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RADICAL CLASSES NEED NOT HAVE A UNIQUE 
MAXIMAL JRO-CLOSED SUBCLASS 

BY 

ROBERTA BOTTO MURA 

1. Introduction. It was shown in [1] that certain classes of groups which are 
closed under quotients, and extensions contain a unique maximal inclosed sub
class. These results prompted the question whether there exists a class of groups 
which is closed under quotients and extensions and yet does not have a unique 
maximal i?0-closed subclass. This note provides an example of such a class. 

2. Notations and Definitions. We will use the closure operations notation for 
classes of groups as described for instance in [2] section 1.1. In particular if 3C 
is any given class of groups, P9£ will be the class of all groups which are extensions 
of ^-groups, Q2£ the class of all groups occurring as quotients of ^-groups, 
RQX the class of all groups G containing a finite collection of normal subgroups 
Hl9.. . , Hn such that fllLi H—e and the factor groups G/Hi are S*-groups. 

By a radical class we mean a class closed under quotients, extensions and normal 
joins, and by the radical class generated by a class SC we mean the {Q,P,N}-
closure of 8£. 

3. The Example. Let si be the class of groups which are extensions of ele
mentary abelian 3-groups by elementary abelian 2-groups with the property that 
all their central factors are 2-groups. Similarly define SS to be the class of extensions 
of elementary abelian 5-groups by elementary abelian 2-groups such that all the 
central factors are 2-groups. It is easy to see that the classes si and SS are Q and 
i?0-closed. Therefore the class si u 3% is g-closed and, since QP<PQ, the class 
X=P(si u âS) is both P and g-closed. 

If there existed a unique maximal i?0-closed subclass of «3T, it would contain both 
si and SS9 hence it would contain also si \j SS and R0{si u 2$), and this would 
lead to a contradiction because R0(si u 3$) is not contained in 2E. In fact con
sider the group 

G = <a, b, x; az = b5 = x2 = e, [a, b] = e, a* = a"\ bx = b'1). 

G contains the two disjoint normal subgroups (a) and (b); Gj{a) belongs to SS 
and Gj{b) belongs to s/9 thus G e RQ{si \j £$). Clearly G does not belong to 
si \j 3%, moreover it does not contain any proper subnormal {si \j ^-subgroup, 
therefore it cannot belong to X either. 

It is worthwhile noticing that G does not belong even to the radical class gene
rated by # \ for this is equal to {Q, P, N)X9 and, since G is finite, G e {Q, P, N}X 
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implies G e {Q, P, N^SC^SC because N0<PQ. Thus we may conclude that not even 
radical classes need have a unique maximal i?0-closed subclass. 

I wish to thank Dr. Rhemtulla for having brought this problem to my attention 
and the referee of this note for his very helpful suggestions. 
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