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We study a fifty-year-old problem of fast acoustic streaming, that is, the generation of
moderate or large hydrodynamic Reynolds number (Re) acoustic streaming (or steady
flow) by the convection of momentum in an acoustic wave (or another periodic flow),
while the latter is simultaneously altered by the former. The intrinsic disparity of length
and time scales makes a brute-force solution of the full Navier–Stokes and continuity
equations a formidable problem. Circumventing this difficulty, we split the problem into a
time-averaged system of equations for the steady flow component and a dynamic system of
equations for its quasi-periodic flow counterpart. The latter system of equations is obtained
by subtracting the time-averaged Navier–Stokes equation from its original dynamic form,
and is rendered a nonlinear wave equation using the continuity equation and an adiabatic
connection between density and pressure. The resulting equations are compatible with the
theory by Eckart for small Re flow, and capture large-Re effects. Scaling analysis and a case
study show that acoustic streaming is weak and does not contribute to the acoustic wave
close to the wave source, relevant to many microfluidic systems. At small Re, the streaming
magnitude is proportional to an inverse Strouhal number, a small quantity in experiments.
Moderate and large Re render the streaming magnitude comparable to the pre-attenuating
periodic flow (or particle velocity of the wave) at approximately a wave attenuation length
away from the wave source or further; the wave is altered by the streaming that it generates,
and the streaming dominates the flow far from the wave source.
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1. Introduction

Acoustic streaming has been responsible for some of science’s greatest controversies, a
fickle and complex nonlinear phenomenon used in modern times (Friend & Yeo 2011;
Rufo et al. 2022) to overcome a key challenge in micro- to nano-scale fluid mechanics:
the generation of flow. E.F.F. Chladni became quite popular in the late 18th and early 19th
centuries, touring between European locations, demonstrating the curious phenomenon of
sand collecting into patterns upon surfaces set into vibration by tones produced from a
clavicylinder (Musielak 2020), a clever instrument devised by Robert Hooke (of Hooke’s
law) and lost to time. One of the attendees of Chladni’s seminars at the Tuileries Palace
in 1809 – among Biot, Poisson, Navier and Napoléon Bonaparte – Félix Savart was
also conducting acoustics experiments and found that the Chladni patterns were at times
inconsistent, voicing one discrepancy of several that came to define a bitter relationship
between the two men (Bell 1991). Sand sometimes collected at vibration antinodes instead
of nodes, and Savart posited that air flow driven by the acoustic wave propagating in the
adjacent vibrating structure was responsible, a view supported by experiments conducted
later by Michael Faraday (1831). Indeed, the complication of acoustic streaming led to a
long history of research in this area, perhaps finally resolved approximately a decade ago
(Dorrestijn et al. 2007). Ironically, the acoustic streaming enhanced particle collection
phenomenon has itself also proved useful to identify the presence of high-frequency
acoustic waves now popular for acoustic streaming (Tan, Friend & Yeo 2007).

The analysis of acoustic streaming awaited better understanding of the governing
equations responsible for conservation of mass and momentum from decades of effort
by Navier and Stokes and contemporaries, and the treatment of the coupled nonlinear
phenomena in some way to produce a tractable approach. In 1884, Lord Rayleigh devised
a small-parameter asymptotic expansion to elegantly separate the conservation equations
based on phenomena (Rayleigh 1884), with the Mach number as the parameter. The
zeroth-order phenomena included hydrodynamics that would be present in the absence
of the acoustic wave and the phenomena that it caused, while the first-order terms were
intended to represent the linear acoustic field that gave rise to the second-order terms
that, after time averaging, produced an estimate for the acoustic streaming. Over the years
since, the approach has been both refined (Westervelt 1951a,b; Nyborg 1965) and applied
to specific instances of acoustic streaming, from boundary layer phenomena (Schlichting
1932) to streaming in one direction driven by progressive attenuation of the acoustic
wave along that direction, with the convenience of one-dimensional flow assumptions
that eliminated otherwise intractable nonlinear terms that were present due to lateral flow
(Eckart 1948). Moreover, the presentation of the analysis has changed to illustrate that
acoustic streaming can be viewed as a method for transmitting vorticity (Nyborg 1965).

Unfortunately, the asymptotic approach has drawbacks. In a seminal paper, Lighthill
(1978) explained how the requirement of ignoring the streamwise acceleration would suit
only what he called slow streaming – streaming in which the acoustic streaming-driven
fluid momentum would not be significant in comparison to the acoustic wave responsible
for it. A consequence is that nonlinear contributions of acoustic streaming to the acoustic
wave are ignored. Before Lighthill, Zarembo (1971) also identified problems with the
asymptotic expansion approach to slow streaming, suggesting instead that the problem
be separated into steady-state and dynamic parts, but with little more to offer the reader
in replacing the classic approach. Lighthill notably pointed out that as one increases
the frequency of the acoustic wave, the acoustic wave’s propagation distance decreases,
leading to a more concentrated flow field that can easily exceed the confines of the slow
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Theory of acoustic streaming for arbitrary Reynolds number

streaming assumptions. In fact, he suggests that 1 MHz acoustic waves adjacent to a
wall will form acoustic streaming that exceeds slow streaming assumptions at an acoustic
source power of 10 mW.

In the context of modern acoustofluidics, acoustic streaming is typically used beyond
an acoustic frequency of 1 MHz and an acoustic source power of 10 mW to obtain the
rapid and focused flows desired in applications, and it is not unusual to see 10 MHz to
1 GHz ultrasound at up to an acoustic source power of 10 W in driving acoustic streaming
flows. Nonetheless, the classic slow streaming approach remains popular because it is
tractable, and few alternatives are known. A good representative of these types of solutions
is provided by Vanneste & Bühler (2011). They published a formal asymptotic expansion
in analysis of acoustic streaming driven by surface acoustic waves, with the acoustic
Mach number as a small parameter. To obtain convergence, the expansion is later relaxed
to accommodate interior streaming that could potentially – and problematically – grow
without bound (Orosco & Friend 2022). Riley (2001) used the inverse of the Strouhal
number instead of a Mach number as the small parameter for the asymptotic expansion,
putting the disparity in time between the acoustics and the consequent hydrodynamics in
control of the expansion. As the disparity increases, the accuracy of Riley’s expansion
increases. Rudenko & Soluyan (1971) provided another approach, separating the acoustic
and hydrodynamic phenomena in time via the differential operators used to define the
conservation of mass and momentum, though only in a qualitative fashion. However, this
style of approach was adopted by Chini, Malecha & Dreeben (2014) to produce a complete
and useful solution for slow acoustic streaming. Nama, Huang & Costanzo (2017) use
arbitrary Lagrangian–Eulerian analysis of a slow streaming system with acoustic and
hydrodynamic spatial scales that are similar to each other. They made use of work by
Xie & Vanneste (2014) to expose explicitly the difference in the time scales of the acoustic
and hydrodynamic phenomena, and define them to be similar.

An alternative is to simply apply direct numerical simulations (DNS) of the full mass
and momentum conservation equations to the problem, resorting to brute force and
computational power. Unfortunately, the spatiotemporal separation between the acoustic
waves and the hydrodynamic flow that they drive – some 5–9 orders of magnitude (Orosco
& Friend 2022) – is sufficient to prevent adequate DNS solution of even simple problems
without assumptions. A typical problem is estimated to take years to solve on today’s
computers unless some weakening assumptions are made to eliminate boundary layers
and free fluid interfaces (Rezk, Yeo & Friend 2014b).

Here, we seek to produce equations to represent nonlinear periodic flow, e.g. an acoustic
wave or an ocean surface wave, and their culmination in a steady-state flow of arbitrary
Reynolds number at long times – fast acoustic streaming – where we account for the
convection of momentum in and between the periodic and steady components of the
flow, extending the equations for slow streaming to account for finite Reynolds number
streaming. In § 2, we extend the ideas of Zarembo (1971) and convert the Navier–Stokes
and continuity equations to two dependent systems of equations, one for periodic flow
and the other for steady flow. In § 3, we use characteristics of the physical parameters in
our problem to render the equations dimensionless, discuss the governing dimensionless
parameters, and give scaling insights about the level of nonlinear effects in the steady
and periodic flow components. In § 4, we look at a case study of acoustic streaming
generated near an acoustic horn, where we follow the simplifying guidelines of Rudenko
& Soluyan (1971), to demonstrate that our equations are compatible with slow streaming
and highlight characteristic properties of fast streaming at moderate and large Reynolds
numbers. Finally, we summarize and conclude our findings in § 5.
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2. Theory

In our analysis to follow, we obtain fast acoustic streaming equations. We use explicitly
three postulates that form the backbone of Eckart (1948) slow acoustic streaming and many
published works reliant upon it. First, we postulate that the flow field parameters – the
fluid’s velocity u, pressure p, and density ρ – are the sum of steady and periodic/transient
components. Specifically, we postulate that u = us(x) + up(x, t). The steady component
is us(x), denoted with a subscript s and solely a function of the spatial coordinates
x, while up(x, t) is the transient component of the flow, denoted with a subscript p,
and is also a function of time t. The pressure and density are similarly p = ps(x) +
pp(x, t) and ρ = ρs + ρp(x, t). Second, we assume that the transient components are
periodic in time and satisfy one angular frequency ω, or at most a finite set of angular
frequencies indexed with i = 1, 2, 3, . . . such that the periodic flow frequency group may
be represented by

∑
i ωi. Hence (1/τ)

∫ τ

t′=0 u(x, t′) dt′ ≡ 〈u(x, t)〉 = us(x), 〈 p〉 = ps(x)

and 〈ρ〉 = ρs, where τ � ω−1
i is considered a long time with respect to the period

2π/ωi (for any value i) of the periodic flow. For example, in many modern acoustofluidic
applications, a mono-frequency acoustic wave propagates through a fluid at frequency
range ω1 = 106–108 Hz, which translates to a corresponding periodic time in the range
ω−1

1 = 10−6–10−8 s. Third, we assume a small Mach number to represent the flow field,
so that ρs � ρp.

We next make an assumption that is at odds with the classic slow streaming literature.
The traditional assumption is that the particle velocity of the acoustic wave is much
faster than the fluid velocity that it causes via acoustic streaming: O(up) � O(us). This
assumption is key to the expansion of the Navier–Stokes equations in the traditional
approach. We instead assume that the periodic and steady flow components (or the particle
velocity of the acoustic wave and the acoustic streaming-driven fluid velocity) are of the
same order of magnitude: O(up) ≈ O(us). This relationship between the two velocities is
reasonable in fast acoustic streaming.

The Navier–Stokes and continuity equations

ρ (u̇ + u · ∇u) = −∇p + μ ∇2u + (μ/3 + μb)∇∇ · u, ρ̇ + ∇ · (ρu) = 0, (2.1a,b)

may be averaged over long times (t = τ ) to give an equation for the steady flow component,

ρsus · ∇us + ∇ps − μ ∇2us = −〈ρpu̇p + ρsup · ∇up〉
≈ −ρs〈up ∇ · up + up · ∇up〉, ∇ · us ≈ 0, (2.2)

where we neglect the terms 〈∇ · (ρpup)〉 and 〈ρpu · ∇u〉; these terms are small compared
to 〈∇ · (ρsus)〉 and 〈ρsu · ∇u〉, respectively, since ρs � ρp. This equation is similar
to equation (39) obtained by Zarembo (1971). We detail the derivation of (2.2) in
Appendix A, and show in Appendix B that averaging a periodic property over long times
gives a similar result whether or not the time of averaging τ is an integer multiple of
the period. We also show in Appendix B that 〈ρpu̇p〉 ≈ 〈up · ∇up〉. Moreover, the term
〈∇ · (ρpup)〉 that we neglect when deriving the leading-order result for the continuity
equation (∇ · us ≈ 0) in (2.2) accounts for contributions to the steady flow from density
variations (compressibility). Hence, while the leading-order result for the steady flow
component, given above, is incompressible, higher-order corrections to this flow will
account for the neglected term in the continuity equation. A discussion about compressible
acoustic streaming is given elsewhere (Pavlic & Dual 2021).
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Theory of acoustic streaming for arbitrary Reynolds number

As a further note, the steady component of pressure, ps, is associated with pressure
generated by an external source or by the boundaries of the fluid system. Steady Reynolds
stress contributions, such as acoustic radiation pressure to appear along the path of an
acoustic wave (Chu & Apfel 1982), are accounted for on the right-hand side of the equality
in the conservation of momentum equation in (2.2); this is a gradient of the Reynolds
stress in the fluid. Moreover, while in this work we are not concerned with the effects of
Reynolds stress at boundaries, it is useful to note a flow stress boundary condition unique
to acoustic systems, which is a product of Reynolds stress: an acoustic wave travelling
through fluid phases of different acoustic impedance ρsω/κ imposes net stress at their
interface (Rajendran et al. 2022).

Subtracting (2.2) from (2.1a,b) gives an equation for the periodic flow:

ρsu̇p + ∇pp − μ ∇2up − (μ/3 + μb) ∇∇ · up = F , where

F/ρs ≡ −up · ∇up + 〈up ∇ · up + up · ∇up〉 − us · ∇up − up · ∇us

− ρp

ρs
(u̇p + u · ∇u) and ρ̇p + ρs(∇ · up) ≈ 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.3)

where again we neglect the term 〈∇ · (ρpup)〉 in the continuity equation.
Assuming that the periodic pressure component pp is driven solely by acoustic effects,

it becomes reasonable to define an equation of state as an adiabatic relationship between
the pressure and density such that p − ps ≈ c2(ρ − ρs), where c is the phase velocity
of the periodic flow. This relationship translates to the expression pp ≈ c2ρp, that when
substituted into the continuum equation in (2.3) produces

ṗp/c2 ≈ −ρs ∇ · up. (2.4)

Substituting (2.4) in the time derivative of the conservation of momentum equation in (2.3)
gives

ρsüp − c2ρs ∇∇ · up − μ ∇2u̇p − (μ/3 + μb)∇∇ · u̇p = Ḟ ,

Ḟ/ρs ≡ −u̇p · ∇up − up · ∇u̇p − us · ∇u̇p − u̇p · ∇us − ρ̇p

ρs
(u̇p + u · ∇u) − ρp

ρs
üp,

⎫⎪⎬
⎪⎭

(2.5)

where we neglect small terms that are proportional to ρp/ρs 	 1, and where
(∂/∂t)〈up ∇ · up + up · ∇up〉 = 0 since it is a steady quantity in (2.2). There are two
interesting terms in this equation: the first is ρ̇p/ρs, and the other is (ρp/ρs)üp.
Rearranging the continuity equation in (2.3) produces ρ̇p/ρs ≈ −∇ · up. Hence ρ̇p/ρs
(u̇p + u · ∇u) ≈ −∇ · upu̇p − ∇ · upus · ∇us − ∇ · upus · ∇up − ∇ · upup · ∇us − ∇·
upup · ∇up. Moreover, integrating over the continuity equation in (2.3) in time gives
(ρp/ρs)üp ≈ −üp

∫ t
t′=0 ∇ · up dt′ for the initial condition ρp(t = 0) = 0. Substituting this

integral term in (2.5) gives a formidable differential–integral equation in time. However,
we show in Appendix C that (ρp/ρs)üp ≈ −up ∇ · u̇p over long times, subject to our
assumptions that ρp and up are periodic fields, which produces a simpler equation for
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the periodic flow:

Ḟ/ρs ≈ −u̇p · ∇up − up · ∇u̇p + u̇p ∇ · up + up ∇ · u̇p

− us · ∇u̇p − u̇p · ∇us + ∇ · upus · ∇us + ∇ · upus · ∇up

+ ∇ · upup · ∇up + ∇ · upup · ∇us + O(ρp/ρs). (2.6)

The first line of this equation is associated with temporal inertia in the periodic flow.
The second and third lines represent steady convective contributions to the periodic flow.
Equations (2.2), (2.5) and (2.6) govern the steady flow and periodic flow.

3. Scalings and insights

One may scale the problem by using the transformations

t → ωt, u → Uu, pp → ρsU(ω/κ)pp, ps → ρsU2ps, x → κ−1x, (3.1a–e)

where ω, κ and U are the angular frequency, wavenumber and characteristic velocity of
the periodic flow – particle velocity when the periodic flow is an acoustic wave – with
phase velocity ω/κ , and where ρsUω/κ and ρsU2 scale acoustic and inertial pressure,
respectively, in the fluid. Substituting the scales in (2.2), (2.4), (2.5) and (2.6) gives

ṗp ≈ −∇ · up, (3.2)

us · ∇us + ∇ps − Re−1 ∇2us ≈ −〈up ∇ · up + up · ∇up〉, ∇ · us = 0, (3.3a,b)

and

üp − ∇∇ · up − Re′−1(∇2u̇p + δ ∇∇ · u̇p) ≈ St−1 Ḟ 1 + St−2 Ḟ 2,

Ḟ 1 ≡ −u̇p · ∇up − up · ∇u̇p + u̇p ∇ · up + up∇ · u̇p − us · ∇u̇p − u̇p · ∇us,

Ḟ 2 ≡ ∇ · upus · ∇us + ∇ · upus · ∇up + ∇ · upup · ∇us + ∇ · upup · ∇up,

⎫⎪⎪⎬
⎪⎪⎭ (3.4)

where Re ≡ ρsU/μκ is the hydrodynamic Reynolds number, δ ≡ (μ/3 + μb)/μ is a
viscosity ratio parameter,

√
Re′ ≡

√
ρsω/μκ2 is a Womersley number (or the square root

of an acoustic Reynolds number) and St−1 ≡ Uκ/ω is an inverse Strouhal number, which
further satisfies the relation Re/Re′ = St−1.

It is of value to show that (3.3a,b) and (3.4) reproduce the classic Eckart (1948) problem
for small Re. We rewrite (3.3a,b) in the form

∇2us ≈ Re〈up∇ · up + up · ∇up〉 + O(Re), ∇ · us = 0, (3.5a,b)

where the inertial and pressure terms are order of magnitude O(Re) and are marked
accordingly. Moreover, we rewrite (3.4) in the form

üp − ∇∇ · up − Re′−1(∇2u̇p + δ ∇∇ · u̇p) ≈ 0 + O(St−1), (3.6)

where the O(St−1) right-hand side of the equation is marked accordingly. The solution of
the wave equation in (3.6) for a harmonic wave travelling along the Cartesian coordinate
x decays exponentially in space like exp(−((1 + δ) × Re′−1/2)x), to leading order. Thus
the forcing term Re〈up ∇ · up + up · ∇up〉 for the steady flow us in (3.5a,b) is along the
wave path (coordinate x) and proportional to Re/Re′ = St−1. This result is compatible
with the classic Eckart-type analysis for slow streaming, which is proportional to St−1.
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Theory of acoustic streaming for arbitrary Reynolds number

Contributions from transient nonlinear terms in the steady flow equation (3.6) and wave
equation (3.5a,b) are order of magnitude O(St−2) and customarily are ignored in the
classic Eckart-type analysis.

Next, we discuss the connection between large and small Reynolds number (Re) flow,
i.e. fast and (classic Eckart-type) slow streaming, respectively, and obtain general insights
about the periodic and steady components of the flow by assuming characteristic quantities
appropriate for modern acoustofluidics in the generation of steady flow – acoustic
streaming – in liquid, i.e. ρs = 103 kg m−3, U = 1 m s−1, ω = 107 Hz, κ = 105 m−1,
ω/κ = 103 m s−1 and μ = 10−3 Pa s. These assumed values produce Re−1 = 10−2,
Re′−1 = 10−5 and St−1 = 10−3. The steady flow in this problem is therefore governed to
leading order by the convection of steady momentum and by the time-averaged convection
of periodic momentum.

The scaling analysis reiterates the classic result that the attenuation of the periodic flow
in the form of a harmonic acoustic wave will become appreciable at approximately ((1 +
δ) × Re′−1κ/2)−1 ≈ 1 m away from the acoustic source for the characteristic parameter
values given above. This is the leading-order viscous attenuation length of the acoustic
wave. Moreover, the cumulative distortion of the periodic flow due to convective effects
becomes significant at approximately St κ−1 = 10−2 m = 1 cm away from the acoustic
source. For obtaining the latter insight, we assume the linear accumulation of convective
contributions (the order of magnitude O(St−1)) to the acoustic wave over a wavelength
κ−1 in (3.4) and (3.6). Hence if a fluidic system is longer than Stκ−1, which in our
analysis translates to a length of at least several centimetres, then one should expect
that the periodic flow is distorted by the convection of momentum. Moreover, in modern
acoustofluidics, where usually Re � 1, the contribution of momentum convection to the
steady flow component should be considered. We emphasize these insights using the case
study below.

4. Case study: axisymmetric flow near an acoustic horn

As a simple case study, we consider the two-dimensional Cartesian geometry problem
at the line of symmetry in the spirit of Rudenko & Soluyan (1971), which we sketch
in figure 1. We study the flow between a thickness mode vibrator – an acoustic horn
– at x = 0, and an acoustic absorber, a solid obstacle of similar acoustic impedance to
the fluid in which the acoustic wave propagates, at x = l. The acoustic horn generates a
periodic flow – propagating planar acoustic wave, i.e. a sound or ultrasound wave. The
convection of momentum therein produces steady flow – acoustic streaming – at long
times. Following the general approach espoused by Rudenko and Soluyan, we then assume
a Cartesian axisymmetric system in which the line of symmetry crosses the middle of
the acoustic horn surface, and study the flow along this line while approximating lateral
viscous contributions. Far from the acoustic horn, the flow is quiescent and the wave
vanishes. The simplified model avoids the usual mathematical complexity associated with
calculations of steady acoustic streaming flow. The simplicity of the ensuing unidirectional
equations emphasizes the principles of fast streaming and a comparison to the classic slow
streaming problem by Eckart without the requirement of complex mathematical structures.

We assume Cartesian coordinates, x = (x, y), axisymmetric flow with respect to the
coordinate x, given at y = 0, and the steady and periodic flow field vectors us = (u, v)

and up = (m, n), respectively, where u and m are flow components along the x axis, and
v and n are flow components along the y axis. We are interested in approximating the
flow from the centre of the acoustic horn and along the axis of symmetry x at y = 0.
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x

l

Acoustic

source

Acoustic

absorber

Acoustic wave (m)
Streaming (u)

y

Figure 1. A model system that is symmetric about the x axis, where acoustic waves are generated by an
acoustic horn at x = 0, produce acoustic streaming as they attenuate, and absorb in a solid obstacle – an acoustic
absorber – at x = l.

Symmetry requires that v( y = 0) = (∂u/∂y)|y=0 = 0. In addition, we assume that the
acoustic wave is quasi-planar near the centre of the horn: its change along the acoustic
horn, i.e. along the y axis, near the axis of symmetry at y = 0 is negligible, i.e. n =
∂n/∂y = ∂m/∂y = ∂2m/∂y2 = 0 at y = 0; however, the wave vanishes far from y = 0.
Using these assumptions, we rewrite the expressions for the steady flow in (3.3a,b) along
the axis of symmetry at y = 0:

u
∂u
∂x

+ ∂ps

∂x
− Re−1

(
∂2u
∂x2 + ∂2u

∂y2

)
≈ −2

〈
m

∂m
∂x

〉
, (4.1)

m̈ − ∂2m
∂x2 − (1 + δ) Re′−1

(
∂2ṁ
∂x2

)
= St−1

(
−u

∂ṁ
∂x

− ṁ
∂m
∂x

)
+ O(St−2), (4.2)

where we ignore second-order O(St−2) contributions to the acoustic wave in the following,
and note that for the leading order, O(St−1), convective contributions to the periodic flow,
m, are associated with the steady flow u.

We follow Rudenko & Soluyan (1971) and assume that the leading-order flow
distribution perpendicular to the axis of symmetry is quadratic, u(x, y → 0) ≈
b u(x, y = 0) y2/2 + · · · , based on past observations of this type of flow (Dentry, Yeo &
Friend 2014). Hence we approximate uyy ≈ bu(x, y = 0), where the friction coefficient b
is associated with the inverse square of the lateral dimension in this problem, at least near
the symmetry line. In the absence of an external pressure field, the hydrodynamic pressure
should vanish in the fluid, ps ≡ 0, and the approximate system of equations to be solved at
the symmetry line at y = 0 becomes

u
∂u
∂x

− Re−1
(

∂2u
∂x2 − bu

)
≈ −2

〈
m

∂m
∂x

〉
(4.3)

for the steady flow component, and (4.2) for the periodic flow component. The system of
equations is subject to the flow quiescent initial conditions m(t = 0) = (∂m/∂x)|t=0 = 0,
no-penetration boundary conditions for the steady flow at the surfaces u(x = 0) =
u(x = l) = 0, and periodic flow boundary conditions m(x = 0) = cos(t) and ṁ +
(∂m/∂x)|x=l = 0 for closure. The first boundary condition represents the assumption that
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Theory of acoustic streaming for arbitrary Reynolds number

the surface of the acoustic horn at x = 0 vibrates like cos(t). The following boundary
condition specifies the presence of an acoustic solid absorber at x = l peculiar to this
particular model from Rudenko & Soluyan (1971), and Eckart (1948) before them. This
condition eliminates wave reflections off its surface by absorbing the incident wave energy
instead. In doing so, it produces an ideal sink for the acoustic energy, commonly called
today a ‘perfectly matching layer’ along the one-dimensional axis from the source. Such an
ideal sink may be used to represent the case where the acoustic source radiates energy into
an infinite fluid volume, while avoiding the perceived complexity of the analysis that would
entail. By suppressing a returning acoustic wave, it prevents the appearance of interference
with the acoustic wave propagating from the source and the consequent generation of a
standing wave that would complicate the analysis of the acoustic streaming phenomena.

Eckart slow streaming, where the velocity of streaming is much smaller than that
associated with the periodic flow in the acoustic wave, i.e. O(u) 	 O(m), requires Re 	 1.
Fast streaming, where the streaming velocity may be comparable to the periodic flow in the
acoustic wave, i.e. O(u) ≈ O(m), requires Re � 1. Consequently, it is valuable to begin
the analysis with an asymptotic treatment for both small and large hydrodynamic Reynolds
numbers Re.

4.1. Asymptotic insights
We first consider the asymptotic solution of the equation set (4.2)–(4.3) for small and
large Re to assess the steady flow in each case. Unlike Re that may span a wide range of
values that in turn affect the steady flow directly, generally, St and Re′ are large numbers
associated to leading order with the periodic flow.

4.1.1. Small hydrodynamic Reynolds number (Re 	 1): Eckart slow streaming
In the case of an asymptotically small hydrodynamic Reynolds number (Re → 0), we
resurrect the classic Eckart streaming model. In this case, one may ignore to leading order
the convection of momentum. The equation set (4.2)–(4.3) is reduced to the leading-order
system of equations

∂2u
∂x2 − bu ≈ 2 Re

〈
m

∂m
∂x

〉
, m̈ − ∂2m

∂x2 − (1 + δ) Re′−1 ∂2ṁ
∂x2 ≈ 0, (4.4a,b)

with the same boundary and temporal conditions, where the term u ∂u/∂x produces
second-order contributions to the flow and hence is ignored. The problem in (4.4a,b) is
satisfied by the solution

m = cos (t − x)e−αx,

u = St−1

2
(1 + δ) exp(−2α(l + x) − √

bx)

(4α2 − b)(exp(2
√

bl) − 1)

× [− exp(2αx +
√

bl) + exp(2αl +
√

bx) + exp(2α(l + x) + 2
√

bl)

− exp(2α(l + x) + 2
√

bx) − exp(2αl +
√

b(2l + x)) + exp(2αx +
√

b(l + 2x))],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

where for a small attenuation coefficient α 	 1, one obtains the classical result
α ≈ (1 + δ) Re′−1/2, and where we used the products α Re = 1

2 (1 + δ) St−1 and
〈m ∂m/∂x〉 = −1

2α e−2αx. The result in (4.5) re-emphasizes the assumption that the
magnitude of the steady flow velocity u is much smaller than the particle velocity in the
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Figure 2. (a) Leading-order (u0) asymptotic results for small (red) and large (blue) hydrodynamic Reynolds
numbers, Re; in the latter, we include the hydrodynamic boundary layer flow near the obstacle (dashed black),
which appears here almost as a vertical line at x ≈ 30. We introduce leading-order corrections (b) to the small
Re asymptotic result for various Strouhal numbers, St = Re′/Re, and (c) to the large-Re asymptotic result for
various Re. Leading-order results u0, and corrections u1, are given in red and blue, respectively, and the two
first terms in the asymptotic series, u/St−1 = u0 + St−1 u1 and u = u0 + Re−1/2 u1 are in black. (d) We further
magnify the hydrodynamic boundary layer flow near the wave absorber obstacle for various levels of large Re.
In the different results, we assume a linear harmonic acoustic wave and the acoustic attenuation coefficient
α = 0.01, and use the friction coefficient b = 0.01 for small Re, and St = 0.01 for large Re.

acoustic wave, m. The ratio of the steady acoustic streaming flow velocity to the particle
velocity of the acoustic wave is proportional to St−1 	 1.

It is worthwhile to investigate the correction to this problem for a small but finite
hydrodynamic Reynolds number (Re 	 1). We assume the asymptotic series for the
flow u = u0 + Re u1 + · · · , which we substitute in (4.3) and the corresponding boundary
conditions. The leading-order result (O(1)) for u0 is similar to that given in (4.5). The
leading correction (O(Re)) to this problem for u1 is given by

∂2u1

∂x2 − bu1 = u0
∂u0

∂x
, (4.6)

subject to the boundary conditions u1(x = 0) = u1(x = l) = 0. While this equation does
possess an analytical solution, it is overly convoluted and has limited practical usefulness
beyond the contribution of numerical values, which we present in figure 2.

In figure 2(a), we present the leading-order streaming velocity u0 in (4.5) between an
acoustic horn at x = 0 and a solid wave absorber at x = l ≡ 30 for an acoustic attenuation
length and friction coefficient of the value α = b = 0.01. The flow velocity is proportional
to St−1 and reaches a maximum near the acoustic horn, then decaying slowly until it
vanishes at the acoustic absorber. In figure 2(b), we demonstrate further the correction
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Theory of acoustic streaming for arbitrary Reynolds number

to the streaming, u1, which is proportional to St−2 and given in (4.6). The correction due
to weak inertia in the streaming delays the streaming spatial variation along the x axis.
The maximum in the streaming velocity appears further downstream along the x axis with
increasing Re, and obtains a greater magnitude. Next we consider the asymptotic case of
large Re.

4.1.2. Large hydrodynamic Reynolds number (Re � 1): fast streaming
In the case of an asymptotically large Re, the convection of momentum governs the
streaming away from interfaces. The problem in (4.3) is reduced to

u
∂u
∂x

≈ −2
〈
m

∂m
∂x

〉
, (4.7)

which translates to u2 ≈ −4
∫ x′

x=0 〈m ∂m/∂x〉 dx + O(St−2) subject to the initial
condition u(x = 0) = 0 + O(St−1). The term O(St−1) accounts for boundary layer flow
contributions to the bulk flow near the solid surface of the acoustic actuator: since the
acoustic streaming is the drift of net mass away from the actuator solid surface, we
may not neglect the diffusion of momentum near the solid, especially its component
along the actuator solid surface within the viscous boundary layer thickness

√
μ/ρsω

(Lighthill 1978; Manor et al. 2011), where viscous and transient contributions to the flow
are comparable. This is a small thickness compared to the acoustic wavelength κ−1. For
example, the viscous boundary layer thickness and acoustic wavelength in ambient water
are approximately 10−7–10−8 m and 1.5 × 10−3–1.5 × 10−6 m for acoustic frequencies
of 1–1000 MHz, respectively. That is, the viscous boundary layer flow appears at x 	 1 in
our scaled notation. Convection of momentum within the boundary layer flow introduces
steady flow – acoustic streaming – of the order of magnitude u = O(St−1), normal to the
finite surface area of the horn. These O(St−1) 	 1 surface contributions to the flow are
small compared to the magnitude of the O(1) fast streaming. Failing to recognize surface
contributions to the flow will result in a singular slope of the velocity field near the actuator
surface, at x = 0. Specifying a linear acoustic wave propagating away from the actuator,
thus substituting the periodic velocity m = cos(t − x) e−αx of the wave generated by the
actuator alongside, in (4.7) gives

u ≈
√

1 − e−2αx + O(St−2), (4.8)

subject to the approximate boundary condition u(x → 0) = 0 + O(St−1). This result
emphasizes that in this limit, the steady flow velocity u should be comparable in magnitude
to the particle velocity in the acoustic wave m, away from the surface of the horn. Both are
of the order of magnitude O(1) in this scaled analysis.

In the vicinity of the solid acoustic absorber at x = l, viscous dissipation must increase,
so that viscous and convective contributions to momentum are comparable, supporting
the formation of a classic viscous boundary layer flow near the obstacle. To study the
boundary layer flow, we define the stretched coordinate X = (l − x) Re, which is opposite
the coordinate x and originates in the surface of the obstacle, to render comparable the
leading-order convective and viscous terms in the steady flow equation. Substituting X for
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x in (4.3), and using ũ(X) to indicate flow in the boundary layer, gives

ũ
∂ ũ
∂X

+ ∂2ũ
∂X2 ≈ −Re−2 bũ + 2 Re−1

〈
m

∂m
∂X

〉
, (4.9)

where 〈m ∂m/∂X〉 ≈ −α e−2αl/2 in the boundary layer. Ignoring small terms of the order
of magnitude O(Re−1) and O(Re−2) on the right-hand side of the equality, we find that ũ =
u(x → l) tanh[u(x → l)X/2], where we require that the velocity vanishes at the surface
of the obstacle, ũ(X = 0) = 0, and match the flow in the boundary layer to that outside:
ũ(X → ∞) = u(x → l). Replacing X by x, using (4.8) to identify the term u(x → l), gives
the boundary layer flow

ũ =
√

1 − e−2αl + O(St−2) tanh
(√

1 − e−2αl + (St−2)
Re (l − x)

2

)
, (4.10)

which highlights rapid viscous diminution of the steady flow close to the obstacle
surface. The characteristic dimensionless thickness of the boundary layer is given by
2/u(x → l) Re; the boundary layer thickness decreases with increasing flow velocity u near
the absorber surface, and increasing hydrodynamic Reynolds number Re. In particular,
approximating u(x → l) ≈ 1 renders the characteristic length 2/Re smaller than unity for
large Re, hence the dimensional length of the viscous boundary layer flow becomes smaller
than the acoustic wavelength.

The next and last step that we will take in this subsection is a correction to the steady
flow due to small but finite viscous effects, in order to evaluate the leading-order viscous
contribution to the flow. For this part, it is sufficient to assume the regular expansion
for the corresponding velocity field u = u0 + Re−1/2 u1 + · · · in (4.3). The leading-order
problem for u0 is the same as the equation in (4.7), subject to the same boundary condition
at x = 0. The solution for u0 is the same as the solution for u in (4.8) when assuming
that the problem for the acoustic wave m is linear, independent of the streaming, and
is satisfied by the simple harmonic and exponentially decaying expression in (4.5). The
correction to the steady flow of the order of magnitude O(Re−1/2) for u1 is given by
u1 ∂u1/∂x = ∂2u0/∂x2 − bu0, subject to the initial condition u(x = 0) = 0. This problem
is satisfied by the integral solution

u1 =
√

2
∫ x′

x=0

(
∂2u0

∂x2 − bu0

)
dx, (4.11)

which is valid when the friction coefficient b is small enough to render the integral
positive.

We present the large hydrodynamic Reynolds number Re case in figure 2(a) compared
to the small-Re case. The most striking observation is that while the former case supports
an order O(1) velocity field – i.e. the steady velocity field is of the same order of
magnitude as the particle velocity field in the wave – the velocity field in the latter case
is proportional to St−1, which is a small number in these types of problems, and is weak
compared to the particle velocity field in the wave. Correcting the large-Re result for weak
viscous dissipation intuitively reduces the steady flow velocity in a manner proportional to
Re. Moreover, close to the wave absorber obstacle, viscous and inertial effects become
comparable, which yields the rapid reduction in velocity field that we demonstrate in
figure 2(d). In our demonstration, the steady flow loses momentum to viscous dissipation
within a fraction of a wavelength, even in the case of moderate Re values.
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Theory of acoustic streaming for arbitrary Reynolds number

Next, we use numerical analysis to study the steady flow and nonlinear acoustic wave
at small to moderate and large hydrodynamic Reynolds numbers, Re, and further compare
our numerical findings for finite Re to the asymptotic results above.

4.2. Numerical insights
We solve (4.2)–(4.3) and the corresponding boundary and initial conditions to account
for finite values of hydrodynamic Reynolds number Re and nonlinear acoustic effects by
using finite difference approximations. For the case of low to moderate Re, we employ
second-order central difference approximations for spatial and temporal derivatives in the
numerical domain, and first-order forward and backward approximations to discretize the
boundary and initial conditions. We solve the wave equation in (4.2) using an explicit
second-order Newton algorithm, and the boundary value steady flow equation in (4.3)
using the matrix algorithm, where we implement a successive over-relaxation approach
to facilitate the convergence of the matrix equation at each iterative step of a fixed point
iteration algorithm to overcome the nonlinearity of the problem. For the case of large Re,
we use the asymptotic equation for u in (4.7), and solve the wave equation as in the previous
case. We solve the numerical problem between an acoustic horn at x = 0 and a solid
wave absorber at x = l ≡ 30, and average over the acoustic forcing term 〈m ∂m/∂x〉 over
15 temporal cycles of the periodic flow m. Moreover, we employ 1890 spatial numerical
nodes and 3780 temporal numerical nodes for small to moderate hydrodynamic Reynolds
numbers, Re ≤ 1, and 756 spatial numerical nodes and 1512 temporal numerical nodes for
the large hydrodynamic Reynolds number case, Re � 1. Finally, we require a maximum
relative numerical error of 1 % in our results, which we calculate using an infinity norm.

4.2.1. Small to moderate hydrodynamic Reynolds number, Re ≤ 1
First, considering the case of a small to moderate hydrodynamic Reynolds number,
Re ≤ 1, we solve (4.2) and (4.3) for an acoustic Reynolds number and a friction
coefficient Re′ = b = 0.01, and a bulk-to-shear viscosity ratio δ = 1. In figure 3(a),
we present the asymptotic result for small Re in (4.5), and numerical results for
Re = 0.1, 0.25, 0.5, 0.75, 1. Our numerical analysis is almost indistinguishable from the
asymptotic result for a hydrodynamic Reynolds number Re = 0.1. Increasing Re to unity
spatially delays the maximum steady velocity field downstream, which we observe in our
asymptotic analysis, where we introduced a correction for small but finite Re.

In figures 3(b,c), we demonstrate the contribution of steady flow to the periodic
flow – the acoustic wave in this case. The contribution may become apparent for
sufficiently large Re at (the dimensionless) x > St; this insight is compatible with our
discussion in § 3. Moreover, while in practice St = Re′/Re, we artificially set the Strouhal
number in our numerical calculations to St = 10 to observe this contribution within our
numerical region 0 < x < 30. We show the analytical result for the linear acoustic wave
m = cos(t − x) e−αx in red, and the numerical result for Re = 1 and 0.01 in blue. It is
immediately apparent that the acoustic wavelength changes in the case Re = 1 due to a
Doppler effect: The steady flow ‘pushes’ the acoustic wave along the x axis, which results
in the linear analytical wave (red) undergoing an additional half period relative to the
nonlinear numerical wave (blue), within the same numerical region. Hence the wavelength
of the numerical wave increases slightly. In the case Re = 0.01, we observe the same
number of periodic spatial cycles in both the linear and nonlinear waves. Here, the steady
flow is weaker than in the previous case by a factor 1/100 (the ratio between the two
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Figure 3. Spatial (x) variations of (a) acoustic streaming velocity u for low and moderate Reynolds number, Re,
in comparison to the asymptotic result for Re → 0, and a comparison between the spatiotemporal periodic flow
m in a (red) linear acoustic wave (independent of acoustic streaming) against (blue) its nonlinear counterpart
for (b) Re = 1 and (c) Re = 0.01, in addition to the sum of acoustic streaming u and the spatiotemporal periodic
flow m in a nonlinear acoustic wave for (d) Re = 1, (e) Re = 0.5 and ( f ) Re = 0.1, where in all cases, excluding
the asymptotic analysis, we set the Strouhal number to St = 10.

corresponding values of Re), hence the ‘push’, which the acoustic wave is getting from the
steady flow, is much weaker.

We further plot the sum of the steady and periodic flows, u and m, respectively, in
figures 3(d– f ) for hydrodynamic Reynolds numbers Re = 1, 0.5 and 0.1. We observe
comparable contributions to the overall flow field from both u and m for Re = 1. However,
in the case Re = 0.1, the contribution of u to the overall flow field is small, since it is
proportional to Re. It becomes apparent only at long times following the exclusion of the
periodic flow due to long time averaging. We demonstrate the transition between these
two cases using Re = 0.5, where the contribution of the steady flow to the overall flow is
appreciable but to a lesser extent relative to the case Re = 1.

We thus find that the asymptotic result for small Re (where we assume a linear acoustic
wave) models the flow and acoustic wave well for Re ≤ 1: this is an application of the
classic Eckart approach for slow streaming. This is not the case for Re � 1, which we
discuss next.
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Figure 4. Spatial (x) variations of (a) acoustic streaming velocity u for different values of the Strouhal number
St, and a comparison between the spatiotemporal periodic flow m in a (red) linear acoustic wave (independent
of acoustic streaming) against (blue) its nonlinear counterpart for (b) St = 10 and (c) St = 100, in addition
to the sum of acoustic streaming u and the spatiotemporal periodic flow in a nonlinear acoustic wave m, for
(d) St = 10, where in all cases we assume the large-Reynolds-number Re → ∞ asymptotics for u.

4.2.2. Large hydrodynamic Reynolds number, Re � 1
We now consider the case of a large hydrodynamic Reynolds number, Re � 1. We use a
similar approach as in the previous case to solve (4.2) for the periodic flow, and integrate
(4.7) to solve for the corresponding steady flow in the limit of large Re, assuming an
acoustic Reynolds number and a friction coefficient Re′ = b = 0.01, and a bulk to shear
viscosity ratio δ = 1. In figure 4(a), we present the asymptotic result for large Re in (4.8),
and numerical results for St = 10 and 100. The slightly wiggly numerical results in this
case are due to our finite time averaging: the longer time we average over the forcing term
for the steady flow, the more we eliminate spatial oscillations in the steady flow. We alter
the magnitude of St in this problem to highlight its contribution to the acoustic wave,
and observe that our numerical results are similar to the asymptotic result for steady flow.
Hence spatiotemporal variations in the nonlinear acoustic wave with St in our calculations
result in small integral contributions to the steady flow.

We compare the nonlinear numerical and linear analytical results for the wave in
figures 4(b,c). For a Strouhal number St = 10, the contribution of the steady flow to
the acoustic wave becomes apparent at x > St in this dimensionless analysis, where the
Doppler contribution of the steady flow to the wave becomes appreciable: the nonlinear
wave (blue) retains greater magnitude of oscillations than the linear wave (red), sustaining
weaker attenuation. Moreover, the change in the wavelength is such that the nonlinear wave
undergoes one less periodic spatial cycle than the linear wave in our numerical region.
Changing the Strouhal number to St = 100 suggests that contributions to the wave should
become less appreciable within our numerical region 0 < x < 30. Indeed, in this case the
difference between the numerical nonlinear wave (blue) and the linear analytical wave
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(red) is smaller. Further, we show the sum of the steady and acoustic wave flow fields in
figure 4(d) for St = 10. Here, the sum of the steady and periodic flow components indicates
that far from the origin of the acoustic wave – the acoustic horn – where the acoustic wave
has mostly attenuated, the flow field as a whole is governed mostly by the steady flow even
without time averaging the overall flow field. This result is qualitatively different to the
corresponding results that we showed for small Re, where the acoustic wave appears to
dominate the flow at any separation from the acoustic horn.

5. Summary and conclusions

In this study, we go back to a problem in acoustofluidics put forward by Zarembo (1971)
a little more than half a century ago: how should one obtain a tractable solution for a
periodic flow (up) that supports the presence of a steady flow (us) of similar magnitude?
The flow components interact through the convection of momentum, thus circumventing
the mostly intractable requirement to solve the full Navier–Stokes equation over long
times, while retaining reasonable spatial and temporal resolutions over the periods and
wavelengths associated with up for practical problems. This problem captures the difficulty
in predicting fast acoustic streaming: the generation of acoustic streaming (or any steady
flow) of finite hydrodynamic Reynolds number, Re, due to convective effects in an acoustic
wave (or any periodically varying flow), while the wave is altered simultaneously by the
streaming.

In the absence of a general solution to this problem, most current theories for acoustic
streaming in a fluid bulk follow the guidelines set by Eckart (1948), calculating slow
acoustic streaming in the asymptotic limit of small Re, characterizing the contributions
of Rayleigh (1884), Eckart, Nyborg (1965), Westervelt (1951a) and, more recently,
Chini et al. (2014) and Nama et al. (2017), described in the Introduction. The theory
by Eckart predicts a linear independent acoustic wave that powers viscous acoustic
streaming. However, it is the experience of the authors that, at least in the case of
MHz frequency acoustic actuation of streaming (steady flow) in their laboratories, one
is not able to observe (low-Re) Eckart streaming in water and other simple liquids using
the naked eye; the streaming is too slow. For example, let us assume the kinematic
viscosity of water, which is approximately μ/ρ ≈ 10−6 m2 s−1, and the range of
acoustic wavelengths in water in the MHz frequency regime, which is approximately
κ−1 ≈ 10−4 m. Assuming that the magnitude of the hydrodynamic Reynolds number is
sufficiently small to support classic Eckart streaming, e.g. Re ≈ 0.1, the corresponding
periodic flow (or particle velocity of the acoustic wave) amplitude is approximately
U ≈ 0.01 m s−1. The slow Eckart streaming under these conditions is proportional
to St−1U ≡ U2/(ω/κ); the phase velocity of the acoustic wave in ambient water is
ω/κ ≈ 1500 m s−1. Hence the corresponding acoustic streaming velocity is approximately
St−1U ≈ (0.012 m2 s−2)/(1500 m s−1) ≈ 10−7 m s−1.

Another difficulty in observing slow Eckart streaming is the Westervelt paradox (Chu &
Apfel 1982). The paradox is associated with an Eulerian representation of the conservation
of momentum and mass in a travelling acoustic wave in fluid: a steady flow – acoustic
streaming – is generated opposite the travelling wave path, satisfying a magnitude
St−1 U ≡ U2/(ω/κ), and apparently penetrating the solid surface of the periodic flow (or
acoustic wave) actuator. A Lagrangian representation of the flow circumvents the paradox
by accounting appropriately for fluid density variations, showing that fluid mass does not
actually penetrate into the solid actuator. However, the apparent net flow towards the solid
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actuator is measurable (in an Eulerian – laboratory – frame of view), and advects objects
to the surface of the actuator. Hence similar magnitudes of apparent steady flows are
generated by slow Eckart streaming and by the Westervelt paradox along and opposite
the path of the wave, respectively.

However, many times, one observes acoustic streaming velocities that are 10−3 −
1 m s−1 in magnitude and are comparable to the periodic flow velocity (U) – the acoustic
wave’s particle velocity – and along the path of the wave. These acoustic streaming
velocities are too large for slow Eckart streaming and are too large to be opposed by the
flow generated due to the Westervelt paradox, at least away from the solid surface of the
actuator. Hence it is evident that the convection of momentum is appreciable in the flow
field and that the corresponding Reynolds number Re is not small.

Other researchers have obtained the same insight. Attempts to correct the Eckart
streaming theory introduced an empirical term for the convection of momentum in the
acoustic streaming equations (Rudenko & Soluyan 1971). Others showed that such a
convection term should rightfully appear in the acoustic streaming equation (Orosco &
Friend 2022). Here, we give a theoretical foundation for the convection of momentum in
both the acoustic wave and acoustic streaming, and for the nonlinear interaction between
both flow components by separating the flow field into the sum of steady and periodic
components, according to the ideas of Zarembo (1971). This theoretical foundation is our
main contribution in this paper.

We use explicitly three postulates that form the backbone of acoustic streaming (Eckart
1948; Zarembo 1971) and many published works reliant upon it. First, we postulate that
the flow field parameters, including the fluid’s velocity, pressure and density, are the
sum of steady and periodic/transient components. Second, we assume that the transient
components are periodic in time. Third, we assume a small Mach number, so that the
periodic density component is small relative to the constant density component. Further,
we avoid the traditional assumption that the periodic velocity is much faster than the
steady velocity that it causes. This assumption is key to the expansion of the Navier–Stokes
equations in the traditional approach, but we take a different approach.

We split the Navier–Stokes and continuity equations into a time-averaged equation for
steady flow of arbitrary Reynolds number, Re, and a nonlinear periodic flow equation
obtained by subtracting the averaged time equation from the full Navier–Stokes equation.
The analysis predicts a leading-order non-compressible (solenoidal) steady flow alongside
a compressible periodic flow. We employ the equation of continuity to write the latter as
a wave equation, albeit the periodic flow equation may further describe non-compressible
waves such as surface waves. The equations reproduce the theory by Eckart for small Re,
and capture large Re effects.

Scaling analysis with a case study for steady flow (acoustic streaming) near an acoustic
horn (generator of planar acoustic waves) shows that at separations smaller than St κ−1

(the Strouhal number times the acoustic wavelength) from the horn, one may ignore
contributions of the steady flow component to the periodic component.

Moreover, our case study for asymptotically large Re suggests that the periodic flow
attenuation length α−1 is a significant length scale for fast acoustic streaming. The steady
flow (or fast acoustic streaming) reaches a velocity magnitude similar to the periodic flow
once it reaches a separation comparable to α−1 from the horn.

In cases where the steady flow velocity is small compared to the periodic flow velocity,
momentum flows in one direction to leading order, from the periodic flow component
(or particle velocity of the acoustic wave) to the steady flow component (or acoustic
streaming), regardless of the magnitude of Re. At greater separations, the same trend
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continues to leading order for small Re. Otherwise, in cases where the steady flow velocity
is comparable to the periodic flow velocity, momentum flows in both directions between
the two flow field components; the periodic flow generates the steady flow and undergoes
a Doppler effect, which alters its wavelength in addition to nonlinear contributions in the
presence of the steady flow.

Our case study shows that while steady flow appears to hide in the shadows of the
periodic flow at small Re, becoming apparent at long times when the periodic flow is
diminished by time averaging, the steady flow dominates the flow field at large Re. These
are the products of both the fast viscous attenuation in the case of small Re, and the relative
magnitude of the steady flow compared to the periodic flow. At small Re, the relative
magnitude is given by St−1, which is characteristically small in our problem. At large Re,
both acoustic streaming and periodic flow are of the same magnitude; once the periodic
flow attenuates, the flow field is governed by steady flow.

The analysis above highlights aspects of moderate and large Reynolds number acoustic
streaming in the bulk of a fluid body. The governing equations given here may further
describe the appearance of steady flow of arbitrary Reynolds number near a solid
surface in contact with a periodic flow. It is for future work to show whether the fast
streaming methodology, given here, is insightful when it comes to periodic boundary
layer flow problems such as the drift of mass generated by surface waves in shallow
water (Longuet-Higgins 1953; Stokes 2009) or the drift of mass near a surface in contact
with a standing (Rayleigh 1884; Schlichting 1932; Stuart 1966; Dorrestijn et al. 2007) or
travelling (Rezk et al. 2012, 2014a; Altshuler & Manor 2015, 2016; Morozov & Manor
2017) wave. It may be possible to extend this analysis usefully to two dimensions without
substantial increases in complexity, particularly in axisymmetric systems that are typical
in acoustofluidics. Looking forward to fully three-dimensional analysis, treating properly
the details of acoustic streaming in complex three-dimensional geometries will almost
certainly require a computational treatment, but the expression of finite difference and
finite element based representations of these analytical expressions should be possible and
will facilitate better analysis results to guide work in the area.
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Appendix A. Derivation of (2.2)

Substituting u = us(x) + up(x, t), p = ps(x) + pp(x, t) and ρ = ρs + ρp(x, t) in the
Navier–Stokes and continuity equations in (2.1a,b), we obtain

ρ (u̇ + u · ∇u) = −∇p + μ ∇2u + (μ/3 + μb) ∇∇ · u, ρ̇ + ∇ · (ρu) = 0, (A1a,b)

and averaging the equations over time on both sides of the equality using the operator
〈 f 〉 ≡ (1/τ)

∫ τ

t=0 f dt, where τ is a constant specifying long time with respect to the
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periodicity of the flow in this problem, gives〈 (
ρs + ρp(x, t)

) ∂
(
us(x) + up(x, t)

)
∂t

〉
+ 〈(ρs + ρp(x, t))(us(x) + up(x, t)) · ∇(us(x) + up(x, t))〉

= −∇(〈 ps(x)〉 + 〈 pp(x, t)〉) + μ ∇2(〈us(x)〉 + 〈up(x, t)〉)
+ (μ/3 + μb)∇∇ · (〈us(x)〉 + 〈up(x, t)〉), (A2)

∂〈ρs + ρp(x, t)〉
∂t

+ ∇ · 〈(ρs + ρp(x, t))(us(x) + up(x, t))〉 = 0. (A3)

As noted in the main text, we assume that τ is large and hence 〈ρp(x, t)〉 = 〈 pp(x, t)〉 =
〈up(x, t)〉 = 0 (see Appendix B for further details), ρs is a constant and 〈∇ · (ρsus)〉 �
〈∇ · (ρpup)〉 since ρs � ρp, so that to leading order, the continuity equation translates
to the usual solenoidal field equation for the steady flow, ∇ · us ≈ 0: the steady
flow component is incompressible to leading order. Moreover, the first term in the
Navier–Stokes equation translates to 〈ρpu̇p〉. The second term in the equation translates to
ρsus · ∇us + ρs〈up · ∇up〉, when neglecting terms proportional to ρp. On the right-hand
side of the equality in the equation, the terms are proportional to either pressure p
or velocity u: the time-averaging operator eliminates the terms proportional to the
periodic functions pp and ρp. Moreover, the steady solenoidal flow us makes the
steady compressible component of viscous stress vanish. The result is the leading-order
conservation of momentum and mass equations for the steady flow in (2.2):

ρsus · ∇us + ∇ps − μ ∇2us = −〈ρpu̇p + ρsup · ∇up〉,
∇ · us ≈ 0.

}
(A4)

Appendix B. Similarity between different forms of acoustic forcing

Time averaging over the velocity field u for a long time τ should give similar results
whether or not it is comprised of an integer number of the transient flow periodic cycles.
To highlight this assertion, we assume a transient flow that is comprised of one frequency,
ω, and define the long time parameter τ ′ = τ + ζω−1, which is comprised of an integer
number of the periodic cycles of flow ω−1, and is greater than τ by less than one period;
that is, 0 < ζ < 1. Averaging the velocity field over a time τ ′ gives

lim
τ→∞ 〈u〉 = lim

τ→∞(1/τ ′)
∫ τ ′

t=0
u dt

= lim
τ→∞(τ + ζω−1)−1

(∫ τ

t=0
u dt +

∫ ζω−1

t=0
u d(t − τ)

)
= τ−1

∫ τ

t−τ=0
u dt,

(B1)

assuming that the transient component in u is of the same order of magnitude throughout
the time of integration, which is the case for low-Mach-number periodic flows – one of our
assumptions. Highlighting the insensitivity of the averaging procedure to the exact value
of τ , we may now consider the equivalent forcing terms that we use in (2.2).

In (2.2), we employ the connection 〈ρpu̇p〉 → 〈up ∇ · up〉. The term on the left-hand
side of the arrow appears when writing the Navier–Stokes equation in a transport

975 A4-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

79
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.790


O. Dubrovski, J. Friend and O. Manor

form as in (2.1a,b). The term on the right-hand side of the arrow appears when
writing the Navier–Stokes equation in a momentum conservation form, that is,

˙(ρu) + ∇ · (ρuu) = · · ·. Below, we show that the connection given above is satisfied
by mass conservation when the flow field up and density component ρp are periodic in
t ∈ [0, τ ].

Multiplying the continuity equation in (2.3) by u gives

upρ̇p + ρsup ∇ · up ≈ 0, (B2)

which upon integration over a long time gives∫ τ

0
upρ̇p dt +

∫ τ

0
ρsu ∇ · u dt ≈ 0, (B3)

where integrating the left-hand side by parts gives∫ τ

0
upρ̇p dt = upρp

∣∣t→τ

t→0 −
∫ τ

0
u̇ρp dt ≈ −

∫ τ

0
u̇ρp dt. (B4)

The term upρp|t→τ
t→0 = upρp|t→τ − upρp|t→0 is small compared to the integral

∫ τ

0 u̇ρp dt
when up and ρp are periodic and when τ is sufficiently large. This can be shown easily

by integrating upρ̇p over τ ′:
∫ τ ′

0 upρ̇p dt = upρp|t→τ ′
t→0 − ∫ τ ′

0 u̇ρp dt. The term upρp|t→τ ′
t→0

vanishes due to the periodicity of up and ρp. Moreover, for large τ , limτ→∞
∫ τ ′

0 u̇ρp dt =
limτ→∞

∫ τ

0 u̇ρp dt + ∫ ζω−1

t−τ=0 u̇ρp d(t − τ) = ∫ τ

0 u̇ρp dt. Hence, substituting (B4) in (B3)
and going back to the notation

∫ τ

0 (· · ·) dt = 〈(· · ·)〉 gives

ρs〈up ∇ · up〉 ≈ 〈ρpu̇p〉. (B5)

One may use the same analysis for multiple periodicity in the transient flow, by requiring
that τ ′ is an integer number of the different periodic cycles in the transient fluid, but that
it differs by a constant times each periodic time from τ .

Appendix C. Dealing with the term ρpüp

In (2.5) we obtain the term (ρp/ρs)üp. Upon temporal integration of this term (excluding
1/ρs) in parts, we obtain∫ τ

t=0
ρpüp dt = ρp u̇p

∣∣τ
t=0 −

∫ τ

t=0
ρ̇pu̇p dt = ρp u̇p

∣∣τ
t=0 − ρ̇p up

∣∣τ
t=0 +

∫ τ

t=0
ρ̈pup dt. (C1)

Accounting for the periodicity of up and ρp and the long time τ (compared to the periodic
cycles in the transient flow), we may use an approach similar to that in Appendix B to
show that ∫ τ

t=0
ρpüp dt ≈

∫ τ

t=0
ρ̈pup dt. (C2)

Substituting the continuity equation in (2.3) into (C2) gives∫ τ

t=0
ρpüp dt ≈ ρs

∫ τ

t=0
up ∇ · u̇p dt, (C3)

where τ may take any value that is much greater than the periodic cycles in the transient
flow, hence the fundamental theorem of calculus indicates that at long times,

ρpüp ≈ ρs ∇ · u̇p. (C4)
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