = /,// e G(/),/«+i Ç /;, |/«l ^ |/|A and 
(ii) for all tf,L in /?(/) with lnQK,LQ U we have 

| A / ( / Q - A / ( L ) | ^ M / / . 

Observe that if/ and g are in C and g|7 is a scaled copy of/ onto /, then 
T{MJ) and r(M,g|7) are isomorphic trees. 

PROPOSITION 10. For each countable ordinal a there is anf in SF with | / | = 
a. 

Proof. It will suffice to show that for each a < uj\ there is a n / in SF with 
|7( / ) | ^ UJ. a. We prove this by induction. By Proposition 7 we know that if/ 
is in SF then |T(/) | ^ UJ.2, so the result is clear for a = 0, 1 and 2. Suppose 
the result is true for a(a ^ 2). We have to prove it for or + 1. Let Kn be the 
interval [2~n,2x-n],n ^ 1. Choose/ in SF with \T(f)\ ^ UJ.OC. The basic idea 
is to put scaled copies of f/n onto Kn and so obtain a function g in C. Since 

7 ( 1 , ^ ^ ) ^ ^ ( 1 , / / / i ) = 7(ii,/) 
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we would expect to get 

(*) \T(l,g)\^ sup{\T(l,g\Kn)\ : n> 1} 

= sup{\T(n,f)\ : n ^ 1} ^ UJ. a. 

So |7Xg)| ^ a;. (a+ 1) as required. But two things can go wrong here. Firstly 
the g obtained might not be in SF (in fact if we use the process above the g 
obtained would be differentiable at 0). Moreover if the rank off is concentrated 
at the endpoints (i.e. if T(M,/;x)| < \T(MJ)\ for all x except 0 and 1) the 
inequality (*) might not hold. So we need to modify our procedure accordingly. 

Let H be the middle open third of [0,1] (i.e., H = (1/3,2/3)) and Hn be the 
middle open third of Kn. Choose/ in SF with \T(f)\ ^ UJ. a such that for each 
M > 0 there is an XM in H with 

\T(MJ;xM)\ = |7W,/)| . 

(This latter condition can be easily obtained by replacing/, if necessary, by five 
scaled copies of/, each onto a fifth of [0,1].) Let g be the function defined by 
g(0) = 0 , g | ^ is a scaled copy of/ onto Kn for n even, and g\Kn is a scaled 
copy of f/2n onto Kn for n odd. 

/ \ 

KA ATI 

Kx 

It is easy to see that g is in SF. (The only difficulty lies in showing that g 
has no right derivative at 0, but this was ensured by choosing g\Kn as scaled 
copies of/ onto Kn for n even.) 

Let n be odd and consider the function g\Kn. Let Tn be the tree [T(l,g\Kn; 
Hn)h (recall that Hn is the middle open third of Kn). Observe that each interval 
in Tn is in Q[0,1] and 

\Tn\+3^\m,g\Kn)\. 
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Note also that 

Tn ~ [7(l , / /2/ i ; / / )]3 = [T(2n,f;H)]3. 

So 

sup{\Tn\+4:n^l}^\T(f)\. 

Since \T(f)\ is a limit ordinal it follows that 

s u p { | 7 „ | : ^ l } ^ | 7 ( / % 

Now let T'n be the tree defined by ([0, l ] , /2 , . . . , / n ) is in T'n if and only 
if (Kn,I2j...,/«) is in 7W. We claim that T'n is a subtree of 7(4, g). It will 
suffice to show that for any interval Im in 7^ and for all AT,L in /?[0,1] with 
lm^K.LQ [0,1] we have 

| A s ( t f ) - A s ( L ) | ^ 4 . 

Now if K contains an endpoint of some Kn then |Ag(^)| ^ 2 by our construc
tion; and if K Ç K„ for some n then 

|As( /O|HAg(/O-As0M^l 

since Tn was a subtree T(l,g\Kn) and g is zero at the endpoints of Kn. The 
same holds for L. So we always have 

\Ag(K) - Ag(L)| ^ |Ag(/0| + |A#(L)| ^ 4. 

Thus 7^ is a subtree of 7(4, g). Hence 

|7(4,^)| ^ sup{|7i| :/i ^ M odd} 

= sup{|7w| : n ^ l,n odd} 

è |7(/% 

So 

\T(g)\ = sup{|7(N,g)| + 1 : N ^ 1} > |7( / ) | ^ a;, a. 

Since |7(g)| is a limit ordinal it follows that |7(g)| ^ UJ. (a + 1) and this part of 
the induction is complete. 

Suppose now that the result is true for all a < A, where A is a limit ordinal. 
We have to show that the result is true for A. Let (an) be an increasing sequence 
of ordinals with lim an = A. For each n ^ 1 choose hn in SF with 

\T(hn)\^u.an + \ 
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such that for each M > 0 there is an xjfî' in H with 

\T(M,h„:xJS))\ = \nM,hn)\. 

Then for each n ^ 1 there is a positive integer M(n) such that 

|r(M(«),M^.<*„. 

Let/n = hn/M(n). Then for each w ̂  1 there exists an xn in / / such that 

\T(l,fn;xn)\ = \T(l,fn)\^u;.an. 

We now define g as in the case for successor ordinals. Let g(0) = 0,g\Kn be 
a scaled copy of/2 onto A^ for n even, and gfA^ be a scaled copy of/„ for n 
odd. As before the scaled copies of fi onto Kn for AZ even, ensure that g has no 
derivative at x = 0. It is thus clear that g is in SF. Finally by the same argument 
as in the successor ordinal case we get 

\T(4,g)\^sup{\T(l,fn)\:n^l} 

^ sup{o;. an : n ^ 1} = u. A. 

So 

|7Xs)| = sup{|r(/2, g)| + l : i V è l } ^ . A + l ^ . A 

and hence the result is true for A. This completes the proof. 

PROPOSITION 11. For each countable ordinal a ^ 1 there is an f in BF with 
\f\ = a. 

Proof. For a = 1 we simply take an / in BC D BF, a Morse-Besicovitch 
function (see [17]) would do nicely. We will now show by induction that for 
each a ^ 2 there is a n / in SF with | / | = a. For a = 2 take a n / in SF with 
A(f;x) — +00 for each x in (0,1). Since A(/;0) and A{f\ 1) are finite we see 
that l/l = 2. 

Now suppose the result is true for a (a ^ 2). We must show that it is true 
for a + 1. Choose/ in SF such that \f\ = a and for each M > 0 there is an x^ 
in H with 

| 7 W , / ; * A # ) | = \T(M,f)\. 

Let g be constructed from/ as in Proposition 10. We claim that |g| = a+ 1. In 
view of Proposition 10 it will suffice to show that 

\T(M,g)\£u.(a+l). 
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Suppose \T(g)\ > UJ. (a + 1). Then there is a positive integer M such that 

\T(M,g)\^u>.(a+l). 

So T(M,g) must have a subtree as shown below with each of the nodes 

having rank at least UJ. a in T(M, g). 

^n^ \ 

T 

Fix n ^ 2 and consider the subtree Tn through the node \n as shown on the 
right. Since |v„ : Tn\ ^ UJ. a it follows as in Lemma 3 that there is an xn in 
h Q In-\ with 

\T(M,g)\xn\ ^ LU. a. 

But from the way g was constructed we know that xn must be 0 (because in 
each Kn we had \T(M,g\Kn)\ < UJ. a). Now as in Proposition 8 we see that 

A(g;0)^M/(n-\). 

Since this is true for each n we get that A(g;0) = 0 which contradicts the fact 
that g is in ND. So we must have |7Xg)| ^ UJ. (a + 1). 

Now suppose the result is true for all a < A, where À is a limit ordinal. 
We must show that it is true for A. In order to do this we need to modify the 
construction in Proposition 10 (because the g we obtained there always has rank 
^ A + 1). Let (an) be a strictly increasing sequence of ordinals with lim an — A. 
Choose fn in SF as in Proposition 10 and let Ln be the interval [l/(n + 1), l/n] 
for n ^ 1. Define g by g(0) = 0, g\Ln is a scaled copy of 2nf onto Ln for n 
even, and g\Ln is a scaled copy of/À onto Ln for n odd. 
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It is once again easy to see that / is in SF. Also for each odd n we can show 
exactly as in Proposition 10 that 

\T{\6n,g)\^u.an. 

Thus 

\T(g)\ =sup{|r(16/i,£)| + 1 : n ^ \,n odd 

^ sup{o;. an : n ^ 1, n odd} = u. A. 

It will thus suffice to show that \T(g)\ ^ LJ. X in order to complete the proof. 
Fix M > 0 and consider the intervals Ln for n even. Let 

fi = sup{/ 2 (*) | :x€[0 , l ]} 

and choose x$ such that |/(JCO)| — B- Let xn be the image of xo in Ln when 2/2/2 
is scaled onto Ln. Then 

$(*„) = 2nB/(n(n + 1)) - 2B/(n + 1). 

So 

|A^(JC„, l/(/i + 2))| - [2fl/(/i + l ) ] / fc - 1/(II + 2)] ^ «5 

whenever « is even. Let N = 2[M/B] + I. We claim that for all odd n's with 
n ^ N the subintervals of Ln cannot be in the tree T(M,g). Indeed suppose 
J Q Ln+\ (where n + 1 is odd) and / is in T(M,g). Let 

K = (l/(/i + 2), l/(/i + 1)) and L = (l/(w + 2) ,^) . 
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Then/ ÇK,LÇ [0,1] but 

\Ag(K)-Ag(L)\=nB>M, 

which contradicts the definition of the tree T(M , g). 
So for each x in [0,1] we have 

\T(Mlg);x\ ^ sup{|7W,/„);x| : n ^ N} 

^ sup{\T(fn)\ :n^N} 

^ \T(fN)\ 

since N is odd and \T(fn)\ is increasing. Hence by Lemma 3 we get 

\T(M,g)\ < |r05v)| + UJ ^ u>. ccN + LJ < u. A. 

So \T(M,g)\ < u. A. Thus 

|7Xg)| - sup{7W, *) | + 1 : M > 0} ^ u>. A. 

This completes the proof. 

COROLLARY 12. ND and BF are «6tf i5ore/ Subsets of C. 

Proof. Let (/? be our rank function which maps ND onto uj\. Then ip is a 
coanalytic norm which is unbounded in LJI. SO by Proposition A, ND is not 
Borel. Let xjj be the restriction of (p to BF. Then BF and ty satisfy the conditions 
of Proposition B. Hence BF is not Borel. 

4. An alternative definition. In this section we give an alternative definition 
of our rank function. Let / Ç [0,1] be any closed interval with rational endpoints 
and recall the definition of R(J) and Q(J). Let Q(J) be the set of all 7 such that 
I € Q(J). If H ÇJ we denote the interior of H with respect to the topology of 
/ by intj(H). For each/ in C,M > 0 and / G g[0,1] we will define a sequence 
(Pa(M,f\J)) of closed subsets of J and a relation 

S[x,Pa(MJ\J)](W) = S(W) 

on the closed subsets of J which reflect the properties off\J. M is to be thought 
of as being large and S(W) is to be interpreted as the relation "W witnesses that 
x is in Pa(M,f\jy\ 

We define pa{MJ\J) and S[x,Pa(MJ\J)(W) by induction. Let P\M, 
f\J) be the set of all xinJ with 

sup{|A/(/0 - A/(L)| :xeK,Le R(J)} ^ M, 
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and let S[x,Pl(MJ\J)](W) hold if and only if x is in W DPl(MJ\J). Let 
Pa+l(M,f\J) be the set of all x in / such that for all / in Q(J) with x el there 
exist H in Q(I),y in int/(//) and V C Pl(M,f\J) such that 

S[y,Pa(M.\I\,f\H)](V). 

Let S[x,Pa+l(M,f\J)](W) hold ^ for all / in Q(J) with x el there exist / / 
in Q(I),y in inty(//) and V Ç W nPl(M,f\J) such that 

S[y,Pa(M.\I\J\H)](V) 

holds. Finally if À is a limit ordinal we let 

P\Mj\J) = n{Pa(MJ\J) : a < A}, 

and let 

S[x,Px(M,f\J)](W) 

hold if and only if 

(Va<\)S[x,Pa(M,f\J\)](W) 

holds. 
Observe that our definition is made by use of simultaneous induction on 

a, M and / . For fixed M and J it is easy to see that Pa(MJ\J) decreases 
as a increases. Also for fixed a and J,Pa(M,f\J) increases as M increases. 
When / = [0,1] we shall refer to Pa(MJ\J) simply as Pa{MJ). We have the 
following result. 

PROPOSITION 13. fis in ND & for each M > 0 there exists a <uj\ such that 
P%MJ) = 0. 

The "<=" part of this result is very easy because if/ is differentiable at xo 
then it is easy to verify that for a fixed large enough M, xo is in Pa{M,f) for all 
a. The other part is much more complicated and tedious so we omit the proof 
(see [20] for details). Proposition 13 allows us to make the following definition 
and the proof implicitly gives the next result. 

Definition. For each / in ND we define r(f) to be the least ordinal a such 
that Pa(M,f) = 0 for all positive integers M. 

PROPOSITION 14. For eachf in ND, | / | = r(f). 

Concluding remarks. It is clear that our alternative definition is very com
plicated as compared with those in [1] and [10] (where for instance parametric 
induction is used instead of simultaneous induction). So the question arises as 
to whether there is a simpler definition. We feel that a simpler definition is not 
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possible because the trees T(M,f) have a nested-like structure which makes the 
use of simultaneous induction necessary. 

This paper was taken in part from the author's Ph.D. thesis [20]. The author 
would like to take this opportunity to express his sincere thanks to his thesis 
adviser Professor A. Kechris. 
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