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Abstract. Let p be a rational prime number. We refine Brauer’s elementary diagonalisation argument
to show that any system of homogeneous polynomials of degréewith rational coefficients,
possesses a non-trivigtadic solution provided only that the number of variables in this system

exceedirdz)zdfl. This conclusion improves on earlier results of Leep and Schmidt, and of Schmidt.
The methods extend to provide analogous conclusions in field extensid@s,cdnd in purely
imaginary extensions df). We also discuss lower bounds for the number of variables required to
guarantee local solubility.
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1. Introduction

A basic problem in the study of diophantine equations is that of determining condi-
tions which ensure the local solubility of a given system of equations. While the real
or complex aspect of this problem is a straightforward issue for algebraic geome-
try, whether or not there exist non-trivisdadic zeros is in general a problem of
considerable complexity. Given a field for which diagonal equations in sufficient-
ly many variables are soluble, such as thadic fields, an elementary inductive
argument of Brauer [8] shows that a system of homogeneous polynomials has a
non-trivial zero, provided only that the system has sufficiently many variables in
terms of the number and degrees of the polynomials. For many years it was thought
that the number of variables required in Brauer’s method would necessarily be
astronomical, but Leep and Schmidt [19] have devised refinements which yield
bounds of terrestrial magnitude. Their methods rest in part on the weighty body of
work on simultaneous additive equations due to Davenport and Lewis [12—14], and
indeed Schmidt [30] has obtained further improvements by introducing substantial
extensions to this corpus. In this paper we provide a refinement of Brauer's method
which leads to sizeable improvements on the bounds of Leep and Schmidt[19], and
of Schmidt [30], and which, moreover, makes use only of the rather easier theory
of single additive equations (see [11]). In addition to providing upper bounds for
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the number of variables required to guarantee the local solubility of a system of
forms, we are also able to make progress on lower bounds, building modestly on
work described in [2, 9, 22].

In order to describe our new results we require some notation, which we adapt
from [19]. Given anr-tuple of polynomial& = (F4,. .., F,) with coefficients in
afieldk, denote by (F') the number of variables appearing explicitlyfinDefine
Ha,r (k) to be the set of-tuples of homogeneous polynomials of degdeevith
coefficients ink, which possess no non-trivial zeros ovgrand defineD, . (k) to
be the corresponding set of diagonal homogeneous polynomials. Write

var(k) = sup wv(g) and ¢4, (k)= sup v(f).
geMy (k) feDy,, (k)

For brevity we writev, (k) for v 1(k) andgg(k) for ¢41(k). Note that whenever
s > vq,(k), any system of- homogeneous polynomial equations of degfee
with coefficients ink, and possessingvariables, has a non-trivial solution over
k. Similarly, wheneves > ¢4(k), anda; € k (1 < i < s), then the equation
a17} + - - - + asz? = 0 has a non-trivial solution ovér.

The refinement of Brauer’s method described in Sect. 2 leads to bounds on the
number of variables required to obtain solution sets containing linear subspaces of
specified dimension. These results being of somewhat technical interest, we defer
such considerations to Sect. 2, and for the moment announce only the simpler
bounds recorded in Theorem 1 below.

THEOREM 1. Letd be a positive integer, and suppose thas a field satisfying
the property thaty;(k) < oo (2 < i < d). Then

d—1
d—1 d—2 i—2
var(k) < 227037 T 9+ 127
=2

For comparison, Leep and Schmidt [19, Thm. 1] have obtained a bound of the
shape

var(k) < vavs... Ugd_zrzd_l(Zlfzd_l +0(r 1)). (1.1)

For most fields of interest, the available upper boundsvfpare considerably
weaker, in practice, than upper bounds#grand so the bound fay; . (k) provided
by Theorem 1 is a substantial sharpening of (1.1).

We discuss several corollaries to Theorem 1 in Sect. 3. When Q,, for
example, one can employ the boupdQ, ) < d? due to Davenport and Lewis [11]
together with Theorem 1 to deduce the following corollary.

COROLLARY 1.1. Foreach rational prime number, one has;(Q,) < (rd?)2" ",
and in particularv(Q,) < d?”.
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We note that previous work of Leep and Schmidt [19, Thm. 3] had shown that
for each positive number, one hasy(Q,) <. e@’@+9)"  this bound having
been improved by Schmidt [30, Thm. 3]#Q(Q,) = o(e2'®"). The superiority of
our new estimate is self evident.

It transpires that our conclusions remain strong in number fields. Thidsisf
a finite extension of),, one may combine an estimate of Skinner [34]#g(K)
in combination with Theorem 1 to obtain Corollary 1.2 below.

COROLLARY 1.2.Letd be an integer withl > 2, letp be a prime number, and
let K be a finite extension @f,. Thenv,, (K) < r2' " ¢2 (l0gd)®,

We are also able to obtain an explicit version of a theorem of Peck [25].

COROLLARY 1.3.Letd be an integer witll > 2, and let be a purely imaginary
field extension of). Thenv,,, (L) < r2te24d,

Brauer’s interest in the local solubility problem for systems of forms seems to
have stemmed in part from investigations concerning Hilbert’s resolvant problem
(see [8, 31]). A problem which naturally arises in this context is that of bounding
Vd,r (Qrad), whereQf2 denotes the radical closure@f which is to say the maximal
algebraic field extension @ with the property that each finite degree subfield is a
solvable extension dp. In Sect. 4 we briefly investigate upper and lower bounds
for vd,,u(Q'ad), which we record in Theorem 2 below.

THEOREM 2. Letd be an integer withi > 2. Thenvg, (@29 < (2r2)2"7,
log 2
Moreover, for infinitely many integersone hasy;(Q29) > iogs,

In Sect. 5 we address the problem of obtaining lower bounds fo(Q, ),
pursuing a line of enquiry originating in a conjecture of Artin [4, p.x] which
purports that for every prime numbgrand integerd, r, one has;»(Q,) = rd?.

For some time the available evidence seemed to support Artin’s Conjecture. The
caser = 1, d = 2 of the conjecture was proved in the last century, and the case
r = 1,d = 3 was established by Demyanov [15] and Lewis [20] around 1950.
Furthermore, Ax and Kochen [5] were able to show that for eaanhdd, there
exists a numbeyo(r, d) such that whenever > po(r, d), one has; . (Q,) = rd?.
However, Terjanian [35] exhibited an example establishingdh@,) > 18, thus
disproving Artin’'s Conjecture, and indeed later he was able to improve this lower
bound tovs(Q2) > 20 (see [36]). The work of Arkhipov and Karatsuba [2, 3],
Lewis and Montgomery [22], and Brownawell [9] (see also Alemu [1] for an
analogous conclusion in field extensions@®j), exhibits forms#(x) for which
Artin’s Conjecture fails very badly. In order to be precise, we define

d
P(d,e) = eXp<(|ogd)(|og Iogd)”E) '
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Then [22, Thm. 1], for example, establishes that for each prime numlbasd
positive numbere, there are infinitely many! such that some forn¥(x) €
Z[x1,...,z,] Of degreed with n > 4(d,e) has only the trivial zero ove@),,
whencev,(Q,) > v(d,e). By taking r copies of the formF(x) with disjoint
variables, one readily deduces that for each prime numlaerd positive number

e, there are infinitely many such thaw, . (Q,) > riy(d, €). However, in common
with the examples generated by the argument of the above-mentioned authors, the
degreed corresponding to near-extremal examples belong to an exponentially thin
set. By incorporating rather modest modifications into the argument of Lewis and
Montgomery, we are able to both sharpen the latter lower boung o®@, ), and
establish such bounds for all largenhich are divisible by — 1 (for oddp). In

other words, bad failures of Artin’s Conjecture are essentially ubiquitous, and in
particular occur for all large even degrees.

THEOREM 3. Letp be a prime number, and defige= ¢(p) to be 6 when
p = 2, and to bep — 1 whenp > 2. Further, letey, = (logp)/(6g). Then there
exist positive numbertdy(¢) andro(d, ) with the property that for each positive
numberz, wheneved is an integer divisible by withd > do(¢), andr > ro(d, €),
one hag, (Q,) > rel®» =),

While it is notoriously difficult to obtain explicit upper bounds on the number
po(r, d) arising in the work of Ax and Kochen [5] alluded to above, our methods
provide a cheap lower bound which may be of interest.

THEOREM 4. One has
(r,d) 1

; po
im sup ———= > —.
D—o0 1gd<% = 30
ren

We note that while the strength of the lower bound recorded in Theorem 4
can doubtless be improved by using more sophisticated methods, it is difficult
to imagine any approach which could replace the numB80 Ioccurring in its
statement by a number exceeding 1.

2. The reduction argument

In this section we launch our proof of Theorem 1 by establishing the reduction pro-
cedure at the heart of our argument. Before describing the details of this argument,
we must record some rather general notation.l.die a field. We are interested

in the existence of solution sets, ovier of systems of homogeneous polynomial
equations with coefficients iK. When such a solution set contains a linear sub-
space of the ambient space, we define its dimension to be that when considered as
a projective space. We note that this convention differs from that adopted by Leep
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and Schmidt [19]. We denote t@g@m) (rdg,...,r1)thesetofrg+rg_1+---+r1)-
tuples of homogeneous polynomials, of whighhave degreé for 1 < 7 < d,
with coefficients inK, which possess no non-trivial linear space of solutions of

dimensionn overK. We then definé/d(m)(r) = Vd(m) (rg,...,r1;K) by

Vi (rg,...,r;K) = sup  v(h).
heG\™ (rg,e..,r1)

We observe for future reference théb&m) (rq,...,r1;K) is an increasing function

of the arguments: andr;. For the sake of convenience, we abbrevlqﬁ%? (r; K)
to V(r; K). Note that, , (K) = Vy4(r,0,...,0;K).

The proof of the following lemma is motivated by the arguments of [19] leading
to [19, equation (2.13)] and [19, equation (3.1)].

LEMMA 2.1. Letd andr; (1 < 7 < d) be non-negative integers with> 2 and
rq > 0. Then on writingp for ¢4(K), whenever < oo one has

Vd(’l"d, Td—1y-+-,T1; K) <o+ Vd(’l"ii, ’r'ii_l, ... ,’I"ll; K),

wherer!, = r4 — 1, and

d . .
o+i—75—1 )

Proof. Before embarking on the proof proper, we first set the stage. Vake
be any integer withV > ¢ + V,(r’; K). Also, for the sake of convenience, define
the integers; by

. rq—1, when:=d,
T = )
! T, otherwise

Consider a forn# of degree?, and formsj;; of degree (1 < j <7, 1 < < d),
all having N variables. We claim that whend k < ¢ + 1, there exisk linearly
independent vectors, . . . , X with the property thatF (t1x1 + - - + txXg) is a
diagonal formirty, . .., t;, and such thag;; (t1x1 +- - - +t;X;,) vanishes identically
for 1 < 7 < 7; and 1< 7 < d. Since the lemma follows immediately from the case
k = ¢ + 1 of this claim, the proof of the latter will suffice to establish the former.
We prove the claim by induction, starting with the observation that shMce
V4(r'; K), the claim holds trivially wherk = 1. Next, when 1< k£ < ¢, we
suppose thax,, ..., X; have the claimed property, and seek a vegjar; such
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thatxs, ..., X,41 also have the claimed property. We define the polynonigls
O0<u< d) through the expansion

d

Fly +tx) =Y Fuly,x)t", (2.1)
u=0

valid for eactx,y € K. Notice thatF, is a form of degree in x, and of degree
d—uiny.WhenO0g< v <14, 1< j <7 and 1< 1 < d, we define the polynomials
Gijv Similarly through the expansion

Gij(y + 1x) = ng Y, X)t", (2.2)

and note thag;;, is a form of degree in x, and of degreé— v iny. LetT be the
subspace ak"¥ spanned by, ..., X;, and letS be any subspace &f" such that
S@®T =K. Thus, sincé < ¢, one has

dim(S) = N — k > Vy(r'; K). (2.3)
We aim to choosg € S so that for eacly € T', one has

Fuly,X) =0 (1<u<gd-1) (2.4)
and

Giju(y,X) =0 (0<v<i, 1<j <7y, 1<i<a). (2.5)

Having found such amx, on substitutingy = ¢1x1 + - - - + #X into (2.1) and
(2.2), we discover that, by the inductive hypothesis, the f6iy + ¢x) becomes
a diagonal form irty, . .., t; andt, and the formsj;;(y + tx) vanish identically.
Thus the inductive hypothesis follows with+ 1 in place ofk.

We now establish the existence of the desired elemreat S. Consider an
arbitrary element of’, sayy = s1xX1 + - - - + siXg, and substitute this expression
into (2.4) and (2.5). We find thak, (y,x) becomes a form of degreé— w in
s1,..., Sk, whose coefficients are forms of degrem x. Thus, following a simple
counting argument, one finds that the number of such coefficients of deigee

d—u+k—1 < o+d—u—1
d—u = d—u ’

Similarly,G;;, (y, x) becomes aform ofdegréewvin sy, .. ., s;, whose coefficients
are forms of degreein x. The number of such coefficients of degieis

1—v+k—1 < p+1—v—1
72— h 72— '
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Moreover for each andj one hasj;;o(y,x) = G;;j(y) = 0. Consequently the
system of equations (2.4) and (2.5) can be satisfied so long as we candirtt
satisfying a system of equations withof degree; for 1 < 7 < d. But in view of

(2.3), one has diffit) > V,(r'; K), whence the latter system of equations possesses
a non-trivial solution oveK. Recalling the concluding remarks of the preceding
paragraph, we have completed the induction, and hence also the proof of the lemma.

The following corollary provides a convenient simplification of Lemma 2.1.

COROLLARY. With the same notation and hypotheses as in the statement of
Lemma2.1, one has

Vd(’l"d, Td—1y-+-,T1; K) <o+ Vd(’l";, ’1"2_1, - ,’I"I; K),

wherer); = ry — 1, and
d . .
ri =Y rm¢? (1<) <d).
i=j

Repeated application of Lemma 2.1, or its corollary, ultimately yields a bound
for V4(r; K) in terms ofV;_1(r’; K), for suitabler’. In the next lemma we make
this observation precise, making use of an argument strikingly similar to that used
in the proof of [19, Lemma 1].

LEMMA 2.2. With the same notation and hypotheses as in the statement of Lemma
2.1, one has

Vi(ra, ..., 1K) <rgdp+ Va—1(sa-1,---,s1,K),

where

d
sj=> ri(rad)™ (1<j<d—1). (2.6)
i=j

Proof. When 1< k < d, define the integers,go) by takingr,(f’) = r. Further,
when 1< j < r4, define the integeras(c” inductively by
O (2.7)

and

r) =S Uik (1< k < d). (2.8)
i=k
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Then by applying the corollary to Lemma 2.1 repeatedly, we deduce that when
1< j €< rg,0nehas

Va(rg,...,m1,K) <jo + Vd(n(lj), e ,Tij); K).
Notice that by (2.7) we have

ri =ra— i, (2.9)
and hence, in order to complete the proof of the lemma, it remains only to show
that
P o (I<k<d—1). (2.10)
We establish (2.10) by proving that when<lk < d — 1 and 1< 5 < g4, One
has
) <Y m(ie) (2.11)
i=k

the special casg = r4 of which supplies the desired inequality (2.10). This more
general bound we prove by induction. First observe that by (2.8) we have

d
7",(61> = ngbi*k (1< k<d),
i=k

whence the inductive hypothesis (2.11) holds whea 1. Suppose next that
1 < J < rq, and that (2.11) holds for eaghwith 1 < 5 < J when 1< k < d.
Then by (2.8) and (2.11) one has for edchith 1 < k£ < d,

d l

d d _ .
i< ETEY (- ¢) T =YY (- 1
i=k =i

=k i=k

Consequently the inductive hypothesis (2.11) holds with J. This completes
the induction, and hence also the proof of the lemma.

A comparison of the statement of Lemma 2.2 with [19, Lemma 1] reveals that
the termg,(K) in the former replaces; (K) in the latter. This observation provides
some indication of the nature of our improvements, since the bounds currently
available forv,(K) are substantially weaker than those §QfK).

We will prove below a theorem somewhat more general than Theorem 1, in that

it provides an upper bound f@rf[,’:) (K), which we define by

oy (K) = V™ (r,0,...,0;K).

In preparation for the proof of this theorem we require a result due to Leep and
Schmidt [19].
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LEMMA 2.3. Whenm is a positive integer, one has
V™ (rg, .. rK) <m+ Valta,. .. 115 K),

where

d
t; = Z’f’imi_j (1 <7< d)
i=j

Proof. Bearing in mind the definitions used by Leep and Schmidt, this lemma
is nothing other than [19, Eqn (3.1)].

THEOREM 2.4.Letm, d andr be non-negative integers with> 2 andr > 1.
Write ¢; for ¢;(K) (2 < ¢ < d). Then wheneveK is a field for whichg; < oo
(2 <i<d),onehas

d—1 4
o (K) < 2(r2¢g +mr)? " [ (¢ + 12

! i=2
Proof. We begin by applying Lemma 2.3 to obtain

vém) (K) = Vd(m) (r,0,...,0;K) < m + Vy(r,mr,...,m*1rK). (2.12)

,\r

Having eliminated explicit mention of linear subspaces, we next make use of
Lemma 2.2 to deduce that

U[(zzf) (K) < m+rpg+ Vi_1(sqg-1,.-.,51,K), (2.13)
where
d
si=y (rm" ) (r¢a)7 (1<j<d-1). (2.14)
1=J
Write

g = 12pg +mr-.

Then it follows from (2.14) thatwheng j < d — 1,

i d—iq 2d7j71
sj<r(m+reg)? <y <yi

and thus from (2.13) one has

2d=2,

Uff,f)(K)<¢d+Vd_1(wd,¢§,---, i K. (2.15)
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Having prepared the ground by establishing the estimate (2.15), we now initiate

our basic inductive argument. When< £ < d we define the integerg; by
Y = ¢r + 1, and define further

A—Hzp U 1<i<a). (2.16)

We claim that when X k& < d one has

0y (K) < Ap + Vai(Ap, A2, ..., A2 5K). (2.17)
Note that sincel; = 14, this claim follows from (2.15) in the cage= 1. Suppose
next thatK > 1, and that the proposition holds forlk < K. Then (2.17) holds

with £ = K — 1, and so on writing = d — K + 1, an application of Lemma 2.2
yields

Ug;f) (K) < Ag 1+ Ag 105 + Vs_1(ts—1,. .., 11, K), (2.18)

where
tJ—ZA L(Ag_1gs)™ (1<ji<d—1).

But on recalling (2.16) we have
2 g+ 10T < AT T AR (1<i<o),
Thus we deduce from (2.18) that (2.17) holds with- K, and so the induction is

complete.
Finally, on noting that by (2.16) and (2.17) one has

Ut(jr;.l)(]K) < Adfl‘i‘V]_(Ad,l, ) = 2Ad 1= 2H¢2d Jj— 2,

we complete the proof of the theorem.

We note that Theorem 1 follows immediately from Theorem 2.4 on setting
m = 0.

3. Several consequences of the reduction argument

We have now ascended to the point from which we may harvest the crop of
corollaries stemming from the reduction argument manifesting itself in Theorem
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2.4. Since these corollaries will be essentially immediate from suitable bounds on
¢i(K) (2 <1 < d), our discussions in this section will be brief.

(a) p-adic fields. In order to establish Corollary 1.1 to Theorem 1 we recall
Davenport and Lewis [11, Thm. 1], which shows that for each ppnome has
$a(Qp) < d?. On substituting the latter bound into Theorem 1, we obtain

, -1
v (@) < 20rd)? T [+ 127 <20rd)® T [ 27 < 202 d Y,
=2 =2

whence Corollary 1.1 follows whenevdr > 2. We note that while a number

of refinements on [11, Thm. 1] have been obtained in particular cases (see, for
example, [16, 24]), these do not lead to substantial improvements in the quality of
Corollary 1.1 to Theorem 1.

(b) p-adic fields. Let K be a finite extension dj,, letd be an integer witkl > 2,
and letf = ord,d. Then Skinner [34] has shown that

ga(K) < d((d+ )" 1),
It follows in particular that
$a(K) < d((d + 1)m>izlead/loont} _q), (3.1)

and hence, by means of an elementary calculationgtf(d) < exp(C(logd)?),
whereC' = log(18)/(log 2)?> < 8. Consequently an application of Theorem 1, in
combination with the latter upper bound, reveals that

d—2

var(K) < 20 "exp (8(Iog d)*y 2i> <% exp (2d+2(log d)z) ,
i=0

whence Corollary 1.2 follows whenevér> 2.

We note that modest improvements may be achieved in the latter bound by
a more precise analysis. Moreover further refinements may be obtained if one is
prepared to accept bounds which depend on the degree of the field ext&rigion

(c) Purely imaginary fields. Let L be a finite field extension df, lets > 2¢ + 1,

and suppose that, . . . , b, are integers of.. Then by using Siegel’s version of the

circle method (see [32, 33]), Birch [7, Thm. 3] was able to show that the equation
¢ 1bizd = 0 has a non-trivial solution i, provided that it has a non-trivial

solution in every real ang-adic completion ofl.. Next we observe that if. is

purely imaginary, then the real completionlofs simplyC, and thus by employing
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Skinner [34], in the form (3.1) above, we deduce that the latter equation is soluble
over L provided only that

s> max{zd, d((d + 1)maq2logd/logp,1} _ 1)} . (3.2)

The simple bouney, (L) < ¢*? is almost immediate from (3.2), and on substituting
this inequality into Theorem 1 we obtain Corollary 1.3.

We have aimed above for a uniform bound of simple type. Of course one may
sharpen this bound somewhat, and in particular for laiggne may replace the
terme2’d by 272" in the statement of Corollary 1.3. Moreover, forthcoming results
of M. Davidson, improving substantially on Birch’'s estimate (at least for field
extensions with degree not too large), will lead to sizeable improvements in the
bound recorded in Corollary 1.3.

(d) Systems of cubic forms. It transpires that by exploiting Lemma 2.1 more
carefully than in our proof of Theorem 1, one may obtain bound$3(Q, )
somewhat smaller than have been obtained hitherto, at least for certain intermediate
ranges of-. We summarise these new bounds in Lemma 3.1 below.

LEMMA 3.1. Whenr is a positive integer, one has
4123+ 224 3r 4 2,
v3,(Qp) < whenp =2(mod 3, or p=3,
18r% + 4873 + 372 + Ir,  otherwise
For comparison, Leep and Schmidt [19] have shown that
v3,(Qy) < (8% — 108 + 63r2 — 18- — 8),
and Schmidt, in work spanning a series of papers [27-29], has established that
var(Qp) < 5300-(3r + 1)2.

Thus the bound of Lemma 3.1 supersedes those of Leep and Schmidt, and of
Schmidt, whenr < 10597 in cases whene = 2(mod 3, and when 5< r <
2647 in cases where = 1(mod 3. We note that in the case= 2, the bound
v3,(Q,) < 320 of Leep and Schmidt is improved by Lemma 3.1 only in cases
wherep = 2(mod 3, where we now obtaims 2(Q,) < 206. Meanwhile, when
p = 1(mod 3 the new bounds for, . (Q,) obtained by Martin [23], improving on
previous work of Leep [18] and Schmidt [26], yield, through the methods of Leep
and Schmidt [19], the new upper boungh(Q,) < 308.

Proof. We note merely that on writing for ¢3(Q, ), the conclusion of Lemma
2.1 implies that whens > 1,

Va(ra,r2,71; Q) < ¢+ Va(rs — 1,72 + ¢ra, r1 + ¢ra + 3p(¢ + 1)r3).
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On noting the bounds

3, whenp=2(mod3, orp=3,
6, otherwise

¢3(@p) = {

(see Lewis [21]), and making use of the bounds

2r2, whenr is even

<
2, (@) < { 2r2 4 2, whenris odd

(see Martin [23]), the desired conclusions follow by a simple induction.

4. Radical zeros of systems of polynomial equations

In this section we briefly consider some diophantine problems@®érthe radical
closure ofQ. Although a definitive attack on such problems must surely make use
of the finer Galois-theoretic properties@?9, we are nonetheless able to provide
non-trivial bounds owd,,ﬂ(t@rad) through the use of Theorem 1.

We start by providing the lower bound foy,,.(Q'2%) recorded in Theorem 2,
this being essentially immediate from Lemma 4.1 below.

LEMMA 4.1. Letk be a natural number. Themy. (Qf29) > 2%,

Proof. We begin by observing that the polynomjil:) = 22° — 524 + 5 is
irreducible inQ[z], by Eisenstein’s criterion, and has precisely three real roots. It
is therefore a straightforward exercise in Galois Theory (see, for example, Garling
[17]) to show that the equatiofi(z) = O is not soluble by radicals. We write
é(z,y) = v°f(z/y), and note that the equatiai{z,y) = 0 has only the trivial
solutionz = y = 0 overQ'ad,

Next, for each integek, define the polynomiaby(X) = ¢k (x1,...,2:) by
putting ¢1(X) = ¢(z1, z2), and wherk > 1 by using the relation

Per1(X) = p(r (21, -+ s 22k ), D@k 05 -+, Tohsa))-

Observe thatp,(x) is a polynomial with integral coefficients of degrek i 2*
variables. In order to complete the proof of the lemma, therefore, it suffices to
show that for eaclt the equationp,(x) = 0 has only the solutiom = O over

@24, We establish this proposition by induction, noting that witer= 1 the
proposition is immediate from the definition ¢f Suppose then thdt > 2, and
that is a radical 2-tuple with ¢ () = 0. Write ¢ = ¢,_1(a,. .., am-1) and

N = ¢p—1(apk-1,1, ...,z ), and observe that the hypothegiga) = 0 implies

that ¢(¢,17) = 0. However, by their definitions, one has) € Q, whence the
definition of ¢ ensures thag = n = 0. Thus

br-1(a, ..., ape-1) = p1(Qgr-141,- .-, a) =0,
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and so the inductive hypothesis implies that 0. Then the inductive hypothesis
holds fork + 1 in place ofk, and the proof of the lemma is complete.

In order to establish the upper bound of Theorem 3, we have merely to observe
that since each equatia® + by* = 0, with a, b € @9, is soluble non-trivially
overQ, thengy(Q29) = 1 for eachd € N. Thus Theorem 1 implies that

d-1

d—1 i2 d—2 od—1

Ud,r((@rad) < 27"2 H 22 < 22 7"2 )
=2

5. Systems op-adic forms possessing no non-trivial solutions

Following our main assault on upper boundsidgy (Q, ), in this section we indulge

in a diversionary sortie which provides non-trivial lower boundspn(Q, ). The

sole weapon in our arsenal wielded in the proof of Theorem 3 is a lemma due to
Lewis and Montgomery [22]. Throughout the remainder of this section, when
andk are positive integers we write

Ss,k(X) = fo
i=1

LEMMA 5.1. Letp be a prime number, and defigpe= ¢(p) as in the statement of
Theorenm3. Let M be a positive integer, and le¥! be a set ofK integers in the
interval [M, 2M). Suppose that; (1 < ¢ < N) are integers, not all divisible by,
with the property that

Sn.gm(X) =0 (modp?™)  (m € M).

Then one ha®v > pX.
Proof. The lemma isimmediate on conjoining the conclusions of [22, Lemmata

2 and 3].
We are now equipped to prove Theorem 3.

The proof of Theorer8. Recall the notation of the statement of Theorem 3.
Let ¢ be a positive number, let be sufficiently large in terms of, and letr be
sufficiently large in terms of andd. Write M = [d/3] andN = p!M/2-2 _ 1,
Further, when X m < M define the polynomiap,, (x) by

¢m(X) = SN,(M+m)q(X)SN,(d7M7m)q(X)' (51)

We note that for eac the polynomialg,, (x) has degreeq, and possesses
variables. Suppose thais a solution of the system of congruences

bm(X) =0 (modp??) (3K m < M). (5.2)
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Let M denote the set of natural numbers of the fdvfa-m, with 1 < m < M, for
which Sy (rr4m)q(X) = 0 (modp?™). Then since (5.1) and (5.2) together imply
that for eachm with 3 < m < M, atleast one oM +m andd — M —m liesin M,
we deduce that cafd1) > 3(M —3). But N < p™/4-2 so that an application of
Lemma 5.1 leads to the conclusion tikats 0 (modp) (1 < 7 < N). Consequently
the systeny,,(x) = 0 (3 < m < M) has only the trivial solution ovep, .

We now construct a system efforms of degreelq possessing only the trivial
solution overQ,. Let R = [r/M], and consider the system of equations

Pm(Xi) =0 (B3<m <M, 1<i<R), (5.3)

together with- — (M — 3) R trivial equations, where we writg = (z;1, ..., Z;iN).

The conclusion of the preceding paragraph ensures that the only solution of the
system (5.3) over, is the trivial one, and moreover the number of variables
occurring in this system exceeds

ro [M/2]-2 T (1-e)M/2 (1—2¢)d/6
(M 1)(p 1)>Mp >7rp .

The conclusion of Theorem 3 is immediate from the latter inequality.

The proof of Theored. We are able to establish Theorem 4 cheaply by merely
observing that whep > 2, the number of variables in the system (5.3) exceeds
r(dg)? so long as

r o [M/2]-2 2/ a\2
(M 1)(]) 1)>7’d(p 1)<

Moreover whend > 30, the latter inequality is satisfied so longraandp are
sufficiently large in terms of. Thus each exponeii? = 30(p — 1), for whichp

is a large prime number, has the property that whénlarge,vp . (Q,) > rD?,
whence a counterexample to Artin’s Conjecture exists for a system of equations of
degreeD over@,. This suffices to complete the proof of the theorem.
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