Canad. Math. Bull. Vol. 17 (4), 1974

RADICAL CLASSES NEED NOT HAVE A UNIQUE MAXIMAL R_0 -CLOSED SUBCLASS

BY ROBERTA BOTTO MURA

1. Introduction. It was shown in [1] that certain classes of groups which are closed under quotients, and extensions contain a unique maximal R_0 -closed subclass. These results prompted the question whether there exists a class of groups which is closed under quotients and extensions and yet does not have a unique maximal R_0 -closed subclass. This note provides an example of such a class.

2. Notations and Definitions. We will use the closure operations notation for classes of groups as described for instance in [2] section 1.1. In particular if \mathscr{X} is any given class of groups, $P\mathscr{X}$ will be the class of all groups which are extensions of \mathscr{X} -groups, $Q\mathscr{X}$ the class of all groups occurring as quotients of \mathscr{X} -groups, $R_0\mathscr{X}$ the class of all groups G containing a finite collection of normal subgroups H_1, \ldots, H_n such that $\bigcap_{i=1}^n H_i = e$ and the factor groups G/H_i are \mathscr{X} -groups.

By a radical class we mean a class closed under quotients, extensions and normal joins, and by the radical class generated by a class \mathscr{X} we mean the {Q,P,N}-closure of \mathscr{X} .

3. The Example. Let \mathscr{A} be the class of groups which are extensions of elementary abelian 3-groups by elementary abelian 2-groups with the property that all their central factors are 2-groups. Similarly define \mathscr{B} to be the class of extensions of elementary abelian 5-groups by elementary abelian 2-groups such that all the central factors are 2-groups. It is easy to see that the classes \mathscr{A} and \mathscr{B} are Q and R_0 -closed. Therefore the class $\mathscr{A} \cup \mathscr{B}$ is Q-closed and, since $QP \leq PQ$, the class $\mathscr{X} = P(\mathscr{A} \cup \mathscr{B})$ is both P and Q-closed.

If there existed a unique maximal R_0 -closed subclass of \mathscr{X} , it would contain both \mathscr{A} and \mathscr{B} , hence it would contain also $\mathscr{A} \cup \mathscr{B}$ and $R_0(\mathscr{A} \cup \mathscr{B})$, and this would lead to a contradiction because $R_0(\mathscr{A} \cup \mathscr{B})$ is not contained in \mathscr{X} . In fact consider the group

$$G = \langle a, b, x; a^3 = b^5 = x^2 = e, [a, b] = e, a^x = a^{-1}, b^x = b^{-1} \rangle.$$

G contains the two disjoint normal subgroups $\langle a \rangle$ and $\langle b \rangle$; $G/\langle a \rangle$ belongs to \mathscr{B} and $G/\langle b \rangle$ belongs to \mathscr{A} , thus $G \in R_0(\mathscr{A} \cup \mathscr{B})$. Clearly G does not belong to $\mathscr{A} \cup \mathscr{B}$, moreover it does not contain any proper subnormal $(\mathscr{A} \cup \mathscr{B})$ -subgroup, therefore it cannot belong to \mathscr{X} either.

It is worthwhile noticing that G does not belong even to the radical class generated by \mathscr{X} , for this is equal to $\{Q, P, N\}\mathscr{X}$, and, since G is finite, $G \in \{Q, P, N\}\mathscr{X}$

R. BOTTO MURA

implies $G \in \{Q, P, N_0\} \mathscr{X} = \mathscr{X}$ because $N_0 \leq PQ$. Thus we may conclude that not even radical classes need have a unique maximal R_0 -closed subclass.

I wish to thank Dr. Rhemtulla for having brought this problem to my attention and the referee of this note for his very helpful suggestions.

REFERENCES

1. Rex Dark and Akbar H. Rhemtulla, On R_0 -closed classes, and finitely generated groups. 1970 Can. J. Math. Vol. XXII, pp. 176–184.

2. Derek J. S. Robinson, Finiteness conditions and generalized soluble groups. Part 1. Springer-Verlag 1972.

UNIVERSITY OF ALBERTA, EDMONTON

598