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Abstract

We study plane curves over finite fields whose tangent lines at smooth Fq-points together cover all the
points of P2(Fq).
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1. Introduction

The investigation of algebraic curves over finite fields is an ever-growing research
topic. Stemming from the intersection of algebra, number theory and algebraic
geometry, it influences a wide array of fields such as coding theory and combinatorial
design theory [19]. As one specific example in this vast body of work, finding
curves with many Fq-rational points remains an interesting challenge. The motivation
behind searching for extremal curves ranges from purely theoretical reasons (for
example, understanding the sharpness of the Hasse–Weil inequality) to more applied
constructions (for example, obtaining a rich configuration of points).

It is already instructive to restrict attention to plane curves. We list a few different
definitions from the literature for a given projective irreducible plane curve C ⊂ P2 of
degree d over a finite field Fq to have ‘many Fq-rational points’.

(a) We say that C is a maximal curve if #C(Fq) = q + 1 + (d − 1)(d − 2)
√

q, that is,
the curve achieves the Hasse–Weil upper bound for its Fq-rational points.

(b) We say that C is plane-filling if C(Fq) = P2(Fq), that is, C contains each of the
q2 + q + 1 distinct Fq-points of P2.

(c) We say that C is blocking if C(Fq) is a blocking set, that is, C meets every Fq-line
L at some Fq-point.

The main purpose of the present paper is to introduce a new concept that indicates
in yet another way that the curve contains many Fq-points.
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(d) We say that C is tangent-filling if every point P ∈ P2(Fq) lies on a tangent line
TQC to the curve C at some smooth Fq-point Q.

Regarding the literature, we note that curves satisfying (a) have been thor-
oughly studied in many papers ranging from foundational work [13, 15, 16] to more
recent discoveries [9, 10]. Curves satisfying (b) have been analysed in [14, 20, 21].
Finally, curves satisfying (c) have been examined by the authors in joint work with
Yip [2–5].

Our first theorem shows that a curve of low degree cannot be tangent-filling. We
first state the result when the ground field is Fp for some prime p. For convenience, we
state the result for d ≥ 3 and discuss the case d = 2 in Remark 2.2.

THEOREM 1.1. Let C ⊂ P2 be an irreducible plane curve of degree d ≥ 3 defined over
Fp, where p is a prime. If p ≥ 4(d − 1)2(d − 2)2, then C is not tangent-filling.

We have an analogous result for an arbitrary finite field Fq.

THEOREM 1.2. Let C ⊂ P2 be an irreducible plane curve of degree d ≥ 2 defined over
Fq. If p > d and q ≥ d2(d − 1)6, then C is not tangent-filling.

Let us briefly compare the bounds in these two theorems. The bound p ≥ O(d4)
in Theorem 1.1 is replaced by a pair of bounds p > d and q ≥ O(d8) in Theorem 1.2.
From one perspective, Theorem 1.2 provides worse bounds on q, and it remains open
to improve q ≥ O(d8) to q ≥ O(d4). From another perspective, Theorem 1.2 provides
better bounds on the characteristic p; for instance, when q = pn with n = 4, the bound
p4 = q ≥ O(d8) is equivalent to p ≥ O(d2), which is a weaker hypothesis than the
earlier bound p ≥ O(d4). It is also natural to consider the situation where we confine
our attention to a more restrictive class of smooth curves; Remark 2.3 explains such a
slightly improved result.

We are also interested in finding examples of tangent-filling curves. Clearly, any
smooth plane-filling curve is tangent-filling. Since the minimum degree of a smooth
plane-filling curve over Fq is q + 2 by [21], it is natural to search for tangent-filling
curves with degrees less than q + 2. Our next theorem exhibits an example of a
tangent-filling curve of degree q − 1.

THEOREM 1.3. Let q ≥ 11 and p = char(Fq) > 3. The curve C defined by the equation

xq−1 + yq−1 + zq−1 − 3(x + y + z)q−1 = 0

is an irreducible tangent-filling curve.

REMARK 1.4. If char(Fq) = 2 in Theorem 1.3, then the curve C is reducible, as it
contains the lines x = y, y = z and z = x.

If char(Fq) = 3, then the curve C in Theorem 1.3 is smooth, but it is not
tangent-filling since no tangent line at a point of C(Fq) passes through any of the
points [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1]. This claim can be easily checked since the
points [x0 : y0 : z0] ∈ C(Fq) have the property that x0y0z0 � 0 (the proof of this fact
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follows as in Lemma 3.2, which characterises the Fq-points of C when char(Fq) > 3),
while the equation of the tangent line at the point [x0 : y0 : z0] ∈ C(Fq) is

xq−2
0 · x + yq−2

0 · y + zq−2
0 · z = 0.

Finally, a simple computer check shows that the curve C from Theorem 1.3 is not
tangent-filling when q ∈ {5, 7} (see also Remark 3.7).

While we expect that d = q − 1 is not the smallest possible degree of a
tangent-filling curve, we believe that Theorem 1.3 is novel in several ways. First,
checking the tangent-filling condition over Fq requires careful analysis of the Fq-points
of the curve. Second, in our previous work with Yip [2], we found several families of
blocking smooth curves of degree less than q, and so it was natural to test whether those
families are also tangent-filling; however, none of the families of blocking smooth
curves tested turned out to be tangent-filling. This suggests that finding tangent-filling
curves may be very challenging, much more so than the case of blocking curves. In
particular, finding tangent-filling curves of degree less than q seems very difficult
in general. Quite interestingly, the curve from Theorem 1.3 is not blocking since
C(Fq) does not intersect the Fq-lines x = 0, y = 0, z = 0 and x + y + z = 0 (see also
Corollary 3.3).

We remark that when q has a special form, there are more optimal examples. The
noteworthy example is the Hermitian curve Hq defined by x

√
q+1 + y

√
q+1 + z

√
q+1 = 0

when q is a square. We will see in Example 3.1 thatHq is a tangent-filling curve. Thus,
for q square, there is a (smooth) tangent-filling curve of degree

√
q + 1.

Inspired by the example in the previous paragraph, we may ask for the most optimal
curve that has the tangent-filling property.

QUESTION 1.5. What is the minimum degree of an irreducible tangent-filling plane
curve over Fq?

Let us explain a heuristic that suggests that the optimal degree may not be too far
away from

√
q even for a general q. Consider a collection L of Fq-lines such that⋃

L∈L
L(Fq) = P2(Fq). (1.1)

By viewing each line as a point in the dual space (P2)∗, the condition (1.1) is equivalent
to L being a blocking set in (P2)∗(Fq). There are plenty of blocking sets with size a
constant multiple of q; for instance, the so-called projective triangle, a well-known
example of a blocking set, has 3

2 (q + 1) points for odd q [18]. So, we choose L
satisfying (1.1) and |L| = c0q for some constant c0 > 0. Next, suppose that it is possible
to pick distinct Fq-points Pi ∈ Li for each Li ∈ L, so that Pi � Pj for i � j. Let us impose
the condition that a curve of degree d passes through the point Pi and has contact order
at least 2 with the line Li at the point Pi. For each value of i, this imposes two linear
conditions in the parameter space PN of plane curves of degree d, where N =

(
d+2

2

)
− 1.

Assuming that
(

d+2
2

)
− 1 > 2|L| = 2c0q, we obtain a curve of degree d satisfying each
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of these local conditions. By construction, each such curve is tangent to the line Li at
the point Pi and the tangent-filling property is enforced by (1.1). The main issue is that
all such resulting curves may be singular at one (or more) of the points Pi. While the
bound of the form d > c1

√
q for some constant c1 > 0 is predicted by this heuristic, it

seems very challenging to make this interpolation argument precise.

Structure of the paper. In Section 2 we borrow tools from classical algebraic
geometry and combinatorics of blocking sets to prove Theorems 1.1 and 1.2. In
Section 3 we prove Theorem 1.3 by studying in detail the geometric properties of the
given curve C, such as its singular locus and irreducibility, along with an arithmetic
analysis for the equation of a tangent line at a smooth Fq-point of C.

2. Curves of low degree are not tangent-filling

We start with preliminary geometric constructions. Given a plane curve C, recall
that the dual curve C∗ parametrises the tangent lines to C. More formally, C∗ is the
closure of the image of the Gauss map γG : C → (P2)∗ mapping a regular point P on C
to the line TPC.

When the Gauss map γG is separable, the geometry of the tangent lines to the curve
in characteristic p is similar to the behaviour observed in characteristic 0. It turns out
that the curve C is reflexive (that is, the double dual (C∗)∗ can be canonically identified
with C itself) if and only if γG is separable [25]. Thus, all curves in characteristic 0 are
reflexive. In positive characteristic p, the condition p > d is sufficient to ensure that a
plane curve of degree d is reflexive [23, Proposition 1.5].

2.1. Bitangents. For a given plane curve C, we say that a line L is bitangent to C if
L is tangent to the curve C at two or more points. The following is a well-known result
in classical algebraic geometry; we include its proof to emphasise how the hypothesis
p > d is used. Since it is possible to have a curve with infinitely many bitangents
[24, Example 2], the lemma below would not be true if we completely removed the
assumption p > d.

LEMMA 2.1. Let C ⊂ P2 be a geometrically irreducible plane curve of degree d ≥ 2
defined over Fq such that p > d. Then C has at most 1

2 d2(d − 1)2 bitangents.

PROOF. The condition p > d guarantees that the Gauss map γG is separable. The dual
curve C∗ has degree δ ≤ d(d − 1). Since C∗ is geometrically irreducible, it has at most(
δ−1

2

)
singular points [17, Exercise 20.18]. Every bitangent of the curve C corresponds

to some singular point of C∗ because γG is separable [25]. Thus, the number of
bitangents to C is at most(

δ − 1
2

)
≤

(
d(d − 1) − 1

2

)
=

1
2

(d2 − d − 1)(d2 − d − 2) ≤ 1
2

(d2 − d)(d2 − d). �

The previous lemma would hold if we replaced the hypothesis p > d with the
weaker hypothesis that the Gauss map of C is separable.
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2.2. Strange curves. We say that an irreducible plane curve C of degree d ≥ 2 over
a field K is strange if all the tangent lines to the curve C at its smooth K-points
are concurrent. This is equivalent to requiring that the dual curve of C is a line.
Since the double dual of a strange curve cannot be the original curve, it follows that
strange curves must be nonreflexive. In particular, strange curves can only exist when
p = char(K) > 0. Strange curves do exist [24, Example 1]: for instance, all the tangent
lines to the curve xyp−1 − zp = 0 pass through the point [0 : 0 : 1]. The paper [8]
contains several results on various properties and characterisations of strange curves.

As mentioned at the beginning of the section, the hypothesis p > d ensures that the
curve is reflexive. Thus, a plane curve of degree d ≥ 2 cannot be strange whenever
p > d. This fact will be crucial in the proofs below, when we verify that the Fq-points
of the dual curve C∗ do not produce a trivial blocking set.

2.3. Proofs of Theorems 1.1 and 1.2. We now present the proof of our first main
theorem which roughly states that tangent-filling curves over Fp cannot exist when p
is larger than a quartic function of d.

PROOF OF THEOREM 1.1. We first assume that C is geometrically irreducible. We start
by observing that the hypothesis p ≥ 4(d − 1)2(d − 2)2 implies p > d for d ≥ 3. Thus,
the curve C is reflexive, and, in particular, C is not strange, meaning that deg(C∗) > 1.
By applying the Hasse–Weil bound [6, Corollary 2.5], we have

#C(Fp) ≤ p + 1 + (d − 1)(d − 2)
√

p.

Suppose, to the contrary, that C is tangent-filling. Let B ⊆ C∗(Fq) correspond to the set
of tangent Fp-lines to the curve C at smooth Fp-points. It is clear that

#B ≤ #C(Fp) ≤ p + 1 + (d − 1)(d − 2)
√

p. (2.1)

Note that B is a blocking set by definition of tangent-filling; indeed, each Fp-line in
the dual projective plane parametrises lines passing through a fixed point, so B meets
every Fp-line in the dual space. Since 1 < deg(C∗) ≤ d(d − 1) < p + 1, the set B is
a nontrivial blocking set, that is, B cannot contain all the Fp-points of some Fp-line
in (P2)∗(Fp). Indeed, C∗ is irreducible (as it is the image of the irreducible curve C
through the map γG) and has degree less than p + 1. By Blokhuis’s theorem [11],

#B ≥ 3
2 (p + 1). (2.2)

Combining (2.1) and (2.2), we get p + 1 + (d − 1)(d − 2)
√

p ≥ 3
2 (p + 1) which contra-

dicts the hypothesis p ≥ 4(d − 1)2(d − 2)2.
Now, suppose that C is not geometrically irreducible. Since C is irreducible but

not geometrically irreducible, we conclude that #C(Fp) ≤ 1
4 d2 (see [12, Lemma 2.3]

or [1, Remark 2.2]). In particular, the number of distinct Fp-tangent lines to C is at
most 1

4 d2. Since each Fp-line covers p + 1 points of P2(Fp), all the tangent lines to
C at its smooth Fp-points together can cover at most 1

4 d2 · (p + 1) distinct Fq-points.
Since p ≥ 4(d − 1)2(d − 2)2, it is immediate that 1

4 d2 · (p + 1) < p2 + p + 1, so C is
not tangent-filling. �

https://doi.org/10.1017/S0004972723000382 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000382


306 S. Asgarli and D. Ghioca [6]

REMARK 2.2. The inequality p ≥ 4(d − 1)2(d − 2)2 automatically implies p > d when
d ≥ 3. However, when d = 2, the inequality p ≥ 4(d − 1)2(d − 2)2 is vacuous and p = 2
is allowed. When p = 2 and d = 2, the smooth conics are strange curves, which are
therefore tangent-filling because the tangent lines at the Fq-rational points of this conic
are all the q + 1 lines passing through some given point in P2(Fq). So, Theorem 1.1
does not hold when p = d = 2; on the other hand, Theorem 1.1 continues to hold when
d = 2 and p > 2 with essentially the same proof as the one above.

PROOF OF THEOREM 1.2. We first assume that the curve C is geometrically irre-
ducible, that is, irreducible over Fq. We claim that C∗ is not a blocking curve. Suppose,
to the contrary, that C∗(Fq) is a blocking set in (P2)∗(Fq). Since p > d, the curve C is
not strange, that is, deg(C∗) > 1. Since 1 < deg(C∗) ≤ d(d − 1) < q + 1, the set B is
a nontrivial blocking set by the reasoning given in the proof of Theorem 1.1. By [4,
Lemma 4.1],

#C∗(Fq) > q +
q +
√

q
deg(C∗)

≥ q +
q +
√

q
d(d − 1)

. (2.3)

On the other hand, the number of Fq-points on the dual curve C∗ is bounded above:

#C∗(Fq) ≤ #C(Fq) + #{bitangents to C defined over Fq}. (2.4)

Combining Lemma 2.1, the Hasse–Weil bound applied to C [6, Corollary 2.5], and
(2.4), we obtain an upper bound:

#C∗(Fq) ≤ q + 1 + (d − 1)(d − 2)
√

q + 1
2 d2(d − 1)2. (2.5)

Comparing (2.3) and (2.5),

(d − 1)(d − 2)
√

q +
1
2

d2(d − 1)2 + 1 >
q +
√

q
d(d − 1)

,

or equivalently,

d(d − 1)2(d − 2)
√

q + 1
2 d3(d − 1)3 + d(d − 1) > q +

√
q. (2.6)

Since
√

q ≥ d(d − 1)3, we have
√

q ≥ 1
2 d2(d − 1) which allows us to deduce that

q +
√

q ≥ d(d − 1)2 · ((d − 1)
√

q) +
√

q

≥ d(d − 1)2 · ((d − 2)
√

q +
√

q) + d(d − 1)

≥ d(d − 1)2 · ((d − 2)
√

q + 1
2 d2(d − 1)) + d(d − 1)

= d(d − 1)2(d − 2)
√

q + 1
2 d3(d − 1)3 + d(d − 1),

contradicting (2.6). We conclude that C∗ is not a blocking curve, which means that C
is not tangent-filling.

When C is irreducible but not geometrically irreducible, #C(Fq) ≤ 1
4 d2, so we apply

the argument (with p replaced by q everywhere) from the end of the proof of Theorem
1.1. We conclude that C is still not tangent-filling. �
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REMARK 2.3. Kaji [22] proved that the Gauss map of a smooth plane curve over Fq
must be purely inseparable. Consequently, a smooth plane curve must have finitely
many bitagents. Moreover, only smooth strange curves are conics in characteristic 2.
These observations together tell us that Theorem 1.2 holds for smooth curves even
when the hypothesis p ≥ d is removed as long as d ≥ 3.

3. Explicit examples of tangent-filling curves

We start with an example of a plane curve of degree
√

q + 1 which is tangent-filling
over Fq when q is a square.

EXAMPLE 3.1. Let q be a prime power such that q is a square. The curveHq defined by

x
√

q+1 + y
√

q+1 + z
√

q+1 = 0

is tangent-filling over Fq. The curve Hq is known as the Hermitian curve in the
literature. It can be checked thatHq has exactly (

√
q)3 + 1 distinct Fq-points. Moreover,

the setHq(Fq) forms a unital in the sense of combinatorial geometry, meaning that the
points can be arranged into subsets of size

√
q + 1 so that any two points ofHq(Fq) lie

in a unique subset. In particular, it can be shown that every Fq-line meets Hq(Fq) at
either 1 or

√
q + 1 points [7, Theorem 2.2]. As a result,Hq is a blocking curve over Fq.

To show that Hq is a tangent-filling curve, we let P0 = [a : b : c] be a point
in P2(Fq). We are searching for a point Q = [x0 : y0 : z0] ∈ Hq(Fq) such that TQ(C)
contains P0. This is equivalent to finding [x0 : y0 : z0] ∈ Hq(Fq) such that

x
√

q
0 a + y

√
q

0 b + z
√

q
0 c = 0.

We remark that the map [x : y : z] 
→ [x
√

q : y
√

q : z
√

q] is a bijection on the set P2(Fq),
and therefore also on Hq(Fq) because Hq(Fq) is defined over Fq. Thus, there exists
[x1 : y1 : z1] ∈ Hq(Fq) with the property that

[x0 : y0 : z0] = [x
√

q
1 : y

√
q

1 : z
√

q
1 ].

In other words, it suffices to find [x1 : y1 : z1] ∈ Hq(Fq) such that

xq
1a + yq

1b + zq
1c = 0. (3.1)

Since x1, y1, z1 are elements of Fq, we see that (3.1) is equivalent to

x1a + y1b + z1c = 0. (3.2)

Let L be the Fq-line defined by ax + by + cz = 0. Since Hq(Fq) is a blocking set,
Equation (3.2) is satisfied for some Q = [x1 : y1 : z1] ∈ Hq(Fq), as claimed. This
argument also shows that the dual of the Hermitian curve is isomorphic to itself.

For the remainder of the paper, we will focus on the curve C defined by the equation

xq−1 + yq−1 + zq−1 − 3(x + y + z)q−1 = 0. (3.3)

Unless otherwise stated, we will assume that p = char(Fq) > 3.
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We will study the curve C by first finding the singular points, and then checking
that C is irreducible. Finally, we will prove that C is tangent-filling, establishing
Theorem 1.3.

3.1. Rational points of the curve. We start by finding all the Fq-points on C.

LEMMA 3.2. The set C(Fq) is equal to the set of all points [x : y : z] ∈ P2(Fq) such that

xyz(x + y + z) � 0.

PROOF. Since xq−1 = 1 holds for every x ∈ F∗q, the conclusion is clear from (3.3). �

COROLLARY 3.3. The curve C is not blocking.

PROOF. Consider the Fq-line L = {z = 0}. Then C ∩ L has no Fq-points due to the
condition in Lemma 3.2. Thus, C(Fq) is not a blocking set. �

3.2. Singular points of the curve. Our goal is to determine the singular points of
the curve C over Fq.

PROPOSITION 3.4. The curve C has only one singular point, namely [1 : 1 : 1].

PROOF. By looking at the partial derivatives of the defining polynomial in (3.3), any
singular point [x0 : y0 : z0] of C must satisfy,

xq−2
0 = yq−2

0 = zq−2
0 = 3(x0 + y0 + z0)q−2. (3.4)

In particular, any singular point [x0 : y0 : z0] ∈ C(Fq) satisfies

x0y0z0(x0 + y0 + z0) � 0. (3.5)

So, without loss of generality, we may assume that z0 = 1. Thus, a potential singular
point takes the form [x0 : y0 : 1] and satisfies x0y0 � 0 by Equation (3.5). Applying
(3.4), we get

xq−2
0 = yq−2

0 = 3(x0 + y0 + 1)q−2 = 1. (3.6)

We begin by computing

(x0 + y0 + 1)q−2 =
(x0 + y0 + 1)q

(x0 + y0 + 1)2 =
1 + xq

0 + yq
0

(1 + x0 + y0)2 . (3.7)

Equations (3.6) and (3.7) together give

3 + 3x2
0 + 3y2

0

(1 + x0 + y0)2 = 1. (3.8)

We can rearrange (3.8) as x2
0 + y2

0 − x0y0 − x0 − y0 + 1 = 0, which can be expressed as
an equation of degree 2 in y0:

y2
0 − y0(x0 + 1) + x2

0 − x0 + 1 = 0.
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Solving for y0, we obtain

y0 =
x0 + 1 + (x0 − 1)γ

2
, (3.9)

where γ satisfies γ2 = −3. We compute yq
0 using (3.9):

yq
0 =

xq
0 + 1 + (xq

0 − 1)γq

2
. (3.10)

We also compute y2
0 using (3.9):

y2
0 =

(x2
0 + 2x0 + 1) + 2(x0 + 1)(x0 − 1)γ + (x2

0 − 2x0 + 1) · (−3)
4

,

which simplifies to

y2
0 =
−x2

0 + 4x0 − 1 + (x2
0 − 1)γ

2
. (3.11)

Since yq−2
0 = 1 by (3.6), we know that yq

0 = y2
0. Equating (3.10) and (3.11),

−x2
0 + 4x0 − 1 + (x2

0 − 1)γ
2

=
xq

0 + 1 + (xq
0 − 1)γq

2
. (3.12)

We proceed by analysing two cases, depending on whether γ ∈ Fq or γ � Fq.

Case 1: γ ∈ Fq. In this case, we have γq = γ. Using xq
0 = x2

0 which is implied by (3.6),
Equation (3.12) yields

−x2
0 + 4x0 − 1 + (x2

0 − 1)γ
2

=
x2

0 + 1 + (x2
0 − 1)γ

2
,

which simplifies to (x0 − 1)2 = 0 and so x0 = 1. Using (3.9), we obtain y0 = 1 as well.
This results in the singular point [1 : 1 : 1] of the curve C.

Case 2: γ � Fq. In this case, γ ∈ Fq2 \ Fq because γ2 = −3. Since γq is the Galois
conjugate of γ, we have γq = −γ. Thus, (3.12) yields

−x2
0 + 4x0 − 1 + (x2

0 − 1)γ
2

=
xq

0 + 1 − (xq
0 − 1)γ

2
.

This simplifies (due to xq
0 = x2

0) to

(x0 − 1)2 = (x2
0 − 1)γ.

We can eliminate the case x0 = 1 because that will only bring us back to the singular
point [1 : 1 : 1] already analysed in the previous case. After dividing both sides of the
preceding equation by x0 − 1 and solving for x0, we get

x0 =
1 + γ
1 − γ . (3.13)
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Using the relation γ2 = −3, formula (3.13) simplifies to

x0 =
γ − 1

2
. (3.14)

Applying (3.9), we obtain

y0 =
−γ − 1

2
. (3.15)

Since γ2 = −3, we have two solutions (once γ is chosen, −γ is also a solution). Thus,
(3.14) and (3.15) allow us to conclude that there are two potential singular points on
the curve C: [

γ − 1
2

:
−γ − 1

2
: 1

]
and

[−γ − 1
2

:
γ − 1

2
: 1

]
.

However, both of these points satisfy x0 + y0 + 1 = 0. By Equation (3.5), neither of
these two points is singular on the curve C.

We conclude that Case 2 does not occur after all and the point [1 : 1 : 1] is the
unique singular point of C. �

3.3. Irreducibility of the curve. We begin with a general irreducibility criterion for
a plane curve of degree at least 3 with a unique singular point.

LEMMA 3.5. Suppose that D = {F = 0} is a plane curve defined over a field K with
deg(F) ≥ 3 and a unique singular point P0 ∈ D(K). After dehomogenising f (x, y) :=
F(x, y, 1) and applying translation, we may assume that (0, 0) is the singular point of
the affine curve { f = 0}. Assume that the quadratic term A2(x, y) in the expansion of f
around (0, 0) cannot be written as L(x, y)2 for some L(x, y) ∈ K[x, y] (in other words,
the equation A2(x, y) = 0 has precisely two solutions in P1(K)). Then the plane curve
D is irreducible over K.

PROOF. Since (0, 0) is a singular point of { f = 0}, we can then express

f (x, y) = A2(x, y) + A3(x, y) + · · ·

where Ai(x, y) is a homogeneous polynomial of degree i in x and y. By hypothesis,
A2(x, y) splits over K as a product L1(x, y) · L2(x, y) of two distinct nonzero linear
forms. If f (x, y) = g(x, y) · h(x, y) where g(0, 0) = h(0, 0) = 0, then we claim that the
component curves {g = 0} and {h = 0} meet at the point (0, 0) with multiplicity 1.
Indeed, the expansions of g(x, y) and h(x, y) around the origin (0, 0) must necessarily
take the form (after multiplication by a suitable nonzero constant)

g(x, y) = L1(x, y) + B2(x, y) + B3(x, y) + · · ·

and

h(x, y) = L2(x, y) + C2(x, y) + C3(x, y) + · · ·

respectively, where Bi(x, y) and Ci(x, y) are homogeneous polynomials of degree i in x
and y. Since L1(x, y) and L2(x, y) are distinct linear forms which generate the maximal
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ideal of K[x, y] at (0, 0), the two curves {g = 0} and {h = 0} meet with multiplicity 1 at
(0, 0).

We show that the plane curve D = {F = 0} is irreducible over K. Assume, to the
contrary, that F = G · H for some homogeneous polynomials G and H with positive
degrees d1 and d2, respectively. Let g(x, y) := G(x, y, 1) and h(x, y) := H(x, y, 1). After
applying Bézout’s theorem, d1d2 intersection points (counted with multiplicity) of
{G = 0} and {H = 0}must be singular points of D. Since D has a unique singular point,
namely (0, 0) in the affine chart z = 1, the local intersection multiplicity at the origin
must be at least d1d2 ≥ 2. This contradicts the fact that {g = 0} and {h = 0} meet with
multiplicity exactly 1 at (0, 0). �

PROPOSITION 3.6. The curve C defined by (3.3) is geometrically irreducible.

PROOF. By Proposition 3.4, the curve C has the unique singular point [1 : 1 : 1].
Expanding the equation xq−1 + yq−1 + 1 − 3(x + y + 1)q−1 = 0 around the point (1, 1),
we are led to analyse

(1 + (x − 1))q−1 + (1 + (y − 1))q−1 + 1 − 3(3 + (x − 1) + (y − 1))q−1.

After expanding, the first nonzero homogeneous form in (x − 1) and (y − 1) has degree
2 and is given by

2 · 3q−2 · [(x − 1)2 − (x − 1)(y − 1) + (y − 1)2].

Since the discriminant of the quadratic s2 − st + t2 is −3 � 0 in Fq, the hypothesis of
Lemma 3.5 is satisfied. Thus, C is irreducible over Fq. �

3.4. Tangent-filling property. In this final subsection, we give the proof that the
curve C defined by (3.3) is tangent-filling over Fq.

PROOF OF THEOREM 1.3. Let P = [a0 : b0 : c0] be an arbitrary point in P2(Fq). We
want to find a smooth Fq-point Q = [x0 : y0 : z0] of C such that P is contained in the
tangent line TQC. From Lemma 3.2, an Fq-point [x0 : y0 : z0] is a point on the curve C
if and only if

x0y0z0(x0 + y0 + z0) � 0. (3.16)

Note that P is contained in the tangent line TQC if and only if

a0 · (3sq−2
0 − xq−2

0 ) + b0 · (3sq−2
0 − yq−2

0 ) + c0 · (3sq−2
0 − zq−2

0 ) = 0, (3.17)

where s0 = x0 + y0 + z0. Since sq−1 = 1 for each s ∈ F∗q, we rewrite (3.17) as

3(a0 + b0 + c0)
x0 + y0 + z0

=
a0

x0
+

b0

y0
+

c0

z0
. (3.18)

Note that all the denominators in (3.18) are nonzero because Lemma 3.2 guarantees
that xyz(x + y + z) � 0 for any Fq-point [x : y : z] of the curve C.

Case 1. Suppose a0b0c0(a0 + b0 + c0) � 0 and [a0 : b0 : c0] � [1 : 1 : 1].
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In this case, the point P = [a0 : b0 : c0] is already smooth in C(Fq) by Lemma 3.2
and Proposition 3.4. Hence, we may take Q = P because P always belongs to TPC.

Case 2. Suppose a0 + b0 + c0 = 0.
In this case, (3.18) yields

a0

x0
+

b0

y0
+

c0

z0
= 0. (3.19)

We search for a solution [x0 : y0 : z0] � [1 : 1 : 1] satisfying (3.16).

Subcase 2.1. a0 + b0 + c0 = 0 and a0b0c0 � 0.
Since char(Fq) > 3, we cannot have a0 = b0 = c0. We may assume, without loss of

generality, that b0 � c0. Let z0 = 1 and y0 = −1, and solve for x0 according to Equation
(3.19):

x0 =
a0

b0 − c0
∈ F∗q.

Clearly, [x0 : y0 : z0] � [1 : 1 : 1] and (3.16) is satisfied.

Subcase 2.2. a0 + b0 + c0 = 0 and a0b0c0 = 0.
By symmetry, we may assume that a0 = 0; since a0 + b0 + c0 = 0, we have

[a0 : b0 : c0] = [0 : 1 : −1], and so Equation (3.19) yields y0 = z0. The point
[x0 : y0 : z0] = [2 : 1 : 1] satisfies both (3.16) and (3.19). This concludes our proof
that all points [a0 : b0 : c0] for which a0 + b0 + c0 = 0 belong to a tangent line at a
smooth Fq-point of C.

Case 3. a0 + b0 + c0 � 0 and a0b0c0 = 0.
Since we seek points [x0 : y0 : z0] with x0 + y0 + z0 � 0, we can scale [a0 : b0 : c0]

and [x0 : y0 : z0] so that

a0 + b0 + c0 = 3 and x0 + y0 + z0 = 9.

Equation (3.18) now reads

1 =
a0

x0
+

b0

y0
+

3 − a0 − b0

9 − x0 − y0
. (3.20)

Since a0b0c0 = 0, we may assume by symmetry that a0 = 0. As a result, (3.20) reads

1 =
b0

y0
+

3 − b0

z0
. (3.21)

If b0 � {0,−3, 3}, then we let z0 = 6, y0 = 6b0/(3 + b0) and x0 = (9 − 3b0)/(3 + b0).
Note that [x0 : y0 : z0] � [1 : 1 : 1] and satisfies both (3.21) and (3.16).

If b0 = 0, then we simply choose [x0 : y0 : z0] = [2 : 4 : 3] � [1 : 1 : 1] which
satisfies both (3.21) and (3.16).

If b0 = −3, then we get the solution [x0 : y0 : z0] = [−1 : 6 : 4] � [1 : 1 : 1] which
satisfies both (3.21) and (3.16).

If b0 = 3, then we get the solution [x0 : y0 : z0] = [2 : 3 : 4] � [1 : 1 : 1] which
satisfies both (3.21) and (3.16).
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Case 4. [a0 : b0 : c0] = [1 : 1 : 1].
We can assume a0 = b0 = c0 = 1, and also x0 + y0 + z0 = 9 after scaling

[x0 : y0 : z0]. Then Equation (3.18) yields

1 =
1
x0
+

1
y0
+

1
9 − x0 − y0

. (3.22)

Our goal is to find a solution (3, 3) � (x0, y0) ∈ F∗q × F∗q to (3.22).
After multiplying (3.22) by x0y0(9 − x0 − y0), we obtain

9x0y0 − x2
0y0 − x0y2

0 = 9y0 − x0y0 − y2
0 + 9x0 − x2

0 − x0y0 + x0y0,

which we rearrange as

y2
0(x0 − 1) + y0(x0 − 1)(x0 − 9) − x0(x0 − 9) = 0.

Our goal is to show that the number of Fq-points on the affine curve Y given by the
equation

y2(x − 1) + y(x − 1)(x − 9) − x(x − 9) = 0 (3.23)

is strictly more than the number of points which we want to avoid from the set

{(0, 9), (0, 0), (9, 0), (3, 3)}. (3.24)

Indeed, besides the point (3, 3), the points (x0, y0) on the curve given by (3.23) which
we have to avoid are the ones satisfying the equation

x0y0 · (x0 + y0 − 9) = 0.

We note that there are only three such points on the curve (3.23): (0, 0), (0, 9) and
(9, 0); this follows easily from Equation (3.23) after substituting either x = 0, or y = 0,
or x = 9 − y.

Now, for each Fq-point (x0, w0) � (1, 0) on the affine conic Ỹ given by the equation

w2 = (x − 1)(x − 9),

we have the Fq-point (x0, y0) on Y given by

(x0, y0) :=
(
x0,
−(x0 − 1)(x0 − 9) + (x0 − 3)w0

2(x0 − 1)

)
. (3.25)

Since there are q − 2 points (x0, w0) � (1, 0) on Ỹ(Fq) (because we have q + 1 points
on its projective closure in P2 and only two such points are on the line at infinity),
we obtain (q − 2) Fq-points on Y. Note that if (x1, w1) � (x0, w0) are distinct points
on Ỹ(Fq) \ {(1, 0)}, then the corresponding points on Y(Fq) are also distinct unless
x0 = x1 = 3 as can be seen from (3.25). There are at most two points on Ỹ(Fq)
having x-coordinate equal to 3 (which in fact happens when q = 7, in which case
(3,±3) ∈ Ỹ(F7)). Thus, we are guaranteed to have at least q − 3 distinct points in Y(Fq).
Hence, as long as q > 7, we are guaranteed to avoid the points listed in (3.24).

Therefore, the curve C is tangent-filling when q > 7 and char(Fq) > 3. �
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REMARK 3.7. The result in Theorem 1.3 is sharp in the sense that when q = 7, the
curve xq−1 + yq−1 + zq−1 − 3(x + y + z)q−1 = 0 is not tangent-filling. Indeed, one can
check that for the point P = [1 : 1 : 1], there is no smooth F7-point Q on this curve C
such that P ∈ TQC.
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