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Abstract

Let ¢ be a homomorphism from a Banach algebra $ to a Banach algebra A. We define a multiplication on
the Cartesian product space A X B and obtain a new Banach algebra A x, 8. We show that biprojectivity
as well as biflatness of A X, B are stable with respect to .
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1. Introduction

Let A and B be two Banach algebras and let ¢ € hom(8B, A), the space consisting
of all Banach algebra homomorphisms from $ into A. Moreover, suppose that
ll¢ll < 1. Following [2], the Cartesian product space A X B equipped with the algebra
multiplication

(a1,b1) - (az, b)) = (@1a2 + a1p(by) + @(b1)az, b1by), (ar,ar € A, by, by € B),

and the norm
ll(a, D)I| = llalla + |Ibl|s,

is a Banach algebra which is denoted by A X, B. Note that our definition of the
multiplication X,, is presented with a slight difference from that given by Bhatt and
Dabhi [2]. In fact they give the definition with the assumption of commutativity of
A and use a;p(by) instead of ¢(by)a;. However this condition is redundant, and the
definition can be provided for an arbitrary Banach algebra A.

Asin [2], when ¢ = 0, this multiplication is the usual coordinatewise product and so
X, is in fact the perturbation of the coordinatewise product induced by ¢. Furthermore,
let A be unital with the unit element e and let 8 : 8 — C be a multiplicative linear
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functional. Define ¢y : B — A as ¢y(b) = 6(b)e, for each b € B. Then the above
product with respect to ¢ coincides with the product investigated by Lau [10], for
certain classes of Banach algebras. This definition was extended by Sangani Monfared
[13], for the general case.

The main motivation for the present work stems from [2], which gives some results
related to Arens regularity and some notions of amenability of A X, B. In fact, Arens
regularity as well as amenability (together with its various avatars) of A x, B are
shown to be stable with respect to ¢; see [2, Theorem 3.1] and [2, Theorem 4.1].

Homological properties of Banach algebras have been studied by several authors.
We refer to [5] as a standard reference in this field. Moreover, we refer to recent work,
such as [1, 4, 9, 12, 14], closely related to the present work. The main purpose of this
paper is to study biprojectivity and biflatness of A x, 8. We begin with some primary
results about A X, B. Indeed, we show that A X, B is commutative if and only if A
and B are commutative. We also prove that A X, B has an (approximate) identity if
and only if A and B also do. Then we study biprojectivity and biflatness of A x, B
and show that these properties are stable with respect to ¢. Finally, as an application of
these results, we obtain related results about amenability and contractibility of A X, B.

2. Preliminaries

Let A be a Banach algebra. Then the dual space A* of A is a Banach A-bimodule
under the module operations

<b’f'a>:<ab’f> and (b,a-f):(ba,f),

foralla,b € Aand f € A*. We remark that the dual space (A X, B)* can be identified
with A* X B*, when we consider A* X B* under the norm

AN =1l + gl (f € A, g € B).
In fact, define 6 : A* X B* — (A X, B)* by

((a,D),0((f,8)) = (a, f) + (b, g),

forae A, f e A*,b e Band g € B*. Some easy calculations imply that  is the desired
bounded linear map. Moreover, (A X, B)* can be turned into an (A X, B)-bimodule
with the module operations defined by

(f.8) (@, b):=(f-a+f-ob),fo(Lup)+g-b),
(a,b)-(f,8) :=(a-f+@®)f,foRp)+b-g),

where a € A,be B, f € A* and g € B*. In fact, the module operations defined
on (A X, B)+ are the natural module actions of A X, B on its dual. In addition,
Lyp: B — Aand R, : B — A are defined as L,¢(y) = ap(y) and R,¢(y) = ¢(y)a, for
each y € 8. Furthermore, A X, B is a Banach A-bimodule under the module actions

c-(a,b):=(,0)-(a,b) and (a,b)-c:=(a,b)-(c,0),
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for all a,c € A and b € B. Also A X, B can also be made into a Banach B-bimodule
in a similar fashion.

For completeness, we also recall the definitions and basic relationships of the
standard homological properties. Following [5], we say that A is biprojective if there
is a bounded A-bimodule map & from A into the projective tensor product A® A such
that 74 o £ = id#. Here and in the sequel, 74 always denotes the product morphism
from A® A into A, specified by m4(a ® b) = ab. Also A is biflat if there is a bounded
A-bimodule map A : (AR A)* — A* such that 1 o m5* = idg-. We refer to [3, 5, 11]
for the basic properties of biprojectivity and biflatness of Banach algebras.

We also introduce some required mappings similar to the mappings defined in [9],
which will be used several times in this paper. Let pg : A X, B — A and pg : A X,
B — B be the usual projections which are defined by p#((a, b)) = a and pg((a, b)) = b,
respectively (a € A,b € B). Also gz : A—> AX, B and g3 : B — A X, B are the
usual injections, defined by g4(a) = (a,0) and gg(b) = (0, b), respectively. Moreover,
we define the mappings rg : A X, B> A and sg: B — A X, B by ra((a, b)) :=
a+ @(b) and sg(b) := (—p(b), b), for all a € A and b € B. One can easily check that g4,
r# are Banach A-bimodule maps and pg, gg and sg are Banach 8-bimodule maps.

3. Results on identity and approximate identity

We commence with the following proposition. Recall that (A is said to be faithful if
{ae A :aA=Aa = {0}} = {0}, where
Aa={ba:beA} and aA={ab:bec A}

ProposiTioN 3.1. Let A and B be Banach algebras and ¢,y € hom(B, A). Then the
following statements hold.

(1)  AXx, Bis commutative if and only if both A and B are commutative.

(i) Suppose that there exist Banach algebra isomorphisms ¥ : A — A and
D : B — Bisuchthat'¥ oy = ¢ o ®. Then the Banach algebras A X, B and A X,
B are isomorphic.

Proor. (i) This is easy to prove and is left to the reader.
(ii) Define F : A Xy, B — A X, B by
F(a,b) = (Y(a), D(b)).
Then F is obviously a bounded bijective linear map. Moreover, for all (aj, b;),
(a2, br) € A xy B, we have
F((ai,by) - (a2, 02)) = F((a1a2 + a1y (b2) + Y(b1)az, b1by))

= (Y(a)¥(a2) + ¥(a)¥YW(b2)) + Y (b1)¥(az), D(b1)D(b2))
= (Y(a)¥(a2) + ¥(a)e(®(b2)) + o(P(b1)¥(az), P(b1)D(b2))
= (Y(a1), ©(b1)) - (Y(a2), D(b2))
= F((a1,01)) - F((a2, D2)).

Thus F is a Banach algebra isomorphism. O
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ProposiTioN 3.2. Let A and B be Banach algebras and ¢ € hom(8B, A). Then the
following statements hold.

(1)  AXx, B has an identity if and only if A and B have identities.
(i) A X, B has a bounded left (right, or two-sided) approximate identity if and only
if A and B have bounded left (right, or two-sided) approximate identities.

Proor. (i) Let (ag, bo) be the identity of A X, B. Then, for each b € B, we have
(0,b) - (ao, bo) = (p(b)ag, bby)
=(0,b),

and so bby = b. Similarly bypb = b, for each b € B. It follows that by is the identity
element of B. Similarly, for each a € A, we have

(a,0)(ao, bo) = (aay + ap(bo), 0)
= (a,0),
which implies that ag + ¢(by) is the identity element of A. Conversely suppose that
A and B have identities e and eg, respectively. Then (e# — ¢(eg), eg) is the identity
element of A X, B. In fact, for all a € A and b € B, we have
(a,b)(eqn — ples), eg) = (a — apl(ep) + ap(eg) + p(b)ea — p(b)p(eg), beg)
= (a+ ¢(b) — ¢(b),b) = (a,b).
Similarly, (e — ¢(eg), eg)(a, b) = (a, b). Thus the result is obtained.
(i) Suppose that ((aq, ba))eer is a bounded left approximate identity for A X, B.
Then, for each b € B, we have

10, 5) = (aa, ba) - (0, D)l = 0

and so ||b — b,bl|lg — 0. It follows that (b, )qe; is a bounded left approximate identity
for B. Also, for each a € A,

(@, 0) = (aq, ba) - (a, 0)l| = [I(a, 0) = (aqa + ¢(ba)a, 0)|| — 0.

Thus |la — (aq + ¢(be))alla — 0, which implies that (a, + ¢(by))ees 1s a bounded
left approximate identity for A. For the converse, assume that (aq)ee; and (bg)ges
are bounded left approximate identities for A and B, respectively. We show that
(ao — (b)), bg)wpeixs 1s a bounded left approximate identity for A X, B. Indeed,
for each (a, b) € A X, B, we have

l(if}al (@, b) = (aq — (bp), bp)(a, D)l = li%l (@, b) = (aaa — ¢(bp)a + aqap(b)
—@(bp)e(D) + (bg)a, beb)|
= lim lillgn lla = (aqa + a.p(b) — e(bp)e(b))llA
+1b — bgblis
< lim li’gn lla = aqalla + lle(b) = a.p(b)lla

+ llp(bgb) — ¢(D)l|la + |Ib — bgblls
=0,
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where we have used the iterated limit theorem from of [8, page 69]. This completes
the proof. O

4. Results on biprojectivity

In this section, we investigate biprojectivity of A X, 8. We use a slightly modified
version of the technique used in the main theorem of [9].

TueoreM 4.1. Let A and B be Banach algebras and let ¢ € hom(B, A), such that
A X, B is biprojective. Then A and B are biprojective.

Proor. By the hypothesis, there exists a bounded (A X, B)-bimodule map
n:AX, B> (AxX, B)R(A X, B)
such that 7z, g o 7 = idax,g. A direct verification shows that the identities
Tao(ra®ra)=raonax,s and ngo(ps® pg)= pso Nax,s
hold. Define £ : A - A& Aand p : B - B& B by
§:=(a®ra)onoga and p:=(pg®pg)onoqs.
Some easy calculations show that £ and p are A-bimodule and B-bimodule maps,
respectively. Moreover,
macé=nao(ra®ra)onoqan)
=rao (Tax,8°M) °qa
=id4.
Also one can easily obtain that 7g o p = idg. These observations show that ‘A and 8
are biprojective, as claimed. O

The converse of Theorem 4.1 holds in the case where (A is unital. It is provided in
the next result.

THEOREM 4.2. Let ‘A be a unital Banach algebra, let B be a Banach algebra and let
¢ € hom(B, A). If A and B are biprojective, then A X, B is biprojective.

Proor. By the hypothesis, there exist an A-bimodule map & : A —> A A and a
B-bimodule map p: B > B B, such that 74 0 & =idg and ng o p =idg. We
immediately have the identities

Ao A =Nax,s°(qa®qn) and $go0 Mg =Tax,g° (58 ® 58).
Let e# be the identity of A and define
n:AX, B> (AxX, B)®(A X, B)

by
n((a, b)) := (a,b) - (g ® qa)(é(en))) + ((s3 ® s8) © p © pg)(a, b),
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for all a € A and b € B. We first show that 7 is a bounded (A X, B)-bimodule map.
Clearly 7 is bounded. For all (a, b), (c,d) € A X, B, we have

n((a,b) - (c,d)) = (a,b) - (¢, d) - ((qa ® g) © &(€)) + ((s3 @ 58) © p)(bd)
= (a,b) - (c,d) - (qa ® qa)(&(e)) + (53 ® 58)(b - p(d))
=(a,b) - (c,d) - (qa ® qa)(&(e) + (0,D) - (s3 ® s)(0(d))
= (a,D) - [(c,d) - (qa ® ga)(&(e)) + (s3 ® s)(0(d))]
—(a,0) - (sg ® s8)(p(d))
= (a,0) - 1((c,d)) = (a,0) - (s3 ® s8)(0(d)).

But (a,0) - (sg ® s8)(0(d)) = 0. In fact, let p(d) = ., b; ® d;, for some sequences (b;)
and (d;) in 8 with 3.2, [|b;l|slld;llz < co. Then

(@0)- (53 55)p(d) = (@.0)- (559 55)( Y, br @ )
i=1

o

= @0)-() s5(b) ® 55

i=1

= > (@0) - [(~¢(by), by) @ (—(dy), di)] = 0.
i=1

Thus 1((a, b) - (¢, d)) = (a, b) - n((c, d)), and so 1 is a left (A X, B)-module map. To
see that 7 is a right (A X, 8)-module map, we note that, for all x,y € A,

(a,b) - (g2 ® ga)(x ®Y)) = (qa ® ga)((a + () - (x® y)).
Similarly, ((ga ® ga)(x ®Y)) - (a.b) = (qa ® ga)(x ®y) - (a + ¢(b))). Hence

(a,b) - (qa ® ga)&(en)) = (qa ® qa)(a + (D)) - £(ea))
= (gn ® qa)(&(en) - (a + ¢(D)))
= (g ® qa)&(en)) - (a,b).

It follows that (gs ® ga)({(es)) commutes with the elements of A X, B.
Consequently,

n((c,d) - (a, b)) = (c,d) - (a, D) - (g ® qz) © &(en)) + ((s3 ® s8) © p)(db)
= [(c,d) - ((qa ® g) © &lea))] - (a,b) + ((sg ® s8) © p(d)) - (0,b)
=n((c,d)) - (a,b) = ((s3 ® 58) © p(d)) - (a,0)
=1((c,d)) - (a,b),
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where we have used the fact that ((sg ® sg) o p(d)) - (a,0) = 0. Finally, we show that
Tax,s © N = idax,s. In fact, for each (a, b) € A X, B, we have

(max,8 o M(a, b)) = nax,s8((a,b) - (ga ® qa)(&(ea)))

+ (58 ® 58)(p(b)))

=(a,D) - (max,s © (qa ® g7))(&E(ea)))
+ (Tax,s © (58 ® 58))(p(D))

=(a,b) - qao (mao&)en)
+sg o (g © p)(b)

=(a,D) - qalea) + sg(b)

=(a,b) - (ea,0) + (—¢(b), D)

=(a,b).

Therefore A X, B is biprojective, as claimed. O

5. Results on biflatness

In this section we provide necessary and sufficient conditions for the biflatness of
A x, B. We note that our proof is inspired by the proof of the main theorem in [9],
with some slight modifications.

THeEOREM 5.1. Let A and B be Banach algebras and let ¢ € hom(B, A). If A and B
are biflat, then A X, B is biflat.

Proor. By the hypothesis, there exist an A-bimodule map A4 : (AR A)* — A* and
a B-bimodule map Ag : (B® B)* — B*, such that A4 o Ty = 1dg- and Ag o g = idg-.
Consider the identification (A x, B)* ~ A* x B* and define A : (A X, B) & (A X,
B))* - (Ax, B)* by
Ah) = ((Az © (qa ® g)*)(h), (Ag © (55 ® 58)")(h)
+(¢" 0 dn o (ga® qa)")(h)),
for each h € (A %, B) & (A x, B))*. Since Az and Ag are bounded, it follows that

A is bounded as well. For each (a,b) € A X, B and h € (A X, B) & (A x, B))* the
following identities immediately hold:

(qa®qa)'(h-(a,b)) = (qa®qn)’(h) - (a+ ¢b)),
(qa®qa)((a,b) - h) = (a+¢b)) - (qa®qa)"(h),
(s ® 55)"(h - (a,b)) = (s ® 58)"(h) - b,
(s ® s5)"((a,b) - h) = b - (55 ® 58)"(h).

Moreover,

¢" o dal(ga®ga) (h) - (b)) = (¢" 0o An o (qa® qa)'(h) - b
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and

¢" 0 da((qa® qa)'(h) - a) = (Aa o (qa ® ga) (W)(Lagp).
Using these identities, we show that A is a (A X, B)-bimodule map. To this end, let
(a,b) e Ax, Band h € (A X, B)® (A X, B))". Then

A(h - (a,b)) = (Aa o (qa ® qa) )(h - (a, b)), (Ag o (s5 ® s8)")(h - (a, D))
+(p* o da o (ga®qa)’)(h- (a,D)))
= (Aa((@a ® ga)" )W) - (a + ¢(b)), A5((sg ® 58)"(h) - b)
+¢" 0 Aa(((qa ® ga)")(h) - (a + ¢(b))
= ([(Aa o (ga®qa) )] - a+[(Aa o (ga®qa) )] - ¢b),
[(Ag o (s3 ® 58) )W) - b+ ¢" 0 Aal(ga ® ga)"(h) - al
+¢" 0 dal(qa ® qa) (h) - p(b)])
= ((Aao(qa®qa)’(h) - a+ (dao (qa®qn)(h) - ¢b),
(Aa o (g ® qa)" (W) (Lap)
+[Ag o (sg® 58)" (h) + ¢ 0 Az 0 (qa®qa)'(h)] - b)
= A(h) - (a, b).
With similar arguments, we obtain that A((a, b) - h) = (a, b) - A(h), and consequently A
is a bounded (A X, B)-bimodule. Finaly, we prove that
A0 Mgy, p = idiax sy
First, note that by using the identification (A X, B) =~ (A* X B*), one can easily obtain
that
(sg® s8)" 0 ﬂ;xwg =ngo(sg)” and (ga®qn) o ﬂfng =mgo(qn).
Moreover, for each (f,g) € (A" x B*) = (A X, B)* we have (g2)"((f,8) = f,
(s8)"((f,8)) = —f o @+ g, and (¢" © (g)")((f,8)) = f © ¢. Now suppose that (a, b) €
Ax, Band (f, g) € (A" x B") = (A X, B)*. Then
Aoy, ((£8) = (A o (ga® ga)" © Ty, L)(f. ).
(Ago(sg®sg)" o ﬂ;xwg)((ﬂ g)
+(¢" 0 dao(qa®qn)’ © Mgy 5)((f.8))
= ((Aa oy 0 (qa) )N(f. 2))
(Ag oy o (s8))(f,8))
+(¢" 0 dq o7y 0 (q))(f, )
= ((ida- © (ga)" ([, 8)), (idg- o (s8)" ([, 8))
+(¢" oida- o (qa)")(f>8)))
=(fi-fop+g+foo).
= (/.9

This completes the proof. O
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The converse of Theorem 5.1 is also valid. It is provided by the next theorem.

TueoREM 5.2. Let A and B be Banach algebras and let ¢ € hom(B, A). If A X, B is
biflat, then A and B are also biflat.

Proor. By the hypothesis, there exists a bounded (A X, B)-bimodule map,
A (Axy, B)O(A X, B)) — (Ax, B,
such that 4 o n*j%z; = id(ax,5)- The following identities are easily shown:
(P8 ®pg)" ong =Mz, 5o (p8)s
(ra®ra) omy = ”}[xﬁ o(ra)".
Now define y : (A® A)* - A* and v : (B&B)* — B* by
pi=(ga) cdo(ra®ra)’ and v:=(qg) odo(ps®ps),

respectively. Direct verifications show that g and v are bounded A-bimodule and
bounded B-bimodule maps, respectively. Moreover, we have

ponmy =(qa)odo(ra®ra))ony,
=(ga) odo(ra®ra)’ ony)
= (qa)" 0 A0 (T 5 © (ra)")
= (qa)" © (ra)’
= idg-.
Similar arguments show that v o 7y, = idg:, and consequently A and B are biflat. O

We conclude this work with the following remark, which provides some useful
applications of our results related to amenability and contractibility of A X, B. Recall
from [7] that a Banach algebra A is called amenable if it has a bounded approximate
diagonal, that is, if there is a bounded net (m,) in the projective tensor product
AR A such that |lam,; — maallaza —a 0 and |lama(ma) — alla —, 0, for each a € A.
Similarly, A is contractible if and only if it has a diagonal, that is, there is an element
m € A® A for which am = ma and 74(m)a = a, for all a € A (see [6]).

RemMark 5.3. Let A and B be Banach algebras and ¢ € hom(8B, A).

(1) We show that our results imply part (1) of [2, Theorem 4.1] in the general
case. Let A X, B be amenable. Then A x, B is biflat and has a bounded
approximate identity; see, for example, [11, Section 4, Exercise 4.3.15]. By
Proposition 3.2 and Theorem 5.2, we obtain that ‘A and B are biflat and have
bounded approximate identities. Again [11, Section 4, Exercise 4.3.15] implies
that A and B are amenable. Conversely, suppose that A and B are amenable.
Then by [11, Section 4, Exercise 4.3.15] they are biflat and admit bounded
approximate identities. Again Proposition 3.2 and Theorem 5.1 yield that
A x, B is biflat and has a bounded approximate identity, which is equivalent
to the amenability of A X, B.
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We show that A X, B is contractible if and only if A and B are contractible.
Let A X, B be contractible. Then A X, B is biprojective and unital; see,
for example, [11, Section 4, Exercises 4.1.1, 4.3.1]. By Proposition 3.2 and
Theorem 4.1, A and B are biprojective and have identities. Thus A and B are
contractible by [11, Section 4, Exercises 4.1.1, 4.3.1]. For the converse, suppose
that ‘A and B are contractible. Then, again by [11, Section 4, Exercises 4.1.1,
4.3.1], A and B are biprojective and have identities. So by Proposition 3.2
and Theorem 4.2, and the fact that A is unital, A X, B is biprojective and
has an identity. Consequently, A X, B is contractible, again by [11, Section
4, Exercises 4.1.1, 4.3.1].
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