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Revisiting Weertman’s tombstone bed

Douglas R. MacAyeal

The Department of Geophysical Sciences, The University of Chicago, Chicago, USA

Abstract

Johannes Weertman published his first glaciological paper in 1957 only 5 years after getting his
DSc in metallurgy from the Carnegie Institute of Technology. The paper presented the very first
sliding law developed quantitatively from first principles, and involved the unconventional ideal-
ization of bed roughness using cubic ‘tombstones’ of rock. Since 1957, there has been a great deal
of progress in understanding glacier sliding, but few studies, if any, have preserved the original
tombstone geometry that was a hallmark of this first theory. The current study presents a partial
reanalysis of the sliding process over a bed with tombstone obstacles using modern numerical
methods. The result confirms the enduring applicability of Weertman’s model as a pedagogical
tool and motivates new questions about (1) folding flow near bedrock obstacles that invert nor-
mal ice stratigraphy, (2) the presence and role of stress singularities on sharp edges of bedrock,
and (3) the validity of a presumption that regelation flow can be plug-like.

Introduction

In 1957, the Journal of Glaciology published the iconic paper that set an important scientific
direction for glaciological research that endures to this day. Johannes Weertman’s ‘On the slid-
ing of glaciers’ was, according to Fowler (2010),

[t]he first paper in the subject which properly addresses the physics….

This paper (Weertman, 1957a) ignited follow-up research by many of the world’s most prolific
glaciologists over the subsequent six decades, and is one of the most widely cited in the history
of glaciology (over 640 citations listed in Google Scholar, more than 50 in 2018–19).

The theory of glacier sliding, as envisioned by Weertman in 1957, endures as the peda-
gogical source for understanding the phenomenology of ice sheet and glacier sliding even
though, it involves an unconventional representation of bedrock roughness, and only two of
the five physical processes that are involved. The theory accounted for enhanced creep motion
and flow by regelation, but did not account for bed separation/cavity formation, hydraulic
pressure effects and deformation of the material below the ice bed interface. Weertman’s
1957 glacier sliding problem has been revisited several times before (e.g. as described in
Fowler, 2010). The study presented here will not be as comprehensive, or as critical, as
some (e.g. Lliboutry, 1968), because my intention is to merely provoke further research in
the problem. My aim is to revisit Weertman’s 1957 glacier sliding problem as originally
posed with its distinctive tombstone bedrock obstacles using numerical methods. The goal
is to both celebrate the achievement embodied in his paper and to identify several elements
of the problem that may warrant further research.

Weertman’s early life and origin of his interest in glaciology

Johannes ‘Hans’ Weertman (Fig. 1) grew up in Beaver, Pennsylvania (USA), as the oldest of
two sons of Roelof and Christina Weertman, who emigrated to the USA from Rotterdam,
The Netherlands, in 1923, 2 years before Hans’s birth. When Hans was growing up, Roelof
was an engineer and mechanical draughtsman working for the St. Joseph Lead Company of
Pittsburgh, PA. In his spare time, and later in retirement, Roelof made violins and cellos.
During Hans’s high school days, Roelof built a violin (Fig. 2) that was taken by a Beaver,
PA neighbor just a few years older than Hans, Harrison Richardson, to the Ross Ice Shelf,
Antarctica, as part of the third and final American Expedition led by Richard Byrd. The violin
wintered over at Little America III and undoubtedly provided the expedition with artistic
expression. This was the earliest intersection between Hans and the glaciological world
where he was to make key scientific contributions in his later life, i.e. notably including his
other 1957 paper on the flow of ice shelves (Weertman, 1957b) and later papers on stability
of the West Antarctic Ice Sheet (the first being Weertman, 1974).

Graduating from high school in 1942, Hans joined the US Marines as a private to serve in
World War Two. Hans was assigned to a Navy V-12 unit, an officer’s training school, at
Pennsylvania State University from 1942 to 1945 before serving in the Pacific, where he was
deployed as a corporal in the 2nd Marine Division in summer of 1945. He spent from
September 1945, to January 1946, with the 2nd Division Headquarters battalion in
Nagasaki, Japan. Following his discharge in spring of 1946, he completed his education leading
to a doctorate of science in 1951 from Carnegie Institute of Technology (now Carnegie Mellon
University).
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Hans’ graduate study was supervised by James Koehler, a not-
able solid-state physicist and materials scientist who was among
the first in the USA to embrace the dislocation theory for the
permanent deformation of solids. There was no Earth science
or glaciology in Hans’ education, as Carnegie Institute of
Technology had no Earth-science department. This is why the
first 17 papers he published (listed in his CV provided to me
by Northwestern University) were either on the phenomenology
of specific metallurgical creep examples (9 papers) or on the bur-
geoning theory of dislocation creation and movement in metals
(eight papers).

Casual examination of the figures and equations displayed in
these initial 17 papers gives only one clue to Weertman’s
burgeoning interest in ice. The fourth paper he published,
‘Theory of steady-state creep based on dislocation climb’
(Weertman, 1955), was received and accepted in 1955, and was
the first to reference anything glaciological. It cited John Glen’s
experimental results (Glen, 1955) on creep deformation of ice.
Weertman’s citation of Glen’s work was in the last entry of a
table displaying creep-test data on metals, including aluminum,
lead, tin, platinum, bromine and silver.

Weertman developed the tombstone bed sliding model in 1955
and 1956 while he and his wife, Julia Randall Weertman, were
employed by the U.S. Naval Research Laboratory (NRL) in
Washington, DC. In 1982, he spoke of his experience with devel-
oping the tombstone bed model (Weertman, 1982):

I worked on it mainly on weekends while driving on the Pennsylvania
Turnpike to our parents’ homes near Pittsburgh. My wife knew when I
was thinking about it because of an ever slowing down car, a sign for
her to take over driving.

He went on to say:

The story goes on. Peter Haasen visited NRL and told me that John Glen
earlier had found power law creep in ice. This led me into the glaciological
literature and I learned that how glaciers slide was not understood. From
my thermo course, I dimly remembered reading in Fermi’s book that gla-
ciers slide around bed bumps by the pressure melting phenomenon. A
simple calculation showed me that this is too slow a process for large
bumps. But it was immediately clear that creep lets ice get around big
bed bumps quickly. So I was able to write the first theory on glacier
sliding.

Peter Haasen was a scientist at the Metallurgical Laboratory of the
University of Chicago at the time, and went on to become a dis-
tinguished professor of metal physics at the Georg August
University of Göttingen. Since his interaction with Weertman,
however, he is cited only obliquely in the glaciological literature
making reference to his work on recrystallization and fabric devel-
opment in metals.

Fig. 1. Hans Weertman as a young man in Venice with
his wife, Julia Randall Weertman, in October 1955. At
the time of the photo, Hans had already cited Glen’s
(1955) work (Weertman, 1955). Julia was also a
renowned materials scientist, becoming in 1987 the
first woman to ever chair an engineering department
in the U.S.A. (at Northwestern University). Hans and
Julia worked at the U.S. Naval Research Laboratory at
the time of the photo, but moved to Northwestern
University in Evanston, IL, in 1959, where they were dis-
tinguished members of the faculty for the rest of their
lives.
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Weertman’s glacier-sliding problem

When I first saw Figure 1 of Weertman’s first paper on a glacio-
logical subject (replicated as Fig. 3 here), I was struck by his
unconventional representation of the glacial bed geometry,
which convention tends to portray as smoothly ground down
by ice flow. Only now do I suspect that the tombstone obstacles

Weertman envisaged were salted with genius, because that spe-
cific geometry swept aside, in a single stroke, many, if not all,
of the mathematical inconveniences that bar a simple, intuitive
understanding of how glaciers flow across their bed. Weertman
was well aware of the fact that glacier beds were eroded and
smooth at the time of his paper, because he had visited the valleys
and glaciers of Switzerland in 1951/52 while a Fulbright post-
doctoral fellow at Ecole Normal Supérieure, Paris. He had even
walked into the U-shaped Furka Pass in 1955, as his family photos
attest. He chose to adopt the sharp-cornered tombstone because
he believed that this idealization would allow him to reach quali-
tative and quantitative conclusions that were universal. He may
have further been drawn toward the rectilinear geometry because
of his background in metallurgy and solid-state physics, where
fixed angles of crystal structure defined both rock and ice on a
microscopic scale.

Once Weertman postulated the unconventional bed geometry,
he made quick work of arriving at a useful working solution of the
glacier-sliding problem. He defined it as

… simply the determination of the velocity U of this block of ice
(Weertman, 1979)

while referring to Figure 1 of his 1979 paper which depicted the
force balance of a block of ice being dragged by the glacier above
across a bedrock surface. In the 1957 paper, Weertman assumed
that an average horizontal drag force τl2 was experienced by the
ice in each unit cell of the ice/bed representation. Here, l is the
horizontal dimension of the unit cell (tombstone spacing) and τ
is a basal shear stress experienced at large scales by the glacier
above. Gravity was not accounted for in the 1957 paper, as its
importance for the ice near the bed was dismissed in relation to
the stress applied from the ice above. He assumed that the bed-
rock surfaces were perfectly lubricated by meltwater, and thus
could not sustain tangential forces. This assumption, applied to
the tombstone geometry, determined the difference, τl2/a2,
between normal forces on the stoss and lee faces of each tomb-
stone. Here, a is the dimension of the tombstone obstacle. This
force difference gave the two key ingredients of Weertman’s the-
ory: a means to determine (1) temperature difference, heat flux
and thus the meltwater flow around the obstacle (by regelation
flow), and (2) the degree to which stress, and therefore strain
rate, would be enhanced in the vicinity of the obstacle.

Weertman’s 1957 understanding of regelation sliding was
inspired by a brief passage in Enrico Fermi’s textbook on thermo-
dynamics in a section describing the Clapeyron equation:

When the mass of ice encounters a rock on the glacier bed, the high pressure
of the ice against the rock lowers the melting point of the ice at that point,
causing the ice to melt on one side of the rock. It refreezes again immediately
after the pressure is removed. In this way the mass of ice is able to flow very
slowly around obstacles (Fermi, 1937, chapter 4, section 15).

Weertman was immediately wary that regelation sliding alone
would not explain the high rates of sliding observed, because he
quickly surmised that its effect would be negligible when bedrock
obstacles exceeded the centimeter scale. He nevertheless proposed
that the pressure difference between the leading and trailing faces
of the tombstone obstacle would, by virtue of the co-existence of
ice and water at the bed, and the effect of pressure on melting
temperature, produce a heat flux from the downstream side to
the upstream side of the obstacle within the bedrock. He did
not consider the full thermodynamic problem of how the bedrock
surface would be maintained at the pressure melting temperature,
and simply assumed this condition to be true. He further simpli-
fied the reasoning necessary to deduce what specific pressure

Fig. 3. Array of bedrock tombstone obstacles as originally envisioned by Weertman
(1957b). Obstacles are cubes of dimension a and are spaced regularly by distance l
(n = a

l = 1
4). The numerical domain used to solve for uc is a rectangular volume

that extends from z = 0 to z = l with x and y dimensions of l2, and is aligned in the
x,y plane to take advantage of symmetry and antisymmetry in the flow field. For
the heat flow problem solved to deduce ur, the vertical extent of the domain covers
the bedrock volume from the ice/bed interface down to z =−l. The intersection of the
numerical domain with the bedrock surface, accounting for symmetry, is indicated by
the red contour. Bedrock occupies the interior of the cubes and the region below the
plane z = 0; ice occupies the region above.

Fig. 2. The violin Roelof Weertman made in 1938. An inscription carved onto the back
of the violin reads, ‘To R. Weertman from Little America III U.S. Antarctic Expedition,
1939–1941 Harrison R. Richardson.’ Weertman visited a summer research camp
near the site of the abandoned Little America III in 1961 during his first visit to
Antarctica. The violin was returned to the Weertman family on the conclusion of
the expedition, and was played by Hans at the ceremony where he received the
Seligman Crystal of the IGS in 1983.
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would apply in the determination of the melting temperature by
conducting a simple force balance, assuming pressure to be con-
stant on leading and trailing faces of the obstacles. The thermo-
dynamically complete statement of the regelation problem came
in the decade after Weertman’s 1957 study, most notably in the
work of Nye (1967, 1969, 1970) and Kamb (1970).

Weertman then reasoned that, since a < l, the stress field in the
ice in the immediate vicinity of each tombstone should be ampli-
fied over the ambient scale τ that applied to the ice above the basal
layer. This amplification, combined with the > 1 exponent in the
flow law for ice, meant that basal ice would creep around each
tombstone at a rate that was enhanced relative to the general back-
ground creep of the ice above the bed. Weertman calculated the
amplified strain rate near each tombstone, and then reasoned:

To obtain a velocity of sliding from the creep rate it is necessary to know
the distance over which the stress is essentially at the level 12 tl

2/a2. A rea-
sonable estimate which uses Nye’s (Nye, 1953) values of the stress around
contracting holes gives the value a, on either side of the obstacle, for this
characteristic distance.

This then gave him the estimate of the glacier sliding flow due
to creep. Weertman (1957a) later pointed out:

The sliding velocity caused by the stress concentration [surrounding the
obstacles] is equal to the [enhanced] creep rate times the distance in the
direction of motion over which this creep rate is effective. The sliding vel-
ocity is, of course, only a rough estimate [because] we do not know
exactly the distance over which the [enhanced] creep rate is effective.

This probably reflected his recognition that his simplified
consideration of a basal layer of arbitrary dimensions would not
ultimately provide a quantitatively accurate depiction of glacier
velocity. At the time he wrote this, relatively little attention was
paid to how a sliding velocity at the bed would combine with
deformational flow above the bed to yield the surface velocity of
a glacier. This was possibly because there were few observations
of glacier flow before 1961 relative to today (e.g. from remote
sensing methods such as by Rignot and others, 2011; Mouginot
and others, 2012).

A numerical solution of the problem

In the current study, the velocity of ice in the vicinity of the glacier
bed is partitioned into creep and regelation components in the
same manner as the original study (Weertman, 1957a):

ubed = uc + ur. (1)

The creep component of the sliding velocity, uc, is determined
using the finite-element method to solve the steady-state stress-
balance equation for an incompressible, Newtonian viscous rhe-
ology. I defer using the power-law rheology used by Weertman
(1957a) to future study, because results obtained with a
Newtonian rheology appear to be sufficiently interesting for the
purpose of the current study. Assuming small Reynolds number
and excluding gravity (as Weertman assumed was justified for
characterizing the velocity in the immediate vicinity of the bed),
the governing equation for uc is:

0 = −∇p+ h∇2uc (2)

where p is the pressure perturbation due tothe effects of sliding
near the bed, assumed to be additive to glaciostatic pressure
from the ice above, and η is the viscosity, assumed constant.
For boundary conditions, free-slip with zero-tangential stress is

assumed on all bedrock surfaces and a spatially uniform shear
stress τxz = τ is applied to the top of the numerical domain,
which is taken to be the z = l surface, where z = 0 constitutes the
plane on which the tombstone obstacles are arrayed (Fig. 3),
and where x and y are the horizontal coordinates. It is noted
that the disregard of gravity (i.e. assuming g = 0) requires that
the thickness of the numerical domain, here taken to be l, be suf-
ficiently small to avoid complexity associated with changing stress
over the vertical extent of the numerical domain. In the current
study, the vertical extent of the numerical domain could have
been taken to be somewhat larger than the horizontal spacing
of tombstones (l ) and still have satisfied the criterion of being suf-
ficiently small. The choice made to limit the vertical extent to a
distance l above the bed is also made in this study to limit the
number of nodes in the finite-element mesh, thereby reducing
the computational burden. Had z = 2l been chosen, for example,
the results would be quantitatively different, as this alternative
choice would imply that τxz = τ is applied as a boundary condition
at a greater distance from the obstacles. Simulations conducted
(not shown) to examine the sensitivity of results to the vertical
extent of the numerical domain suggested that qualitative results,
which are the focus of this study, are adequately portrayed when l
is the vertical dimension of the domain.

As implied by the regular geometry, symmetry conditions
apply on vertical planes that bound the numerical domain hori-
zontally, and which cut the unit cell of the tombstone array as
shown by the red line in Figure 3. Dimensionless variables are
used:

p � t

n2
p (3)

x, y � a x, y, (4)

uc � Uuc, (5)

with the relation

t = hn2
U
a

(6)

to simplify the governing equation (the viscosity parameter disap-
pears) and to render the results of the numerical solution inde-
pendent of the chosen Newtonian viscosity parameter η. For
the simulations shown in this study the aspect ratio of the tomb-
stone obstacles, ν = a/l was taken to be 1/4.

Results

The solution, uc was evaluated using the finite-element simulation
software package COMSOL, and is displayed in Figure 4. What
was not anticipated by Weertman in his 1957 paper was the com-
plexity of flow immediately in front of the upstream (and by sym-
metry, downstream) face of the tombstone obstacle. The flow
complexity is also illustrated in Figure 5, where several specific
streamlines that impinge on the upstream face of the tombstone
obstacle undergo inversion (with respect to z). An equivalent,
but opposite, deformation of the streamlines occurs on the down-
stream side of the obstacle.

The illustrated flowline geometry (Fig. 5) for tombstone obsta-
cles suggest that striations on the leading edge and trailing edges
of the obstacle, and in its immediate vicinity on the bed will devi-
ate considerably from the general direction of flow in the ice
above the bed. This is something that should be kept in mind
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when interpreting striation direction on formerly glaciated ter-
rains. For an accurate interpretation of striation direction as an
indicator of large-scale flow direction, striation direction should
be measured in an area that is large compared to bed obstacle
size, and this thus necessitates awareness of the geometry of bed-
rock obstacles in the field area. Simulations conducted using
smooth, hemispherical-shaped bedrock obstacles (one of which
is shown in the Appendix) revealed that the complexity of the
implied striations (based on flowline directions) is reduced
when bedrock lacks the sharp, angular edges of tombstones.
This means that formerly glaciated terrains that are smooth due
to a long period of glacial erosion are less likely to display stria-
tions that deviate from the large-scale direction of former ice flow.

Had Weertman been more interested in the fluid-dynamic
details of the flow around the tombstone obstacle he may have
encountered the work of Moffatt (1964) which suggests that recircu-
lating and twisting flows may be quite common on inside corners of
obstacles imbedded in a viscous flow. Meyer and Creyts (2017) viv-
idly illustrate a compelling glaciological application of Moffatt’s

work in the case of flow within sub-glacial valleys in the
Gamburtsev Mountains of Antarctica (see also Gudmundsson,
1997). The mere presence of the twisting flow upstream and down-
stream of bed obstacles may be of minor importance in the devel-
opment that Weertman was trying to accomplish; however, such
considerations may be of great interest in ice-core problems where
preservation of stratigraphic order is important.

Another aspect of creep-deformation sliding not discussed in
Weertman’s 1957 paper, is that both pressure p and vorticity
�v = ∇× uc appear to have an unphysical singularity along leading
and trailing edges of the tombstone obstacle. On the upstream side
of the obstacle (Fig. 6a), a curious ‘double stripe’ pattern is dis-
played for pressure p. Red color (high positive pressure) lines the
edge on the face which opposes the flow, and blue color (high nega-
tive pressure) lines the edge of the faces which form the top and
side of the obstacle. While not shown, the downstream edges that
frame the downstream face of the tombstone show a pattern of
opposite sign. No matter how the finite-element mesh was refined
to increase spatial resolution in the neighborhood of the edges, the
stripe-like pattern of pressure appeared at the minimum resolvable
length scale, shrinking ever more closely to the 90° corners of the
tombstone edges. Singularities of a similar nature, but caused by
effects associated with cavity formation over smoother, sinusoidal
bedrock obstacles were seen, for example, in the numerical study
by Gagliardini and others (2007). It is noted that total pressure
in ice cannot be arbitrarily large and cannot be negative without
phase changes (for extremely large positive pressure) or bed separ-
ation or tensile fracture (for even modest negative pressure).

The cause of the singularity is the infinite curvature of the
sharp, 90° edges of the tombstone. On these edges, vorticity mag-
nitude |∇ × uc| must be infinite if non-zero tangential flow exists
on each bedrock face leading to the edge. That the pressure should
have a singularity when the vorticity does is a well-known prop-
erty of viscous flows (e.g. see Barcilon and MacAyeal, 1993). The
presence of the singularity in p has important consequences on
the computation of ur.

I computed ur by simulating the heat transport in the bedrock
assuming that the bedrock surface is everywhere at the pressure

Fig. 4. (a) Viscous creep sliding velocity, |uc|
(nondimensional), with select streamlines on
ice/bedrock surfaces and symmetry planes x = 0
and y = 0 for the region modeled. Streamlines
indicate a complex, twisting flow pattern that
exists along the leading edge of the obstacle.
(b and c) Comparison of (b) the numerical solu-
tion on the bed and (c) the schematic flow pat-
tern depicted by Weertman in Figure 3 of his
1957 paper. Some streamlines in (a) and (b)
near the obstacle, where the velocity magnitude
is very small are depicted in white color for visi-
bility, and to show what appears to be a stagna-
tion point located on the plane of symmetry just
upstream of the obstacle.

Fig. 5. Streamlines for uc show a complex pattern which includes inversion.
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melting temperature. I use the heat-conduction equation in the
domain below the bed bounded by z =−l (chosen, again, for com-
putational reasons) at the bottom, and by the ice/bedrock inter-
face at the top (Fig. 3). The effects of geothermal heat flux,
atmospheric temperature at a distant upper surface of the glacier,
strain-heating and the presence of an englacial meltwater compo-
nent are disregarded. In their place, I assume the numerical
domain to be surrounded by ice at the pressure melting
temperature.

The heat-conduction equation with constant thermal conduct-
ivity was solved with boundary conditions formulated to account
for symmetry (y = 0, l/4), antisymmetry (x = 0− l/4), and thermal
insulation at z =−l (again, a computationally motivated simplifi-
cation). At the ice/bedrock interface, temperature T was specified
using the Clapeyron equation:

T(x, y, z, t) = Tm = To − pC where (x, y, z) [ S (7)

where S is the locus of the bedrock surface, Tm denotes the
pressure-dependent melting temperature, To = 273.15 K, C =
7.4 × 10−8 kPa−1 is the pressure-dependent melting temperature,
and p is the pressure perturbation derived from the solution of

the creep sliding problem discussed above, i.e. associated with
uc. Weertman (1957a) did not solve the stress balance equations
to deduce a pressure variation on the leading and trailing faces
of the obstacle, but rather deduced them from a simplified consid-
eration of total force balance. Here, the pressure is taken from a
solution of the stress balance equations used to determine uc. In
this way, my study differs from Weertman’s.

The heat flux associated with the steady state solution of the
heat-conduction equation is shown in Figure 7. As anticipated
by Weertman, the computed heat flux normal to the ice/bedrock
interface on the upstream side of the tombstone is indeed positive,
and by symmetry, negative on the downstream side of the tomb-
stone. The normal heat flux, integrated over the leading and trail-
ing faces of the obstacle were approximately the same as deduced
by Weertman (differing only in the fact that his estimate of pres-
sure was simplified relative to the numerical solution), and the
conclusion he reached concerning the inverse dependence of
this heat flux on obstacle size (i.e. depending on 1/a) was con-
firmed by the numerical solution.

The most important difference between the numerical solution
and Weertman’s simplified heat flux, however, is due to the sin-
gularity in p associated with the creep sliding flow (uc). This

Fig. 6. (a) Perturbation pressure p (non-dimensional) for uc showing a singularity (|p|→∞) along the leading edge of the tombstone obstacle. By symmetry, the
trailing edge of the obstacle (not shown) has a singularity of equal magnitude but with opposite polarity, i.e. the perturbation pressure stripe pattern just inboard
of the edge on the face of the trailing edge is tensile and that on the leading face is compressive. (b) Vorticity magnitude |∇ × uc|. These singularities are con-
sidered unphysical.

Fig. 7. (a) Heat flux (non-dimensional) normal to the ice/bedrock interface due to heat conduction in the bedrock domain. (b) Select conductive heat-flux stream-
lines (trajectories that are tangent to gradient of temperature) within the bedrock along the symmetry plane y = 0 (colors are used to help visually identify com-
plexity of the streamlines).
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singularity in the numerical solution gives a strongly non-uniform
pattern of heat flux normal to the boundaries of the tombstone. In
addition, there are strong normal heat fluxes on the top and sides
of the tombstone which are not perpendicular to the direction of
flow. Another difference is that there are broad regions of rela-
tively weak normal heat flux on the flat horizontal parts of the
bedrock interface between the tombstone obstacles. If, as an alter-
native interpretation, the normal traction to the bedrock surface
n · (T · n), where n is the unit normal to the bedrock surface
and T is total stress, is used instead of p in Eqn (7), the non-
uniform pattern of heat flux on the tombstone boundaries
remains qualitatively the same. Thus, a question of whether the
pressure or total normal stress applies in the Clapeyron equation
does not matter in determining this result.

If the computed heat fluxes are used to estimate the boundary
condition applying to ur at the ice/bedrock interface, the resulting
regelation flow is not spatially uniform, and is thus not a ‘plug
flow’. This means the creep flow must be coupled to the regelation
flow. I did not attempt the challenging numerical implementation
of such a coupling in the current study.

Conclusion

Having worked solely on metallurgical problems until 1956,
Weertman (1957a) approached the glacier-sliding problem as a
novel Earth-science curiosity that exemplified the burgeoning
field of dislocation mechanics in solids. In the fourth sentence
of the introduction to his 1957 paper, he invokes the commonality
of metallurgy and glaciology:

The creep behavior of metals is quite similar to that of ice. For this reason
the extensive work on the creep of metals is of interest to glaciologists and
the work on glaciers is interesting to metallurgists.

The progress Weertman made toward understanding glacier
sliding in terms of dislocation mechanics was remarkable, but
Weertman’s work did not go so far as to present a complete
embodiment of the three-dimensional flow field. Scientists who
did embrace this three-dimensional structure were forced to
depart from Weertman’s tombstone problem and consider two-
dimensional flow fields with smooth, continuously differentiable
bed geometries that were amenable to mathematical analysis
(e.g. as recounted by Fowler, 2010) and more conforming to
what is expected when glacial erosion is active. In the current
study, I have provided a partial view of the three-dimensional
flow field in the tombstone problem that are only addressable
with computational methods. Indeed, computational methods at
the time of Weertman’s study were out of the reach of glaciology
considering that the application of computational methods to
geophysical problems had only begun in 1950 (Charney and
others, 1950). Finally, it is notable that one of the first computer
simulations used in glaciological research was by Almut Iken
(1981), the purpose of which was to investigate bed separation
and cavity formation in a bed geometry which also had sharp
corners.

Three aspects of Weertman’s glacial sliding problem are
revealed in the numerical solutions presented here: (1) the exist-
ence of stratigraphy-inverting flows in the interior corner regions
just upstream and downstream of the tombstone obstacles, (2)
pressure and vorticity singularity on the edges of the tombstone,
and (3) the failure of the presumption that regelation flow around
sharp-cornered obstacles can be plug-like, and thus uncoupled
from creep flow. Whether it is necessary to understand these
three aspects remains to be determined, as the tombstone-bed
model of glacier sliding remains an unconventional idealized step-
ping stone needed for pedagogical understanding. It is, however,

concluded that for both students and advanced researchers, revi-
siting the development of Weertman’s 1957 theory, or of any clas-
sical theories in glaciology, provokes further questions.
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APPENDIX A. Glacier sliding associated with hemispherical
obstacles

To provide a contrast to the results for tombstone obstacles, simulation of uc
and ur using hemispherical obstacles were conducted. The hemispherical
obstacles have radius r = �����

2/p
√

a giving an equal cross-sectional area (a2) as
the tombstone. The large-scale pattern of uc for the hemispherical obstacle
(Figs. 8a and b) was found to be similar to that of the tombstone obstacle
(Fig. 4). However, there were no singularities in p (as is evident from the
pressure-determined melting temperature shown in Fig. 9a) or vorticity (not
shown). Streamlines (Fig. 8c) did not show the complex overturning character-
istic of the tombstone obstacles (Fig. 5).

In the computation of ur for the hemispherical obstacle, as for the tomb-
stone obstacle (Fig. 7b), non-zero heat flux normal to the bed (not shown) was
found on parts of the upward-facing boundary between the hemispherical
obstacles when the perturbation pressure p was used to determine the melting
temperature using Eqn (7). This means plug-like regelation flow, which is
everywhere parallel to the z = 0 plane, is not possible even for hemispheres.
Melting and freezing on parts of the bed between the hemispherical obstacles
generate the need to couple the regelation process with the creep process and
refute the presumption of a plug-like flow.

To further investigate the enigmatic absence of a plug-like regelation flow
even for bedrock obstacles that prohibited singularities in pressure, I conducted
an additional simulation where the melting temperature was prescribed
according to the suggestion by Nye (1967):

Tm = To + Cn · (T · n) (A1)

where T is the total stress tensor and n is the outward pointing normal to the
ice/bedrock interface. This modification accounts for the fact that pressure in
the water film is different from that in the ice, and must be in balance with the
total normal stress at the contact between ice and water film (see Rempel and
Meyer, 2019, for further discussion).

Using Eqn (A1) substantially changed the simulated temperature field on
the bedrock interface (Figs. 9b and c), and removed the bed-normal heat flux
on flat parts of the bed between the obstacles. The simulated bed-normal heat
fluxes were somewhat marred by numerical noise (which is less visible in the
tombstone geometry simulation owing to the dominance of the singularity at
the corners), but had the large-scale pattern that is more consistent with plug-
like regelation flow.

As shown in Figure 10a, the heat flux normal to the ice/bedrock interface is
mostly restricted to the spherical obstacle, and mimics the pattern of the value
of the x-component of the normal vector to the ice/bedrock interface
(Fig. 10b). Heat flux trajectories associated with the improved simulation are
shown in Figure 10c. The heat flux pattern in the bedrock is more like what
Weertman envisioned for the tombstone obstacle, simply connecting the
upstream with the downstream faces of the obstacle. The recirculating heat
flux trajectories around the edges where the hemisphere connects with the
basal plane at z = 0 suggest that the numerical solution does not support an
exactly plug-like regelation flow. Whether this is a universal result or simply
an artifact associated with finite numerical resolution is relegated to future
study.

Fig. 8. (a) Viscous creep sliding velocity for hemispherical bedrock obstacle, |uc| (nondimensional), with select streamlines on ice/bedrock surfaces and symmetry
planes x = 0 and y = 0 for the region modeled. (b) View from above. (c) Streamlines near the smooth hemisphere are not inverted as they are for the tombstone
bedrock obstacle in Figure 4.
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Fig. 9. (a) Pressure-melting temperature Tm on the bed (non-dimensional units) determined using the perturbation pressure p associated with uc. As expected, the
temperature is depressed upstream of the obstacle and elevated downstream of the obstacle in response to ice pressure. (b) Melting temperature Tm on the bed
(non-dimensional units) determined using n · T · n, the total bed-normal stress. Pressure in the thin water layer between the ice and bedrock would have to equal
this total normal stress for stress balance at the interface. The advantage of this formulation of the melting temperature is that the temperature on the flat part of
the bed at z = 0 is 0 (implying no source of heat for melting or freezing) except in the narrow regions where the sphere meets the basal plane and where numerical
artifacts are apparent. (c) The difference between temperature fields in (a) and (b). The difference is most apparent on the plane z = 0 surrounding the hemispher-
ical obstacle.

Fig. 10. (a) Heat flux (non-dimensional) normal to the ice/bedrock interface due to heat conduction in the bedrock domain. Except for numerical artifacts that
result from numerical noise associated with the spatial derivatives of the temperature solution, the pattern of the normal heat flux is similar to the pattern of
the x-component of the normal to the boundary (b). This similarity suggests that, apart from numerical noise, the heat flux associated with stress effects of
creep sliding will support a plug-like regelation velocity. (c) Select conductive heat-flux streamlines within the bedrock along the symmetry plane y = 0.
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