EXISTENCE OF TORUS BUNDLES ASSOCIATED TO COCYCLES

MIN HO LEE

A Kuga fibre variety is a fibre bundle over a locally symmetric space whose fibre is a polarized Abelian variety. We describe a complex torus bundle associated to a 2-cocycle of a discrete group, which may be regarded as a generalized Kuga fibre variety, and prove the existence of such a bundle.

1. INTRODUCTION

Families of Abelian varieties parametrised by an arithmetic quotient of a Hermitian symmetric domain play an important role in number theory. When such a family is viewed as a fibre bundle over an arithmetic variety its base space is essentially a Shimura variety and its total space is a Kuga fibre variety. This paper is concerned with a complex torus bundle associated to a 2-cocycle of a discrete group which may be regarded as a generalised Kuga fibre variety.

Let \mathcal{H}_n be the Siegel upper half space of degree n on which the symplectic group $Sp(n, \mathbb{R})$ acts as usual. If Γ' is an arithmetic subgroup of $Sp(n, \mathbb{R})$, then the associated quotient space $\Gamma' \setminus \mathcal{H}_n$ can be regarded as a moduli space of a certain family of polarised Abelian varieties. Such a family of Abelian varieties can be considered as a fibre variety over the Siegel modular variety $X' = \Gamma' \setminus \mathcal{H}_n$.

Let $G = \mathbb{G}(\mathbb{R})$ be a semisimple Lie group of Hermitian type that can be realised as the set of real points of a linear algebraic group \mathbb{G} defined over \mathbb{Q} . Thus the quotient $\mathcal{D} = G/K$ by a maximal compact subgroup K of G has the structure of a Hermitian symmetric domain. We assume that there are a holomorphic map $\tau : \mathcal{D} \to \mathcal{H}_n$ and a homomorphism $\rho : G \to Sp(n, \mathbb{R})$ of Lie groups defined over \mathbb{Q} such that τ is equivariant with respect to ρ , meaning that $\tau(gz) = \rho(g)\tau(z)$ for all $z \in \mathcal{D}$ and $g \in G$. Let Γ be a torsion-free arithmetic subgroup of G such that $\rho(\Gamma) \subset \Gamma'$. Then the corresponding locally symmetric space $X = \Gamma \setminus \mathcal{D}$ has the structure of a complex variety and is called an arithmetic variety. The holomorphic map τ induces a morphism $\tau_X : X \to X'$ of varieties, and by pulling the fibre variety over X' back via τ_X we obtain a fibre variety over X whose fibres are again polarised Abelian varieties. Such fibre varieties over an arithmetic variety are called Kuga fibre varieties (see [1, 5]), and various geometric and

Received 21st November, 2005

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.

If L is a lattice in \mathbb{R}^{2n} , whose elements are regarded as row vectors, satisfying $\ell\rho(\gamma) \in L$ for all $\ell \in L$ and $\gamma \in \Gamma$, then the associated Kuga fibre variety can be considered as the quotient of $\mathcal{D} \times V$ by an action of the semidirect product $\Gamma \ltimes L$. Given a 2-cocycle $\psi : \Gamma \times \Gamma \to L$, we can consider a generalised semidirect product $\Gamma \ltimes_{\psi} L$ by modifying its multiplication operation by using ψ . Then we can define an action of this generalised semidirect product on $\mathcal{D} \times V$ by using a 1-cochain ξ for Γ with coefficients in the space $\mathcal{A}(\mathcal{D}, \mathbb{C}^n)$ of \mathbb{C}^n -valued holomorphic functions which together with ψ satisfies a certain relation (see Section 2), and the associated quotient is also a complex torus bundle over $\Gamma \setminus \mathcal{D}$. In [2] some properties of such torus bundles were investigated (see also [4] and [3, Chapter 8]). Since then, there have been inquiries about the existence of a pair (ξ, ψ) satisfying the required condition. The purpose of this paper is to prove the existence of such a pair and provide an example.

2. TORUS BUNDLES

In this section we review the construction of a torus bundle associated to a 2-cocycle and a 1-cochain of a discrete subgroup of a semisimple Lie group considered in [2]. Let Gbe a semisimple Lie group of Hermitian type, so that its quotient $\mathcal{D} = G/K$ by a maximal compact subgroup K has the structure of a Hermitian symmetric domain. We assume that there are a holomorphic map $\tau : \mathcal{D} \to \mathcal{H}_n$ and a homomorphism $\rho : G \to Sp(n, \mathbb{R})$ of Lie groups satisfying the equivariance condition

$$\tau(gz) = \rho(g)\tau(z)$$

for all $z \in \mathcal{D}$ and $g \in G$.

Let L be a lattice in \mathbb{R}^{2n} , and let Γ be a discrete subgroup of G such that $\ell\rho(\gamma) \in L$ for all $\ell \in L$ and $\gamma \in \Gamma$, where $\ell\rho(\gamma)$ is the matrix product of the row vector ℓ of 2n entries and the $2n \times 2n$ matrix $\rho(\gamma)$. Then L is a right Γ -module, and therefore we can consider the cohomology $H^*(\Gamma, L)$ of the group Γ with coefficients in L. We denote by $\mathfrak{C}^k(\Gamma, L)$ and $\mathfrak{Z}^k(\Gamma, L)$ the spaces of the associated k-cochains and k-cocycles, respectively, and choose an element ψ of $\mathfrak{Z}^2(\Gamma, L)$. Thus ψ is a map $\psi: \Gamma \times \Gamma \to L$ satisfying

(2.1)
$$\psi(\gamma_1, \gamma_2)\rho(\gamma_3) + \psi(\gamma_1\gamma_2, \gamma_3) = \psi(\gamma_2, \gamma_3) + \psi(\gamma_1, \gamma_2\gamma_3)$$

$$\psi(\gamma,1)=0=\psi(1,\gamma)$$

for all $\gamma_1, \gamma_2, \gamma_3, \gamma \in \Gamma$, where 1 is the identity element of Γ . We note that an element $\alpha \in \mathfrak{Z}^2(\Gamma, L)$ is a coboundary if $\alpha = \partial\beta$ for some $\beta \in \mathfrak{C}^1(\Gamma, L)$, where

(2.2)
$$\partial \beta(\gamma_1, \gamma_2) = \beta(\gamma_2) - \beta(\gamma_1 \gamma_2) + \beta(\gamma_1)\rho(\gamma_2)$$

the years.

for all $\gamma_1, \gamma_2 \in \Gamma$. We now consider the generalised semidirect product $\Gamma \ltimes_{\psi} L$ associated to ψ , which consists of the elements (γ, ℓ) of $\Gamma \times L$ and is equipped with the multiplication operation defined by

$$(\gamma_1,\ell_1)\cdot(\gamma_2,\ell_2)=(\gamma_1\gamma_2,\ell_1\rho(\gamma_2)+\ell_2+\psi(\gamma_1,\gamma_2))$$

for all $\gamma_1, \gamma_2 \in \Gamma$ and $\ell_1, \ell_2 \in L$. Then it can be shown that $\Gamma \ltimes_{\psi} L$ is a group with respect to this operation.

The symplectic group $Sp(n, \mathbb{R})$ acts on the Siegel upper half space \mathcal{H}_n as usual by

$$g\zeta = (a\zeta + b)(c\zeta + d)^{-1}$$

for all $z \in \mathcal{H}_n$ and $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Sp(n, \mathbb{R})$. For such $g \in Sp(n, \mathbb{R})$ and $\zeta \in \mathcal{H}_n$, we set

(2.3)
$$j(g,\zeta) = c\zeta + d.$$

Then the resulting map $j: Sp(n, \mathbb{R}) \times \mathcal{H}_n \to GL(n, \mathbb{C})$ satisfies

(2.4)
$$j(g'g,\zeta) = j(g',g\zeta)j(g,\zeta)$$

for all $\zeta \in \mathcal{H}_n$ and $g, g' \in Sp(n, \mathbb{R})$. Given $z \in \mathcal{D}$ and $\gamma \in \Gamma \subset G$, we set

(2.5)
$$j_{\rho,\tau}(\gamma,z) = j(\rho(\gamma),\tau(z)).$$

Using (2.4) and the fact that τ is an equivariant with respect to ρ , we see that

(2.6)
$$j_{\rho,\tau}(\gamma'\gamma,z) = j_{\rho,\tau}(\gamma',\gamma z)j_{\rho,\tau}(\gamma,z)$$

for all $z \in \mathcal{D}$ and $\gamma, \gamma' \in \Gamma$.

Let $\mathcal{A}(\mathcal{D}, \mathbb{C}^n)$ denote the space of \mathbb{C}^n -valued holomorphic functions on \mathcal{D} . We introduce on $\mathcal{A}(\mathcal{D}, \mathbb{C}^n)$ a double Γ -module structure defined by

(2.7)
$$(\gamma \cdot f)(z) = f(z), \quad (f \cdot \gamma)(z) = f(\gamma z) j_{\rho,\tau}(\gamma, z)$$

for all $f \in \mathcal{A}(\mathcal{D}, \mathbb{C}^n)$, $\gamma \in \Gamma$ and $z \in \mathcal{D}$, where elements of \mathbb{C}^n are considered as row vectors. Then we can consider the cohomology of the group Γ with coefficients in $\mathcal{A}(\mathcal{D}, \mathbb{C}^n)$, where its group $\mathfrak{C}^k(\Gamma, \mathcal{A}(\mathcal{D}, \mathbb{C}^n))$ of k-cochains consists of all functions

$$\eta:\Gamma^k\to\mathcal{A}(\mathcal{D},\mathbb{C}^n)$$

such that $\eta(\gamma_1, \ldots, \gamma_k) = 0$ whenever at least one of the γ_i is 1. If δ denotes the coboundary operator and if η is a 1-cochain belonging to $\mathfrak{C}^1(\Gamma, \mathcal{A}(\mathcal{D}, \mathbb{C}^n))$, then we have

(2.8)
$$\delta\eta(\gamma_1,\gamma_2) = \gamma_1 \cdot \eta(\gamma_2) - \eta(\gamma_1\gamma_2) + \eta(\gamma_1) \cdot \gamma_2$$

for all $\gamma_1, \gamma_2 \in \Gamma$, where the right and left actions of Γ are given by (2.7).

We now assume that there exist a 1-cochain $\xi \in \mathfrak{C}^1(\Gamma, \mathcal{A}(\mathcal{D}, \mathbb{C}^n))$ and a 2-cocycle $\psi \in \mathfrak{Z}^2(\Gamma, L)$ satisfying

(2.9)
$$\delta\xi(\gamma_1,\gamma_2)(z) = \psi(\gamma_1,\gamma_2) \begin{pmatrix} \tau(z) \\ 1 \end{pmatrix}$$

for all $z \in \mathcal{D}$, where the right hand side is the matrix product of the row vector $\psi(\gamma_1, \gamma_2) \in L \subset \mathbb{R}^n \times \mathbb{R}^n$ and the complex $2n \times n$ matrix $\begin{pmatrix} \tau(z) \\ 1 \end{pmatrix}$. The existence of such a pair (ξ, ψ) is the main theorem in this paper and will be proved in the next section. Given elements $(\gamma, (\mu, \nu)) \in \Gamma \ltimes_{\psi} L$ and $(z, w) \in \mathcal{D} \times \mathbb{C}^n$, we set

(2.10)
$$(\gamma, (\mu, \nu)) \cdot (z, w) = (\gamma z, (w + \mu \tau(z) + \nu + \xi(\gamma)(z))j_{\rho,\tau}(\gamma, z)^{-1}),$$

where $j_{\rho,\tau}: \Gamma \times \mathcal{D} \to GL(n, \mathbb{C})$ is given by (2.5). Then it can be shown that the operation given by (2.10) determines an action of the group $\Gamma \ltimes_{\psi} L$ on the space $\mathcal{D} \times \mathbb{C}^n$.

We assume that the discrete subgroup $\Gamma \subset G$ does not contain elements of finite order, so that the quotient space $X = \Gamma \setminus \mathcal{D}$ has the structure of a complex manifold, and set

$$Y_{\xi,\psi} = \Gamma \ltimes_{\psi} L \backslash \mathcal{D} \times \mathbb{C}^n,$$

where the quotient is taken with respect to the action in (2.10). Given $z \in \mathcal{D}$, let L_z denote the lattice in \mathbb{C}^n defined by

$$L_{z} = \{ \mu \tau(z) + \nu \mid (\mu, \nu) \in L \}.$$

Then the map $\pi : Y_{\xi,\psi} \to X$ induced by the natural projections $\mathcal{D} \times \mathbb{C}^n \to \mathcal{D}$ and $\Gamma \ltimes_{\psi} L \to \Gamma$ has the structure of a fibre bundle over X whose fibre over the point in X corresponding to $z \in \mathcal{D}$ is isomorphic to the complex torus \mathbb{C}^n/L_z . If $\psi = 0$ and $\xi = 0$, then the the corresponding torus bundle $Y_{0,0}$ is a family of Abelian varieties known as a Kuga fibre variety (see [1, 5]).

3. EXISTENCE

Let the Hermitian symmetric domain \mathcal{D} associated to a semisimple Lie group G, the discrete subgroup Γ of G, and the lattice $L \subset \mathbb{C}^n$ be as in Section 2. In this section we prove the existence of a 1-cochain $\xi \in \mathfrak{C}^1(\Gamma, \mathcal{A}(\mathcal{D}, \mathbb{C}^n))$ and a 2-cocycle $\psi \in \mathfrak{Z}^2(\Gamma, L)$ considered in Section 2 satisfying (2.9), where $\mathcal{A}(\mathcal{D}, \mathbb{C}^n)$ is the space of \mathbb{C}^n -valued holomorphic functions on \mathcal{D} . We also discuss an example.

We consider the space $\mathcal{A}(\mathcal{H}_n, \mathbb{C}^n)$ of \mathbb{C}^n -valued holomorphic functions on the Siegel upper half space \mathcal{H}_n as a double Γ -module by defining the left and right Γ -actions by

(3.1)
$$(g \cdot F)(\zeta) = F(\zeta), \quad (F \cdot g)(\zeta) = F(g\zeta)j(g,\zeta)$$

for all $F \in \mathcal{A}(\mathcal{H}_n, \mathbb{C}^n)$, $g \in Sp(n, \mathbb{R})$ and $\zeta \in \mathcal{H}_n$, where $j(g, \zeta)$ is as in (2.3). Let $\widetilde{\Gamma}$ be a discrete subgroup of $Sp(n, \mathbb{R})$ such that $\rho(\Gamma) \subset \widetilde{\Gamma}$. Then we can consider the cohomology of the group $\widetilde{\Gamma}$ with coefficients in $\mathcal{A}(\mathcal{H}_n, \mathbb{C}^n)$, and the coboundary operator

$$\widetilde{\delta}: \mathfrak{C}^1(\widetilde{\Gamma}, \mathcal{A}(\mathcal{H}_n, \mathbb{C}^n)) \to \mathfrak{C}^2(\widetilde{\Gamma}, \mathcal{A}(\mathcal{H}_n, \mathbb{C}^n))$$

is given by

(3.2)
$$\widetilde{\delta}\widetilde{\eta}(g_1,g_2) = g_1 \cdot \widetilde{\eta}(g_2) - \widetilde{\eta}(g_1g_2) + \widetilde{\eta}(g_1) \cdot g_2$$

for $\tilde{\eta} \in \mathfrak{C}^1(\tilde{\Gamma}, \mathcal{A}(\mathcal{H}_n, \mathbb{C}^n))$ and $\gamma_1, \gamma_2 \in \Gamma$, where the left and right actions of Γ are given by (3.1).

THEOREM 3.1. There exist a 1-cochain $\xi \in \mathfrak{C}^1(\Gamma, \mathcal{A}(\mathcal{D}, \mathbb{C}^n))$ and a 2-cocycle $\psi \in \mathfrak{Z}^2(\Gamma, L)$ satisfying (2.9).

PROOF: We shall first prove that there exist a 2-cocycle $\tilde{\psi} \in \mathfrak{Z}^2(\tilde{\Gamma}, L)$ and a 1-cochain $\tilde{\xi}$ belonging to $\mathfrak{C}^1(\tilde{\Gamma}, \mathcal{A}(\mathcal{H}_n, \mathbb{C}^n))$ satisfying

(3.3)
$$\widetilde{\delta\xi}(g_1,g_2)(\zeta) = \widetilde{\psi}(g_1,g_2)\binom{\zeta}{1}$$

for all $\zeta \in \mathcal{H}_n$ and $g_1, g_2 \in \widetilde{\Gamma}$. Let $\widetilde{\xi} : \widetilde{\Gamma} \to \mathcal{A}(\mathcal{H}_n, \mathbb{C}^n)$ be an element of $\mathfrak{C}^1(\widetilde{\Gamma}, \mathcal{A}(\mathcal{H}_n, \mathbb{C}^n))$ defined by

$$\xi(g)(\zeta) = \kappa j(g,\zeta)$$

for all $\zeta \in \mathcal{H}_n$ and $g \in \widetilde{\Gamma}$, where $\kappa \in \mathbb{C}$ is a constant and $j(g, \zeta)$ is as in (2.3). Then for this $\widetilde{\xi}$ the condition (3.3) can be written as

(3.4)
$$\widetilde{\psi}(g_1, g_2) \begin{pmatrix} \zeta \\ 1 \end{pmatrix} = \widetilde{\xi}(g_2)(\zeta) - \widetilde{\xi}(g_1g_2)(z) + \widetilde{\xi}(g_2)(g_2\zeta)j(g_2, \zeta) \\ = j(g_2, \zeta) - j(g_1g_2, \zeta) + j(g_1, g_2\zeta)j(g_2, \zeta) = j(g_2, \zeta)$$

for all $\gamma_1, \gamma_2 \in \Gamma$ and $z \in \mathcal{D}$, where we used (2.4) and (3.2). Here we note that it is possible choose a map $\psi : \Gamma \times \Gamma \to V$ satisfying (3.4). For example, if $\tilde{\psi}$ is given by

$$\widetilde{\psi}(g_1,g_2) = \left((0,1)g_2\binom{1}{0}, (0,1)g_2\binom{1}{0}\right),$$

then for $g_2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ we have $\widetilde{\psi}(g_1, g_2) \begin{pmatrix} \zeta \\ 1 \end{pmatrix} = (c, d) \begin{pmatrix} \zeta \\ 1 \end{pmatrix} = c\zeta + d = j(g_2, \zeta).$ Let $\widetilde{\psi}:\widetilde{\Gamma}\times\widetilde{\Gamma}\to L$ be a map satisfying (3.4). Using (2.1) and (2.4), we have

$$\begin{split} & \left(\widetilde{\psi}(g,g')g'' + \widetilde{\psi}(gg',g'') - \widetilde{\psi}(g',g'') - \widetilde{\psi}(g,g'g'')\right) \begin{pmatrix} \zeta \\ 1 \end{pmatrix} \\ & = \widetilde{\psi}(gg') \begin{pmatrix} g''\zeta \\ 1 \end{pmatrix} j(g'',\zeta) + j(g'',\zeta) - j(g'',\zeta) - j(g'g'',\zeta) \\ & = j(g',g''\zeta)j(g'',\zeta) - j(g'g'',\zeta) = 0 \end{split}$$

for $\zeta \in \mathcal{H}_n$ and $g, g', g'' \in \Gamma$. This implies that $\tilde{\psi}$ satisfies (2.1); hence $\tilde{\psi} \in \mathfrak{Z}^2(\tilde{\Gamma}, L)$. We now set

$$\psi(\gamma_1,\gamma_2) = \widetilde{\psi}(\rho(\gamma_1),\rho(\gamma_2)), \quad \xi(\gamma)(z) = \widetilde{\xi}(\rho(\gamma))(\tau(z))$$

for all $\gamma, \gamma_1, \gamma_2 \in \Gamma$ and $z \in \mathcal{D}$. Then $\psi \in \mathfrak{Z}^2(\Gamma, L)$ and $\xi \in \mathfrak{C}^1(\Gamma, \mathcal{A}(\mathcal{D}, \mathbb{C}^n))$, and by using (2.2) and (3.2) as well as (3.3) we obtain

$$\begin{split} \delta\xi(\gamma_1,\gamma_2)(z) &= \xi(\gamma_2)(z) - \xi(\gamma_1\gamma_2)(z) + \xi(\gamma_2)(\gamma_2 z)j_{\rho,\tau}(\gamma_2,z) \\ &= \widetilde{\xi}\big(\rho(\gamma_2)\big)\big(\tau(z)\big) - \widetilde{\xi}\big(\rho(\gamma_1)\rho(\gamma_2)\big)\big(\tau(z)\big) \\ &\quad + \widetilde{\xi}\big(\rho(\gamma_2)\big)\big(\tau(\gamma_2 z)\big)j\big(\rho(\gamma_2),\tau(z)\big) \\ &= \widetilde{\delta\xi}\big(\rho(\gamma_1),\rho(\gamma_2)\big)\big(\tau(z)\big) \\ &= \widetilde{\psi}\big(\rho(\gamma_1),\rho(\gamma_2)\big)\binom{\tau(z)}{1} = \psi(\gamma_1,\gamma_2)\binom{\tau(z)}{1}. \end{split}$$

Thus we see that the pair (ξ, ψ) satisfies (2.9), and therefore the proof of the theorem is complete.

EXAMPLE 3.2. Let $\xi_0 \in \mathfrak{C}^1(\Gamma, \mathcal{A}(\mathcal{D}, \mathbb{C}^n))$ be the 1-cochain given by

 $\xi_0(\gamma)(z) = \kappa j_{\rho,\tau}(\gamma, z)$

for all $\gamma \in \Gamma$ and $z \in \mathcal{D}$, where $\kappa \in \mathbb{C}$ is a constant and $j_{\rho,\tau}(\gamma, z)$ is as in (2.5). If $\psi_0 \in \mathfrak{Z}^2(\Gamma, L)$ is the 2-cocycle given by

$$\psi_0(\gamma_1,\gamma_2) = \left((0,1)\rho(\gamma_2) \begin{pmatrix} 1\\ 0 \end{pmatrix}, (0,1)\rho(\gamma_2) \begin{pmatrix} 1\\ 0 \end{pmatrix}\right)$$

for all $\gamma_1, \gamma_2 \in \Gamma$, then from the proof of Theorem 3.1 we see that the pair (ξ_0, ψ_0) satisfies (2.9). By using this pair we can construct other pairs as follows. Let ε be a 1-cochain belonging to $\mathfrak{C}^1(\Gamma, L)$, and consider the elements $\xi_{\varepsilon} \in \mathfrak{C}^1(\Gamma, \mathcal{A}(\mathcal{D}, \mathbb{C}^n))$ and $\psi_{\varepsilon} \in \mathfrak{Z}^2(\Gamma, L)$ given by

(3.5)
$$\xi_{\varepsilon}(\gamma)(z) = \xi_{0}(\gamma)(z) + \varepsilon(\gamma) \binom{\tau(z)}{1}, \quad \psi_{\varepsilon} = \psi + \partial \varepsilon$$

for all $\gamma \in \Gamma$ and $z \in \mathcal{D}$, where $\partial : \mathfrak{C}^1(\Gamma, L) \to \mathfrak{C}^2(\Gamma, L)$ is the coboundary operator. Then for $\gamma_1, \gamma_2 \in \Gamma$ and $z \in \mathcal{D}$ we have

$$\begin{aligned} \partial \xi_{\varepsilon}(\gamma_{1},\gamma_{2})(z) &= \xi_{\varepsilon}(\gamma_{2})(z) - \xi_{\varepsilon}(\gamma_{1}\gamma_{2})(z) + \xi_{\varepsilon}(\gamma_{1})(\gamma_{2}z)j_{\rho,\tau}(\gamma_{2},z) \\ &= \partial \xi(\gamma_{1},\gamma_{2})(z) + \varepsilon(\gamma_{2}) \binom{\tau(z)}{1} \\ &- \varepsilon(\gamma_{1}\gamma_{2}) \binom{\tau(z)}{1} + \varepsilon(\gamma_{1}) \binom{\tau(\gamma_{2}z)}{1} j_{\rho,\tau}(\gamma_{2},z) \end{aligned}$$

However, we have

$$\begin{pmatrix} \tau(\gamma_2 z) \\ 1 \end{pmatrix} j_{\rho,\tau}(\gamma_2, z) = \begin{pmatrix} (a\tau(z) + b)(c\tau(z) + d)^{-1} \\ 1 \end{pmatrix} (c\tau(z) + d)$$
$$= \begin{pmatrix} a\tau(z) + b \\ c\tau(z) + d \end{pmatrix} = \rho(\gamma_2) \begin{pmatrix} \tau(z) \\ 1 \end{pmatrix}$$

if $\rho(\gamma_2) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Using this, (2.2), and (3.5), we see that

$$\partial \xi_{\varepsilon}(\gamma_1,\gamma_2)(z) = \psi(\gamma_1,\gamma_2) \binom{\tau(z)}{1} + (\partial \varepsilon)(\gamma_1,\gamma_2) \binom{\tau(z)}{1} = \psi_{\varepsilon}(\gamma_1,\gamma_2) \binom{\tau(z)}{1}$$

Thus the pair $(\xi_{\epsilon}, \psi_{\epsilon})$ satisfies (2.9).

References

- M. Kuga, Fiber varieties over a symmetric space whose fibers are abelian varieties I, II (Univ. of Chicago, Chicago, 1963/64).
- M.H. Lee, 'Cohomology of complex torus bundles associated to cocycles', Canad. J. Math. 55 (2003), 839–855.
- [3] M.H. Lee, Mixed automorphic forms, torus bundles, and Jacobi forms, Lecture Notes in Math. 1845 (Springer-Verlag, Berlin, 2004).
- [4] M.H. Lee and D.Y. Suh, 'Torus bundles over locally symmetric varieties associated to cocycles of discrete groups', *Monatsh. Math.* **59** (2000), 127-141.
- [5] I. Satake, Algebraic structures of symmetric domains (Princeton Univ. Press, Princeton, 1980).

Department of Mathematics University of Northern Iowa Cedar Falls, IA 50614 United States of America e-mail: lee@math.uni.edu