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We perform direct numerical simulations of wall sheared Rayleigh–Bénard convection
for Rayleigh numbers up to Ra= 108, Prandtl number unity and wall shear Reynolds
numbers up to Rew = 10 000. Using the Monin–Obukhov length LMO we observe the
presence of three different flow states, a buoyancy dominated regime (LMO . λθ ; with
λθ the thermal boundary layer thickness), a transitional regime (0.5H & LMO & λθ ;
with H the height of the domain) and a shear dominated regime (LMO & 0.5H). In the
buoyancy dominated regime, the flow dynamics is similar to that of turbulent thermal
convection. The transitional regime is characterized by rolls that are increasingly
elongated with increasing shear. The flow in the shear dominated regime consists of
very large-scale meandering rolls, similar to the ones found in conventional Couette
flow. As a consequence of these different flow regimes, for fixed Ra and with
increasing shear, the heat transfer first decreases, due to the breakup of the thermal
rolls, and then increases at the beginning of the shear dominated regime. In the shear
dominated regime the Nusselt number Nu effectively scales as Nu∼Raα with α� 1/3,
while we find α' 0.30 in the buoyancy dominated regime. In the transitional regime,
the effective scaling exponent is α > 1/3, but the temperature and velocity profiles
in this regime are not logarithmic yet, thus indicating transient dynamics and not the
ultimate regime of thermal convection.
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1. Introduction
Rayleigh–Bénard (RB) convection, i.e. the flow in a box heated from below and

cooled from above, is one of the paradigmatic fluid dynamical systems (Ahlers,
Grossmann & Lohse 2009; Lohse & Xia 2010; Chilla & Schumacher 2012; Xia
2013). The dynamics of RB convection driven by an imposed temperature difference
is controlled by the Rayleigh number

Ra= βgH3∆/(κν), (1.1)

which is the non-dimensional temperature difference between the horizontal plates, and
the Prandtl number

Pr= ν/κ, (1.2)

which is the ratio between kinematic viscosity and thermal diffusivity. In (1.1)
and (1.2), H is the distance between the plates, β the thermal expansion coefficient
of the fluid, g the gravitational acceleration, ∆ the temperature difference between
the top and bottom plate and κ and ν the thermal diffusivity and kinematic viscosity,
respectively. Length scales are normalized by H unless specified otherwise. While for
purely thermally driven flows Ra and Pr are enough to characterize the flow, when
an external shear is introduced an additional control parameter is needed. In this
work, we analyse the effect of the wall shear Reynolds number

Rew =Huw/ν, (1.3)

where uw is the velocity of the wall. The ratio between buoyancy and shear driving
can be expressed using the bulk Richardson number

Ri= Ra/(Re2
wPr), (1.4)

which can be seen as alternative control parameter for either Ra or Rew.
Important responses of the system are the Nusselt number

Nu=QH/(κ∆), (1.5)

which is the dimensionless vertical heat flux, the friction Reynolds number

Reτ =Huτ/ν, (1.6)

and the skin friction coefficient

Cf = 2τw/(ρu2
w). (1.7)

Here, Q = w′θ ′ − κ∂T/∂z is the constant vertical heat flux, with w′ and θ ′ the
fluctuations for wall-normal velocity and temperature, respectively, and uτ =

√
τw/ρ

the friction velocity, with τw the mean wall shear stress and ρ the density of the
fluid.

For pure RB convection (Rew = 0) and strong enough thermal driving, i.e. high
enough Ra, the flow in the bulk region becomes fully turbulent. For even stronger
thermal driving, beyond some critical Ra number Rac, the boundary layers also
become turbulent, and the system reaches the regime of so-called ultimate convection
(Kraichnan 1962; Grossmann & Lohse 2000, 2001, 2011). This ultimate regime sets
in when the shear Reynolds number at the boundary layers is sufficiently high so
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Turbulent wall sheared thermal convection 897 A22-3

that the boundary layer becomes turbulent, leading to a strong increase in the heat
transport, quantified by the Nusselt number.

Ahlers et al. (2012) found that the transition to the ultimate regime sets in around
Rac ∼ O(1014). While in the classical regime one generally finds Nu ∼ Ra0.31, in
the experimentally accessible ultimate regime an effective scaling of Nu ∼ Ra0.38 is
observed, in agreement with theoretical predictions (Grossmann & Lohse 2011).

The transition to the ultimate regime has also been observed in direct numerical
simulations (DNS) of two-dimensional RB convection (Zhu et al. 2018a). In Taylor–
Couette flow, which is an analogous system, experiments and DNS have observed
the ultimate regime as well (Grossmann, Lohse & Sun 2016). However, so far, the
ultimate regime has not yet been achieved in DNS of three-dimensional RB flows
(Stevens, Verzicco & Lohse 2010; Stevens, Lohse & Verzicco 2011) as the required
computational time to achieve this is still out of reach. Here, in an attempt to trigger
the transition to the ultimate regime, we add a Couette type shearing to the RB system
to increase the shear Reynolds number in the boundary layers.

In Couette flow the top and bottom walls move in opposite directions (Thurlow
& Klewicki 2000; Barkley & Tuckerman 2005; Tuckerman & Barkley 2011) with
constant uw and just as in other examples of wall-bounded turbulence (Jiménez 2018;
Smits, McKeon & Marusic 2011; Smits & Marusic 2013) the flow is dominated
by elongated streaks, which have been observed in experiments (Kitoh & Umeki
2008) and DNS (Lee & Kim 1991; Tsukahara, Kawamura & Shingai 2006), even
at relatively low shear Reynolds numbers (Chantry, Tuckerman & Barkley 2017).
Pirozzoli, Bernardini & Orlandi (2011, 2014) and Orlandi, Bernardini & Pirozzoli
(2015) showed that these streaks in Couette flow have much longer characteristic
length scales than in Poiseuille flow, where the flow is forced by a uniform pressure
gradient rather than by wall shear. Rawat et al. (2015) showed that these large-scale
flow structures even survive when the small-scale structures are artificially suppressed.
Recently, Lee & Moser (2018) found that the streak length increases with increasing
shear Reynolds number and that some correlation in the streamwise direction remains
visible up to a length of almost 160 times the distance between the plates.

Investigating the interaction between buoyancy and shear effects is also very
important to better understand oceanic and atmospheric flows (Deardorff 1972;
Moeng 1984; Khanna & Brasseur 1998). For example, early experiments on sheared
thermal convection by Ingersoll (1966) and Solomon & Gollub (1990) showed the
appearance of large-scale structures. Fukui & Nakajima (1985) showed that in channel
flow unstable stratification increases the longitudinal velocity fluctuations close to the
wall, while in the bulk region, the temperature fluctuations are drastically lowered.
Furthermore, recent experiments by Shevkar et al. (2019) investigated the plume
spacing in sheared convection and found a scaling law that connects the mean
spacing of the plumes with Rew, Ra and Pr.

Early simulations of sheared convection were performed by Hathaway & Somerville
(1986) and Domaradzki & Metcalfe (1988) for Ra.O(105). Domaradzki & Metcalfe
(1988) found that in Couette–RB flow the addition of shear at low Ra initially
increases the heat transport. However, for Ra & 150.000 the heat transport decreases
as the added shear breaks up the large-scale structures. More recently, Scagliarini,
Gylfason & Toschi (2014), Scagliarini et al. (2015) showed that also in Poiseuille–RB
the heat transfer first decreases when the applied pressure gradient is increased. The
reason is that for intermediate forcing the longitudinal wind disturbs the thermal
plumes, which therefore lose their coherence. Only with a strong enough pressure
gradient is a heat transfer enhancement found.
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FIGURE 1. Volume rendering of the thermal structures rising from the heated plate in a
simulation with Ra= 4.6× 106 and Rew= 8000. The plate dimensions are 9πH× 4πH, in
the streamwise and spanwise directions, respectively, where H is the distance between the
plates. The red colours show hot thermal structures emerging from the hot plate, while
the blue structures show vorticity formations in the flow. For further details of the flow
visualization, please see Favre & Blass (2019).

The Richardson number quantifies the ratio between the buoyancy and shear forces
in Couette–RB and Poiseuille–RB based on the applied temperature difference and
wall shear Reynolds number. Another way to quantify the ratio between buoyancy and
shear forces is to determine the Monin–Obukhov length (Monin & Obukhov 1954;
Obukhov 1971)

LMO/H = u3
τ/(w′θ ′βgH), (1.8)

which indicates up to which distance from the wall the flow is dominated by shear.
Note that LMO/H is a response parameter, in contrast to Ri, which is a control
parameter. Pirozzoli et al. (2017) found that the Monin–Obukhov length scales as
LMO/H ≈ 0.15/Ri 0.85 for channel flow with unstable stratification. In appendix C we
show that here for Couette–RB LMO/H ≈ 0.16/Ri 0.91.

In this study, we investigate the effect of an additional Couette type shearing on the
heat transfer in RB convection in an attempt to trigger the boundary layers to become
fully turbulent and hence observe the transition to the ultimate regime. Figure 1 shows
a flow visualization of the temperature field obtained from one of our simulations,
which reveals large-scale meandering streaks that are formed near the hot plate. We
performed simulations over a wide parameter range, spanning 106 6 Ra 6 108 and
0 6 Rew 6 104, while Pr = 1 has been used in all cases, see figure 2(a). Despite the
very strong forcing for the largest Ra and Rew, we did not achieve ultimate turbulence.
We were limited by our requirement of using large domain sizes, as recommended by
Pirozzoli et al. (2017), to ensure convergence of the main flow properties.

The remainder of this manuscript is organized as follows. In § 2 we present the
simulation method. We discuss the heat transfer and skin friction measurements
in §§ 3.1 and 3.2, respectively. A discussion of the identified flow regimes is given
in § 4. The concluding remarks follow in § 5.
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FIGURE 2. (a) Streamwise (nx) resolution used in the simulations as function of Ra
and Rew, see table 2 for details. (b) Reτ versus Rew obtained from the simulations. In
agreement with Pirozzoli et al. (2014) and Avsarkisov, Hoyas & García-Galache (2014)
we find that Reτ ∼ Re0.87

w for large Rew.

2. Simulation details

We numerically solve the three-dimensional incompressible Navier–Stokes equations
within the Boussinesq approximation, which in non-dimensional form read

∂u
∂t
+ u · ∇u=−∇P+

(
Pr
Ra

)1/2

∇
2u+ θ ẑ, ∇ · u= 0, (2.1)

∂θ

∂t
+ u · ∇θ =

1
(PrRa)1/2

∇
2θ, (2.2)

with u the velocity non-dimensionalized by the free-fall velocity
√

gβH∆, t the time
non-dimensionalized by

√
H/(gβ∆), θ the temperature non-dimensionalized by the

temperature difference between the plates ∆ and P the pressure non-dimensionalized
by gβ∆/H. All our length scales are non-dimensionalized by H, implying that we set
the plate distance to unity in this work.

To solve (2.1) and (2.2) we employ the second-order finite difference code AFiD
(van der Poel et al. 2015), which has been validated many times against other
numerical and experimental results (Verzicco & Orlandi 1996; Verzicco & Camussi
1997, 2003; Stevens et al. 2010, 2011; Ostilla-Mónico et al. 2014; Kooij et al. 2018).
The code uses periodic boundary conditions with uniform mesh spacing in the
horizontal directions and supports a non-uniform grid distribution in the wall-normal
direction. For this study, we used the GPU version of the code (Zhu et al. 2018b) to
allow efficient execution of many large-scale simulations. The Couette flow forcing
is realized by moving both walls in opposite directions with a velocity of uw, and
the results for the classic Couette flow case match excellently with the results
by Pirozzoli et al. (2014). For example, figure 2(b) shows that, for Couette flow,
Reτ ∼ Re0.87

w , which agrees very well with the Couette data of Pirozzoli et al. (2014)
and Avsarkisov et al. (2014).
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Nx Ny Nz Reτ LMO/H Nu Cf /10−3

1024 512 384 708.0 0.138 25.66 10.03
1296 648 384 703.6 0.137 25.37 9.902
1536 768 384 700.6 0.137 25.19 9.818
1728 864 384 700.0 0.136 25.15 9.805

TABLE 1. Grid convergence study for Ra = 1.0 × 108, Pr = 1 and Rew = 10 000 in a
2πH×πH×H domain. Nx, Ny, Nz indicate the resolution in the streamwise (x), spanwise
(y) and wall-normal (z) directions, respectively. The other columns show the friction
Reynolds number Reτ , the Monin–Obukhov length LMO/H, the Nusselt number Nu and the
friction coefficient Cf . Additional information on the grid convergence study is provided
in figure 3.

All simulations in this study were performed in a large 9πH × 4πH × H box, in
the streamwise, spanwise and wall-normal directions (Tsukahara et al. 2006; Pirozzoli
et al. 2014), which is required to capture the large-scale structures formed in Couette
flow (Avsarkisov et al. 2014; Pirozzoli et al. 2014; Lee & Moser 2018). We adopted
the grid distribution used by Pirozzoli et al. (2014, 2017), which is based on the
resolution requirements for pure buoyant flow (Shishkina et al. 2010) and pure
channel flow (Bernardini, Pirozzoli & Orlandi 2014), which is very similar to our
flow configuration. The average horizontal grid spacing in the mixed convection
simulations is ∆+x,y / 4. In the wall-normal direction the boundary layers are, on
average, resolved up to 1.6 Kolmogorov lengths. For the case at Ra = 108 and
Rew= 10 000, i.e. the most challenging simulation of this study, we used a horizontal
grid spacing of less than three wall units in both horizontal directions. There are 54
grid points in each boundary layer to ensure that the boundary layers are resolved up
to 1.3 Kolmogorov lengths. We present a grid refinement check, which was performed
in a smaller 2πH × πH × H domain to keep the test manageable, for this case in
table 1. Figure 3 confirms that the simulations are fully resolved for the chosen
resolution. As further validation, we show in § 3.2 that our data excellently agree
with the Couette data from Pirozzoli et al. (2014). We make sure that all simulations
have reached the statistically stationary state before collecting data. Table 2 shows
the simulation parameters for the main cases presented in this study.

3. Global flow characteristics
3.1. Effective scaling of the Nusselt number

Figure 4 shows that the heat transfer increases with increasing Ra and Rew and that
for a given Ra number a minimum heat transfer is obtained at some intermediate
Rew. Scagliarini et al. (2014) showed that the minimum is caused by the thermal
plumes being swept away by the shear. Figure 5(a) shows cross-sections for constant
Ra which reveal that the location of the minimum heat transfer at constant Ra shifts
towards higher Rew with increasing Ra. For high enough Rew, the behaviour of Nu
converges towards Nu∼ 0.0013Rew. Figure 5(b), where Nu is normalized by the RB
value for the respective Ra, shows that the drop in Nu becomes less pronounced and
is observed at higher Rew when Ra is increased. This is a good indication that the
thermal plumes become stronger and therefore harder to disturb by the applied shear.
For Ra= 108 the decrease in Nu at Rew= 2000 is only ∼5 % while the data for other
Ra show percentages up to the high twenties. A more detailed analysis would need
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Ra Pr Rew Nx Ny Nz Reτ Ri LMO/H Nu Cf /10−3

0 1 2000 1280 1024 256 131.9 0 0 0 8.695
0 1 3000 1280 1024 256 185.8 0 0 0 7.673
0 1 4000 1280 1024 256 238.1 0 0 0 7.089
0 1 6000 1280 1024 256 340.6 0 0 0 6.446
0 1 8000 2048 1280 256 439.7 0 0 0 6.041
0 1 10 000 3072 1536 256 540.9 0 0 0 5.852

1.0× 106 1 0 1280 1024 256 — ∞ 0 8.343 ∞

1.0× 106 1 2000 1280 1024 256 161.7 0.250 0.645 6.557 13.07
1.0× 106 1 3000 1280 1024 256 203.0 0.111 1.218 6.869 9.158
1.0× 106 1 4000 1280 1024 256 251.7 0.063 2.022 7.891 7.922
1.0× 106 1 6000 2048 1280 256 355.2 0.028 4.259 10.52 7.008
1.0× 106 1 8000 3072 1536 256 452.2 0.016 7.212 12.82 6.390
1.0× 106 1 10 000 4608 2304 320 554.3 0.010 11.00 15.49 6.145
2.2× 106 1 0 1280 1024 256 — ∞ 0 10.40 ∞

2.2× 106 1 2000 1280 1024 256 176.3 0.550 0.316 7.866 15.53
2.2× 106 1 3000 1280 1024 256 215.3 0.244 0.583 7.788 10.30
2.2× 106 1 4000 1280 1024 256 261.9 0.138 0.953 8.568 8.576
2.2× 106 1 6000 2048 1280 256 363.0 0.061 1.983 10.96 7.319
2.2× 106 1 8000 4096 2048 256 462.8 0.034 3.351 13.44 6.692
2.2× 106 1 10 000 4608 2304 320 566.4 0.022 5.123 16.12 6.416
4.6× 106 1 0 1280 1024 256 — ∞ 0 12.83 ∞

4.6× 106 1 2000 1280 1024 256 190.2 1.150 0.156 9.353 18.09
4.6× 106 1 3000 1280 1024 256 237.3 0.511 0.306 9.502 12.51
4.6× 106 1 4000 1280 1024 256 276.1 0.288 0.475 9.626 9.526
4.6× 106 1 6000 2048 1280 256 377.2 0.128 0.982 11.88 7.903
4.6× 106 1 8000 4096 2048 256 474.0 0.072 1.645 14.08 7.021
4.6× 106 1 10 000 4608 2304 320 578.7 0.046 2.513 16.76 6.697
1.0× 107 1 0 1280 1024 256 — ∞ 0 16.18 ∞

1.0× 107 1 2000 1280 1024 256 213.2 2.500 0.078 12.41 22.73
1.0× 107 1 3000 1280 1024 256 265.8 1.111 0.156 12.02 15.69
1.0× 107 1 4000 1280 1024 256 306.0 0.625 0.243 11.78 11.70
1.0× 107 1 6000 2048 1280 256 391.2 0.278 0.466 12.85 8.502
1.0× 107 1 8000 4096 2048 256 493.4 0.156 0.785 15.30 7.607
1.0× 107 1 10 000 6144 3072 320 595.0 0.100 1.180 17.85 7.080
2.2× 107 1 0 3072 1536 256 — ∞ 0 19.86 ∞

2.2× 107 1 2000 3072 1536 256 236.4 5.500 0.036 16.62 27.94
2.2× 107 1 3000 3072 1536 256 296.5 2.445 0.075 15.77 19.53
2.2× 107 1 4000 3072 1536 256 341.4 1.375 0.119 15.24 14.57
2.2× 107 1 6000 3072 1536 256 429.1 0.611 0.233 15.43 10.23
2.2× 107 1 8000 4096 2048 256 514.0 0.344 0.374 16.52 8.255
2.2× 107 1 10 000 6144 3072 320 607.6 0.220 0.552 18.01 7.383
1.0× 108 1 0 4096 2048 256 — ∞ 0 31.14 ∞

1.0× 108 1 2000 4096 2048 256 283.9 25.00 0.007 29.34 40.31
1.0× 108 1 3000 4096 2048 256 360.1 11.11 0.017 27.85 28.82
1.0× 108 1 4000 4096 2048 256 425.7 6.250 0.029 26.83 22.66
1.0× 108 1 6000 4608 2304 320 534.7 2.778 0.059 25.81 15.88
1.0× 108 1 8000 6144 3072 320 628.5 1.563 0.097 25.72 12.35
1.0× 108 1 10 000 6912 3456 384 713.3 1.000 0.139 26.03 10.18

TABLE 2. Main simulations considered in this work.
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FIGURE 3. Values of (a) Nu and (b) the streamwise velocity fluctuations for simulations at
Ra= 108 and Rew= 10 000 performed using different grid resolutions. The simulations are
performed in a box of 2πH×πH×H in the streamwise, spanwise and vertical directions,
respectively. The displayed resolutions indicate the extrapolated streamwise resolutions
that correspond to the full 9πH × 4πH × H box, see table 1 for details. Note that the
simulation results are converged for the grid resolution used in this study.

30

20

10

30

20

108000
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FIGURE 4. Value of Nu as a function of Ra and Rew in Couette–RB flow.

more data points for low Rew, which are difficult to obtain due to the computational
time that is required for each simulation.

The results indicate that the heat transfer is influenced by the ratio of the buoyancy
and shear forces. Therefore, the bulk Richardson number Ri or the above-defined
Monin–Obukhov length, which take the ratio of these forces into account, are natural
control and response parameters to identify the different flow regimes. Although the
Monin–Obukhov theory itself is only valid for shear dominated flow, which does
not necessarily exist in all our simulations, we use the Monin–Obukhov length as an
objective criterion to distinguish between buoyancy and shear-driven flow. This choice
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FIGURE 5. Values of (a) Nu and (b) Nu normalized by the RB value NuRew=0 as a function
of Rew.

builds on a long and rich tradition of using the Monin–Obukhov length to characterize
mixed convective flows, namely in the seminal works by Obukhov (1946) and Monin
& Obukhov (1954). Its use has significantly advanced the understanding of mixed
convective flows. The Monin–Obukhov length is relevant as it characterizes the
effects of both friction and buoyancy, the main physical effects in this system, by
a single length scale. Also, in this case, we show that the Monin–Obukhov length
is a relevant parameter that gives insight into the behaviour of the flow. From
the data in table 2, we find LMO/H ≈ 0.16/Ri 0.91 (see appendix C). In figure 6(a)
the Monin–Obukhov length is compared to the thermal boundary layer thickness
λθ , which is determined from λθ = H/(2Nu). Since LMO/H is the fraction of the
domain in which the shear forcing is dominant LMO > 0.5H indicates when the
flow is completely shear dominated. This allows us to define three different flow
regimes, namely a buoyancy dominated regime (LMO . λθ ), a transitional regime
(0.5H & LMO & λθ ) and a shear dominated regime (LMO & 0.5H). At the moment we
cannot more accurately determine the Monin–Obukhov length at which the transition
takes place, but the presented ranges provide a good indication of the required thermal
and shear forcing to achieve the different regimes. A similar behaviour has also been
observed in convective boundary layers, where Salesky, Chamecki & Bou-Zeid (2017)
find a cell dominated regime for −zi/LMO & 20, where zi is the convective boundary
layer thickness, a cell and roll dominated regime as transitional state, and a roll
dominated regime for −zi/LMO . 5.

Figure 6(b) shows that the heat transfer in the buoyancy dominated regime scales
as Nu'Ra0.30, which is in agreement with results for classical RB convection (Rew=

0, Ahlers et al. (2009)). For the shear dominated regime we find that the effective
scaling exponent α in Nu ∼ Raα is α � 1/3 and in the transitional regime we find
α > 1/3. An effective scaling exponent larger than 1/3 is one of the characteristics
of the ultimate regime. It should occur when the boundary layers have transitioned to
the turbulent state, which is indicated by their logarithmic profiles. Our analysis in § 4
shows that this is not yet the case in this transitional regime. Instead, for intermediate
shear, the heat transfer is decreased with respect to the RB case. The locally larger
effective scaling exponent simply is a consequence of the fact that with increasing Ra
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FIGURE 6. (a) The Monin–Obukhov length as a function of Ra for different Rew. The
Monin–Obukhov length (solid lines) is compared to the thermal boundary layer thickness
(dashed lines) and to 0.5 to define the flow regime (buoyancy dominated, transitional,
shear dominated) of each simulation, see details in the text. Open symbols indicate
LMO < 0.5H. (b) Nu as a function of Ra. The numbers indicate the scaling exponent α
in Nu∼ Raα . The α = 0.37 effective scaling line is plotted for visual reference only.

the heat transfer, which was decreased at intermediate shear, must again converge to
the RB case.

3.2. Skin friction
In figure 7 we compare the measured skin friction coefficient for different Rew and
Ra with Prandtl’s turbulent friction law (Schlichting & Gersten 2000)√

2
Cf
=

1
K

log

(
Rew

√
Cf

2

)
+C. (3.1)

Following Pirozzoli et al. (2014) we use a von Kármán constant K = 0.41 and
C = 5. The figure shows that the skin friction increases with Ra and decreases with
Rew. At fixed Ra the relative strength of the thermal forcing decreases for high Rew,
and therefore the obtained friction coefficient converges to the Prandtl law. This
agrees very well with the findings of Scagliarini et al. (2015) and Pirozzoli et al.
(2017) for Poiseuille–RB flow. In figure 7(b) we focus on the data for small Rew.
The skin friction in pure Couette flow follows the expected laminar result Cf = 4/Rew
(Pope 2000) until a transition to the turbulent state occurs around Rew = 650–700.
Cerbus et al. (2018) discuss that in pipe flow this jump is caused by the formation of
puffs and slugs. Brethouwer, Duguet & Schlatter (2012) attribute this discontinuous
jump in Cf to the lack of restoring forces in plane Couette flow (similar to pipe,
channel, and boundary layer flows). For the Couette–RB case we do not observe
such a discontinuous jump. Instead, this sheared RB case is another example, next
to the application of Coriolis, buoyancy and Lorentz forces discussed by Brethouwer
et al. (2012), which shows that restoring forces can prevent a discontinuous jump
in Cf (Rew). Chantry et al. (2017), on the other hand, claim that all transitions to
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4
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FIGURE 7. (a) Skin friction coefficient Cf as a function of Rew. (b) Zoom in of the grey
area shown in panel (a), now on a logarithmic scale, showing the data for pure Couette
flow (Ra=0, stars) and Ra=106. Note that Cf (Ra=0) follows the expected laminar result
(- - -) until Rew = 650–700 and then jumps to the turbulent curve (· · ·). For Couette–RB,
i.e. the up-pointing triangle, no jump is observed.

turbulence should be continuous if the used box size is large enough. From this
figure we can also judge whether the boundary layer is turbulent or not. When the
slope of Cf approaches the one of pure Couette flow the boundary layers are turbulent.
We consider the boundary layer as non-turbulent when this slope starts to strongly
deviate from the Prandtl law.

4. Local flow characteristics
4.1. Organization of turbulent structures

To further investigate the dynamics of the different regimes we show visualizations
of the temperature field for all simulations in figure 8 and appendix A. We decided
to show the flow at mid-height because there the flow is least affected by the
walls. In the buoyancy dominated regime the primary flow structure resembles the
large-scale flow found in RB convection (Stevens et al. 2018). In the transitional
regime (LMO . 0.5H), the thermal forcing dominates part of the bulk where large
elongated thermal plumes transform into thin straight elongated streaks when LMO

approaches 0.5H. In figure 8 and in appendix A this manifests itself as a very visual
line diagonally through the diagram, splitting the more thermal and the more shear
dominated cases. In the shear dominated regime (LMO & 0.5H) we find large-scale
meandering structures, similar to the ones found in pressure-driven channel flow with
unstable stratification (Pirozzoli et al. 2017). This significant change in flow structure
can be linked to the minimum in Nu in figure 5. The reason for the minimum is
that at intermediate shear the thermal convection rolls are broken up, while the shear
is not yet strong enough to increase the heat transfer directly. This observation is
in agreement with earlier works described above (Domaradzki & Metcalfe 1988;
Scagliarini et al. 2014, 2015; Pirozzoli et al. 2017).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

37
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.378


897 A22-12 A. Blass and others

Ra
 =

 1
.0

 ÷
 1

06

Ra
 =

 2
.2

 ÷
 1

06

Ra
 =

 1
.0

 ÷
 1

07

Ra
 =

 2
.2

 ÷
 1

07

Ra
 =

 4
.6

 ÷
 1

06

Re
 =

 0
Re

 =
 2

00
0

Re
 =

 3
00

0
Re

 =
 4

00
0

œ m
in

œ m
ax

FIGURE 8. Instantaneous snapshots of temperature fields at mid-height for a subdomain
of the parameter space, see figure 2(a) and table 2, focusing on Ra = 1.0 × 106–2.2 ×
107 and Rew = 0–4000. The panels have coloured borders depending on the flow regime
they display: buoyancy dominated (white), transitional (blue) and shear dominated (orange)
regime. For a more detailed quantification of the different flow fields in the presented
snapshots, we refer to the values for the Monin–Obukhov length in table 2. An overview
of temperature fields over the whole domain can be found in appendix A. The colour
range for the snapshots in this figure and in figures 9–11 and 14 is adjusted such that the
most important thermal structures are clearly visible.
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FIGURE 9. (a) Ri versus Rew for different Ra. Open symbols indicate the presence of
thin straight elongated streaks (see third snapshot from top). The dashed line indicates
LMO= 0.5H. In (b) instantaneous snapshots of temperature fields at mid-height. (c) Nu as
a function of Ri for different Rew. An indication of the effective scaling exponent γ in
Nu∼ Riγ in the different regimes is also given. For a more detailed quantification of the
different flow regimes in the presented snapshots, we refer to the Monin–Obukhov lengths
documented in table 2.

In figure 9 we present a clear overview of the behaviour of the flow structures
versus the flow control parameters combined in the bulk Richardson number. In
panel (a), we compare the different values of Ri with the visually observed flow
structures. We find a range of Ri in which the flow undergoes a change from the
transitional to the shear dominated regime. This happens in a range of 0.2.Ri. 0.7.
In panel (c), we can also detect this trend, where the effective scaling exponent γ in
Nu∼ Riγ changes from γ = 0.05± 0.01 to γ = 0.37± 0.02. We note that more data
points would be necessary to define the transition point more accurately.

Figure 9 combines these findings with the above observation that in the shear
dominated regime the effective scaling exponent α in Nu ∼ Raα is much smaller
than 1/3, in the transitional regime α > 1/3, and in the buoyancy dominated regime
α ' 0.30. When we compare the regime transitions with the results in figure 5 it
becomes clear that the lowest heat transfer for a given Ra occurs at the end of the
transitional regime before the emergence of the thin straight elongated streaks. Due
to the large computational time that is required for each simulation the number of
considered cases is limited, which makes it difficult to pinpoint exactly when the
heat transfer is minimal and what the flow structure looks like in that case. However,
we note that the onset of the shear dominant regime corresponds to the point where
the heat transfer starts to increase as the additional shear can then more effectively
enhance the overall heat transport.

To get more insight into the boundary layer dynamics in the different regimes,
we show the temperature and streamwise velocity at the boundary layer height for
Ra = 4.6 × 106 in figure 10. At this Rayleigh number the flow is in the transitional
regime for Rew = 2000 and Rew = 3000, and in the shear dominant regime for
Rew > 4000. For all cases we observe a clear imprint of the large-scale structures
observed at mid-height, see figure 8 and appendix A. This indicates that the
large-scale dynamics has a pronounced influence on the flow structures in the
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FIGURE 10. Instantaneous near-wall snapshots at z+ ≈ 0.5 of the temperature (a) and
streamwise velocity (b) for Ra= 4.6× 106. Rew increases from top to bottom. For a more
detailed quantification of the different flow fields in the presented snapshots, we refer to
the values for the Monin–Obukhov length in table 2. The colour range for the snapshots in
this figure is adjusted such that the most important thermal structures are clearly visible.

boundary layers (Stevens et al. 2018). The figure also reveals that in the transitional
and shear dominated regimes the lowest temperatures at boundary layer height are
observed in the high-speed streak regions, which indicates that the regions with the
highest shear contribute most to the overall heat flux.
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FIGURE 11. (a) Overview of streamwise temperature variance spectra at mid-height
at Ra = 4.6 × 106 for the different flow regimes. Panels (b,c) show the evolution of
peaks in streamwise and spanwise temperature variance spectra, respectively, versus the
Monin–Obukhov length. The spectra were evaluated on three-dimensional snapshots and
are subsequently time averaged.

4.2. Flow statistics

We now present the streamwise temperature variance spectra Eθ(k) in figure 11 to
analyse the size of the large-scale structures as function of the Monin–Obukhov length.
The position of the peak in the temperature spectrum indicates the wavelength of the
most prominent thermal structure (Stevens et al. 2018). In panels (b,c) we plot the
evolution of these wavelengths versus the absolute size of the flow domain. Therefore
we define kxpeak and kypeak as the wavenumbers of the peak in the respective energy
spectrum and `x = 2π/kxpeak and `y = 2π/kypeak as the respective wavelengths. If the
spectrum does not show a clear peak but keeps growing for small k, the structure size
is limited by the box size, which is Γx = 9π in streamwise (figure 11b) and Γy = 4π

in spanwise direction (figure 11c).
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FIGURE 12. (a) Mean streamwise velocity and (b) temperature profiles, where u+= u/uτ
and, following Pirozzoli et al. (2017), T+= T/Tτ with the friction temperature Tτ =Q/uτ
for Ra= 4.6× 106.

For LMO→∞, `x ≈ ΓxH, which is expected since for pure Couette flow, structures
much larger than 9π are expected (Lee & Moser 2018). `y≈ 0.8πH= 0.2ΓyH for the
highest shear case, but here more data points are needed for a clearer determination
of its behaviour. In the other limit of LMO → 0, i.e. in the transitional regime as
the RB case (buoyancy dominated regime) is not shown due to the logarithmic axis,
the large-scale structures are elongated over the whole streamwise length, which
is consistent with figures 8 and 14. For pure RB convection, where LMO = 0, `x

decreases to `x ≈ 2πH, which is in agreement with Stevens et al. (2018). In the
spanwise direction, the flow converges already much earlier to the RB case where
`y ≈ 2πH = 0.5ΓyH. In the shear dominated regime, where the flow meanders, the
structure size in streamwise direction drops to about half the box length. In the
spanwise direction, this flow regime is present as a local peak in panel (c). Due to
the minimal number of data points, it is not possible to fully assess the behaviour of
`x and `y versus LMO for all Ra and Rew. Nevertheless, the minimum in `x and peak
in `y in the shear dominated regime are very distinct.

To further quantify the cases shown in figure 10, in figure 12 we show the
streamwise velocity and temperature profiles for fixed Ra= 4.6× 106 and increasing
Rew from 2000 to 10 000. As can be seen, for the wall Reynolds number in the
transitional range up to Rew≈ 4000 (see corresponding curve in figure 9a) neither the
temperature nor the streamwise velocity profiles are logarithmic. This indicates that
the boundary layers are not yet turbulent in this state. Hence, the higher Nu scaling in
this transitional regime is not caused by a triggered transition to the ultimate regime.
Note that spatio-temporally chaotic flow with thermal plume detachment from the
walls must not be confused with turbulent flow. The temporal fluctuations in this
regime can in fact be considerable, but given the small shear Reynolds numbers, the
flow is still not turbulent. Here we use the definition of turbulence as absence of
large-scale coherence in space and time.

In contrast, in the shear dominated regime (beyond Rew ≈ 4000 for this Ra =
4.6 × 106) the streamwise velocity and temperature profiles do start to converge to
a logarithmic profile with further increasing Rew, reflecting the onset of the ultimate
regime. This observation is in agreement with previous findings for Couette–RB (Liu
2003; Choi, Chung & Kim 2004; Debusschere & Rutland 2004; Le & Papavassiliou
2006) and Poiseuille–RB (Scagliarini et al. 2015; Pirozzoli et al. 2017).
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FIGURE 13. (a) Mean streamwise velocity and (b) temperature profiles, where u+= u/uτ
and T+ = T/Tτ with Tτ =Q/uτ for Rew = 6000. T+Ra=0 was determined through a passive-
scalar temperature field.

In figure 13 we show the same statistical quantities as in figure 12, but now
for fixed Rew = 6000. For Ra & 107 the flow is in the transitional regime and for
Ra . 107 the flow undergoes a transition into the shear dominated regime. Just as
in figure 12 we observe that the temperature and streamwise velocity profiles are
not logarithmic in the transitional regime. As the Richardson number decreases with
decreasing Ra, we see that the profiles converge towards a logarithmic behaviour.
From a comparison with table 2 we find that Ri . 0.2 seems to be required to
achieve logarithmic temperature and velocity profiles. A comparison with the results
shown in figure 9 confirms that Ri ≈ 0.2 is indeed the threshold where the flow
undergoes its transition to the shear dominated regime. This is also consistent with
the work of Pirozzoli et al. (2017), who report a regime with the increased importance
of friction at Ri ≈ 0.1. For the parameter regime under investigation, the effective
scaling exponent α in the shear dominated regime is well below 1/3. In both figures
we can detect a non-monotonic behaviour of both u+ and T+ for low Rew and high
Ra. The non-monotonic temperature profile indicates the formation of different flow
layers, i.e. heat that is carried by hot plumes originating from the bottom plate gets
entrapped somewhere in the middle of the domain. Similarly, some of the cold plumes
originating from the top plate also get trapped. Several further statistical quantities
are presented in appendix B.

5. Concluding remarks
We performed direct numerical simulations of turbulent thermal convection with

Couette type flow shearing. We presented cases in a range 106 6 Ra 6 108 and
0 6 Rew 6 104, achieving up to Reτ ≈ 710. For fixed Rayleigh number we obtain
a non-monotonic progression of Nu similarly to what was previously observed in
unstable stratification with a pressure gradient (Scagliarini et al. 2014). The addition
of imposed shear to thermal convection first leads to a reduction of the heat transport
by disrupting the turbulent system before the shear becomes strong enough to create
meandering streaks that efficiently transport the heat away from the wall. As the
impact of the thermal plumes on the flow decreases with increasing shear, the skin
friction coefficient at constant Ra drops with increasing Rew.

Using the Monin–Obukhov length LMO and the thermal boundary layer thickness λθ ,
we identify three flow regimes. In the buoyancy dominated regime (LMO . λθ ) large
thermal plumes dominate the flow. With decreasing Richardson number we first find
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a transitional regime (0.5H & LMO & λθ ), before the shear dominated flow regime with
large-scale meandering streaks is obtained. For given Ra the minimum heat transport
is found before the onset of this shear dominated regime when thin straight elongated
streaks dominate the flow. We find that in the transitional regime the effective scaling
exponent α in Nu ∼ Raα is larger than 1/3. An analysis of the flow characteristics
shows that the temperature and streamwise velocity profiles are not logarithmic in this
transitional regime, which one would expect when this high scaling exponent would
indicate the onset of the ultimate regime. We want to investigate in future studies
whether it is possible to further increase the thermal and sheared forcing far enough to
trigger the occurrence of a logarithmic velocity profile in the boundary layer and thus
the ultimate convection in Couette–RB, but considerably more CPU time is required
for that.
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Appendix A. Flow field overview
As an addition to figure 8 we present in figure 14 the full overview of temperature

snapshots at mid-height, ranging from Ra= 1.0× 106–1.0× 108 and Rew = 0–10 000.
All three regimes, i.e. the buoyancy dominated regime, the transitional regime and the
shear dominated regime, can be observed here.

Appendix B. Further flow statistics
In addition to the data presented in figures 12 and 13 we present further flow

statistics here. Figure 15 shows the velocity and temperature fluctuations as function
of height for Ra = 4.6 × 106 for various wall shear Reynolds numbers. It can
be observed that the velocity fluctuations increase with Rew. The temperature
fluctuations show a non-monotonic behaviour. The peak temperature fluctuations
first increase with increasing Rew before the peak of the temperature fluctuations
decreases with increasing wall shear. Figure 16 shows the velocity and temperature
fluctuations for Rew = 6000 and increasing Ra. upeak and vpeak first increase and
then monotonically decrease with increasing Ra when thermal forcing is added to
Couette flow. Both the wall-normal velocity and the temperature fluctuations decrease
completely monotonically for increasing thermal forcing.
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FIGURE 14. Instantaneous snapshots of all simulated temperature fields at mid-height, see
the caption of figure 8 for further details.

Appendix C. Scaling of the Monin–Obukhov length with Richardson number

In figure 17 we present the Monin–Obukhov length LMO versus the Richardson
number Ri for all simulations. We find that the Monin–Obukhov length scales as
LMO/H = 0.16/Ri 0.91, similar to LMO/H = 0.15/Ri 0.85 as found by Pirozzoli et al.
(2017) for channel flow with unstable stratification.
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FIGURE 15. Fluctuations of (a) streamwise, (b) spanwise and (c) wall-normal velocities,
and (d) temperature for Ra= 4.6× 106.
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FIGURE 16. Fluctuations of (a) streamwise, (b) spanwise and (c) wall-normal velocities,
and (d) temperature for Rew = 6000. T ′2Ra=0 was determined through a passive-scalar
temperature field.
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Rew. For LMO/λθ . 1 the flow is in the buoyancy dominated regime.

Appendix D. Comparison of LMO and λθ

In figure 18 we show the ratio between the Monin–Obukhov length LMO and the
thermal boundary layer thickness λθ , which is determined from λθ = H/(2Nu). For
LMO/λθ < 1 the flow is in the buoyancy dominated regime. For higher LMO/λθ , the
flow first reaches the transitional regime before the shear dominated regime is reached,
where LMO/λθ ∼ Re5/2

w .
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