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1. Introduction

Let C be an open convex set in a (real) normed linear space X. A real-valued function
f on C is delta-convex (d.c.) if it can be represented as the difference of two continuous
convex functions on C.

We consider the following three natural generalizations of the notion of a d.c. function
to mappings between normed spaces (the definitions of an ordered normed space and of
a convex operator are recalled at the end of this section).

Definition 1.1. Let X, Y be normed linear spaces, let C ⊂ X be an open convex set,
and let F : C → Y be a mapping.

(a) F is a d.c. mapping (i.e. a delta-convex mapping) on C if there exists a continuous
convex function f : C → R (control function) such that, for each y∗ ∈ Y ∗ with
‖y∗‖ � 1, the function y∗ ◦ F + f is continuous and convex on C.

(b) F is weakly d.c. on C if y∗ ◦ F is a d.c. function on C for each y∗ ∈ Y ∗.
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(c) If Y is an ordered normed space, we say that F is order d.c. on C if F can be
represented as the difference of two continuous convex operators on C.

Note that the notion of a d.c. mapping has many nice properties (see [11] and also [4])
and seems to be the ‘most natural’ generalization of d.c. functions. It is easy to see
that the three notions from Definition 1.1 are equivalent for Y = Rn (equipped with
the standard coordinate-wise partial ordering). In the present article we study relation-
ships between these three classes of mapping in the case of an infinite-dimensional Y ; in
particular we improve some results of [11], [4] and [12].

It follows immediately from definitions that each d.c. mapping is weakly d.c. Moreover
(see Observation 2.1), if Y is an ordered normed space whose positive cone is normal
(which is the most interesting case, satisfied by all Banach lattices), then each order-d.c.
mapping is also weakly d.c. Thus the class of weakly d.c. mappings is the widest one.

In § 2 we observe that the Banach–Steinhaus theorem easily implies that F : X → Y

is locally Lipschitz whenever F is weakly locally Lipschitz (i.e. y∗ ◦ F is locally Lipschitz
for each y∗ ∈ Y ∗). This fact provides a simple unified proof of results on local Lipschitz
continuity from [3] (for continuous convex operators) and [11] (for d.c. mappings).

In § 3 we observe that the assertion ‘d.c. implies order d.c.’ is true for mappings into
ordered normed spaces whose unit ball admits an upper bound (which holds for L∞(µ)
and for C(K) spaces). It was proved in [12] that the same assertion holds for mappings
F : (a, b) → Y , where Y belongs to a large class of sequence spaces containing all �p(Γ )
spaces. Here we generalize this result to the case when Y is a Banach lattice with the
σ-Levi property. Our proof is based on Theorem 3.7 about Jordan decomposition of a
vector function f : (a, b) → Y of locally finite variation, which is interesting in its own
right.

Let us remark that the implication ‘d.c. implies order d.c.’ does not hold [12] in general
for mappings F : (a, b) → c0 and F : Rd → �p, where d � 2 and 1 � p < d.

The implication ‘order d.c. implies d.c.’ is not usually true. In § 4 we show that this
implication does not hold in general whenever X is an arbitrary (non-trivial) Banach
space and Y is an infinite-dimensional Lp(µ) space (1 < p < ∞). This result (Propo-
sition 4.3) generalizes Proposition 21 from [4], where X is separable and Lp(µ) = l2.
However, if the range space of an order-d.c. mapping is an ordered normed space whose
positive cone is well-based (and this is true for L1(µ)), it is easy to show (see Proposi-
tion 4.1) that the mapping is then d.c.

Note that the above results imply that a mapping of one real variable with values in
L1(µ) is d.c. if and only if it is order d.c.

A special case of our Theorem 3.7, when Y is a Nakano space, could be easily deduced
from known results on Jordan decomposition of finitely additive vector-valued measures.
Such a procedure could also be used in the case when Y is only a Levi space. Indeed, we
observe in § 5 that the needed Jordan decomposition theorem for measures also holds for
such spaces. However, there are natural examples of σ-Levi spaces which are not Levi
(see Remark 3.8 (iii)).

Let us recall some terminology (quite unstandardized in the literature) concerning
ordered normed spaces.
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By an ordered normed space we mean a normed linear space Y that is equipped with an
(antisymmetric) partial ordering ‘�’ such that, for x, y, z ∈ Y and λ � 0, the implications
x � y ⇒ x + z � y + z and x � y ⇒ λx � λy hold. Then the cone Y+ := {y ∈ Y : y � 0}
is called the positive cone of Y . The dual Y ∗ of an ordered normed space Y is also an
ordered normed space when equipped with the following partial ordering: x∗ � y∗ if and
only if x∗(u) � y∗(u) for each u ∈ Y+.

Let C be an open convex subset of a normed linear space X and let Y be an ordered
normed linear space. Then a mapping G : C → Y is called a convex operator if

G((1 − t)x + ty) � (1 − t)G(x) + tG(y)

whenever x, y ∈ C and 0 � t � 1.
We say that the positive cone Y+ is normal (‘self-allied’ in [6]) if there exists δ > 0 such

that δ‖y‖ � ‖z‖ whenever 0 � y � z. (This is one of a number of equivalent definitions:
see [6, p. 90].) If Y+ is normal, then Y ∗ = Y ∗

+ − Y ∗
+ (see [6, Theorem 3.6.2]). (Note that

the opposite implication, which we do not need, also holds.)
We say that a convex subset B of an ordered normed space Y is a base for the positive

cone Y+ if, for each y ∈ Y+ \ {0}, there exists a unique λ > 0 such that λy ∈ B.
Following [6, p. 120], we say that Y+ is well-based if it has a bounded base B such that
0 /∈ B̄. By [6], 3.8.12, Y+ is well-based if and only if there exists ϕ ∈ Y ∗ such that
ϕ(u) � ‖u‖ for each u ∈ Y+.

It is easy to see that

BY has an upper bound if and only if Y+ has an interior point. (1.1)

Moreover, there is a simple duality between well-basedness and existence of interior points
for Y+ and Y ∗

+ (see [6, 3.8.12]):

Y+ is well-based if and only if Y ∗
+ has an interior point; (1.2)

if Y+ has an interior point, then Y ∗
+ is well-based. (1.3)

An ordered normed space Y is a Banach lattice if it is a Banach space, each pair of
elements of Y has a supremum and an infimum, and 0 � |x| � |y| implies ‖x‖ � ‖y‖
(where |x| := sup(x,−x)).

We use the following (quite usual) notation.
The closed unit ball of a normed linear space Y is denoted by BY . The symbol Cb(T )

(respectively, C(K)) denotes the space of all continuous bounded functions on an arbi-
trary topological space T (respectively, of all continuous functions on an arbitrary com-
pact space K) equipped with the supremum norm. When we deal with the spaces Lp(µ),
we allow an arbitrary measure µ.

All normed linear spaces are real.

2. The Lipschitz property of weakly d.c. mappings and its consequences

Obviously, each d.c. mapping is weakly d.c. For order-d.c. mappings we have the following
observation.
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Observation 2.1. Let Y be an ordered normed space whose positive cone is normal.
Then each continuous convex operator F into Y (and, consequently, also each order-d.c.
mapping into Y ) is weakly d.c. (Indeed, since Y+ is normal, each y∗ ∈ Y ∗ can be written
as y∗ = u∗ − v∗ with u∗, v∗ ∈ Y+; hence y∗ ◦ F = u∗ ◦ F − v∗ ◦ F is a d.c. function.)

It is possible that the following simple result is known, but we have been unable to
find it in the literature.

Proposition 2.2. Let X, Y be normed linear spaces, let C ⊂ X be an open set,
and let F : C → Y be weakly locally Lipschitz (i.e. y∗ ◦ F is locally Lipschitz for each
y∗ ∈ Y ∗). Then F is locally Lipschitz on C.

Proof. Let a ∈ C be given. For each natural number n denote by Zn the set of all
functionals y∗ ∈ Y ∗ for which the function y∗ ◦ F is Lipschitz on the set C ∩ B(a, 1/n).
Obviously,

⋃∞
n=1 Zn = Y ∗ and we can choose n such that Zn is a set of the second

category in Y ∗. Since the set M ⊂ Y ⊂ Y ∗∗,

M :=
{

F (x) − F (y)
‖x − y‖ : x, y ∈ B(a, 1/n) ∩ C, x 	= y

}
,

is pointwise bounded on Zn, the Banach–Steinhaus theorem implies that M is norm
bounded in Y ∗∗. In other words, F is Lipschitz on B(a, 1/n) ∩ C. �

Corollary 2.3.

(a) Each weakly d.c. mapping is locally Lipschitz. In particular, each d.c. mapping is
locally Lipschitz (which was first proved in [11]).

(b) If Y is an ordered normed space whose positive cone is normal, then each continuous
convex operator (and hence also each order-d.c. mapping) into Y is locally Lipschitz
(which was first proved in [3]).

3. When d.c. implies order d.c.

We start with the following simple observation.

Proposition 3.1. Let Y be an ordered normed space whose closed unit ball has an
upper bound. Then each d.c. mapping into Y is order d.c.

Proof. Let e ∈ Y be an upper bound for BY , i.e. y � ‖y‖e for each y ∈ Y . Let C ⊂ X

be an open convex set, and let F : C → Y be a d.c. mapping with a control function f .
Then the mapping G(x) = f(x)e is a continuous convex operator and, for each x, y ∈ C

and 0 � t � 1,

(1 − t)F (x) + tF (y) − F ((1 − t)x + ty) � ‖(1 − t)F (x) + tF (y) − F ((1 − t)x + ty)‖e

� (1 − t)G(x) + tG(y) − G((1 − t)x + ty).
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Here we have used the inequality (see [11, Proposition 1.13])

‖(1 − t)F (x) + tF (y) − F ((1 − t)x + ty)‖ � (1 − t)f(x) + tf(y) − f((1 − t)x + ty).

Hence H := G − F is a continuous convex operator. Thus F = G − H is order d.c. �

Corollary 3.2. Each d.c. mapping into any of the spaces Cb(T ), L∞(µ), Cb(T )∗∗ or
L∞(µ)∗∗ is order d.c.

Proof. It is obvious that the constant function f = 1 is an upper bound for the unit
ball both in Cb(T ) and in L∞(µ). Using (1.1), (1.2) and (1.3), we obtain the rest of the
statement. �

Now we are going to show that, for a large class of Banach lattices Y (those which
have the σ-Levi property), every d.c. mapping of one real variable with values in Y is
order d.c. (Theorem 3.11). We do this via proving a result about Jordan decomposition
of mappings with locally finite variation.

Let us start with a definition of the σ-Levi property. Recall that a partially ordered
set M is called upper directed if each finite subset of M has an upper bound in M .

Definition 3.3. Let X be a Banach lattice. We shall say that X has

(a) the Levi property if each norm-bounded upper-directed set in X+ has a least upper
bound (cf. [2]; the term ‘monotonically complete’ was used in [8]);

(b) the σ-Levi property if each norm-bounded non-decreasing sequence in X+ has a
least upper bound (cf. [2]).

The following observation explains the terminology ‘σ-Levi property’.

Observation 3.4. A Banach lattice X has the σ-Levi property if and only if each
countable norm-bounded upper-directed set in X+ has a least upper bound. (One impli-
cation is obvious. On the other hand, if X is σ-Levi and M = {xn} ⊂ X+ is norm
bounded and upper directed, it is easy to see that the points yn := sup{x1, . . . , xn} form
a norm-bounded non-decreasing sequence in X+. Moreover, the least upper bound of
{yn} is the least upper bound for M as well.)

The following lemma is an easy variant of Proposition 2.4.19(i) in [8].

Lemma 3.5. Let X be a Banach lattice having the σ-Levi property. Then there exists
r > 0 such that, for each norm-bounded non-decreasing sequence {xi} ⊂ X+, one has
‖supi xi‖ � r supi ‖xi‖.

Proof. If not, for each positive integer n there exists a norm-bounded non-decreasing
sequence {x

(n)
i }∞

i=1 ⊂ X+ such that
∥∥∥sup

i
x

(n)
i

∥∥∥ > n3 sup
i

‖x
(n)
i ‖ and

∥∥∥sup
i

x
(n)
i

∥∥∥ = n.
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Hence we have ‖x
(n)
i ‖ � (1/n2) for all i and n. Put

M := {supF : F ⊂ {x
(n)
i }∞

i,n=1 finite}.

Then M is a countable and upper-directed subset of X+.
We claim that M is norm bounded. Let z ∈ M be given. Since each {x

(n)
i }∞

i=1 is
non-decreasing, we can write

z = sup{x
(n1)
i1

, . . . , x
(nk)
ik

},

where the integers nj are pairwise distinct. Then 0 � z �
∑k

j=1 x
(nj)
ij

implies

‖z‖ �
k∑

j=1

‖x
(nj)
ij

‖ �
∞∑
1

1
n2 .

The claim is proved.
By Observation 3.4, there exists supM ∈ X. Then, for each n, we have sup M �

supi x
(n)
i � 0, which implies that ‖supM‖ � ‖supi x

(n)
i ‖ = n. But this is impossible. �

We shall need the following properties of mappings of finite variation.

Fact 3.6. Let [a, b] ⊂ R be a non-degenerate interval, let Y be a Banach space, and
let f : [a, b] → Y be a mapping with finite variation, i.e.

var(a, b) := sup
P

{ n∑
i=1

‖f(ti) − f(ti−1)‖
}

< ∞,

where the supremum is taken over all partitions P = {a = t0 < t1 < · · · < tn = b} of
[a, b].

Then

(a) f has at most countably many points of discontinuity in [a, b];

(b) var(a, b) = var(a, c) + var(c, b) whenever a � c � b;

(c) f is Bochner integrable on [a, b].

Proof. By [5, 2.5.16], f satisfies (a), (b) and has a separable range. Moreover, (a)
implies that f is Borel measurable. Since f is also bounded, we conclude that (c) holds
(see, for example, [1, 11.36, 11.38]). �

Theorem 3.7. Let I ⊂ R be an open interval, let Y be a Banach lattice with the
σ-Levi property, and let f : I → Y be a mapping having locally finite variation.

Then there exist non-decreasing mappings g, h : I → Y such that f = g − h and
g, h have locally finite variation. Moreover, the decomposition f = g − h is minimal in
the class of all representations of f as the difference of non-decreasing mappings, i.e. if
f = g∗ − h∗ is such a representation, then g(β) − g(α) � g∗(β) − g∗(α) for all α < β,
α, β ∈ I.
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Proof. As usual, we use the notation y+ := sup{y, 0} (y ∈ Y ). First, we are going
to show that, for each non-degenerate interval [a, b] ⊂ I, there exists the ‘positive-order
variation’

V +(a, b) := sup
P

{S(P )} ∈ Y,

where the least upper bound (in Y ) is taken over all partitions P = {a = t0 < t1 < · · · <

tk = b} of [a, b], and

S(P ) =
k∑

i=1

[f(ti) − f(ti−1)]+.

Then, as in the classical scalar case, we shall show that one minimal decomposition
f = g − h can be constructed by fixing a point c ∈ I and putting

g(t) =

⎧⎪⎨
⎪⎩

V +(c, t) if t > c,

0 if t = c,

−V +(t, c) if t < c.

(3.1)

By Fact 3.6, the set D of all points of discontinuity of f is at most countable. Fix a
non-degenerate interval [a, b] ⊂ I. Let {Pn} be an increasing sequence of partitions of
[a, b] such that the set D̃ :=

⋃∞
n=1 Pn is dense in [a, b] and contains D ∩ [a, b]. Clearly,

S(P1) � S(P2) � S(P3) � · · · . Moreover, it is easy to see that ‖S(Pn)‖ � var(a, b) for
all n, where var(a, b) denotes the usual (norm) variation of f on [a, b] as in Fact 3.6. By
the σ-Levi property, there exists s := supn S(Pn) ∈ Y and

‖s‖ � r · var(a, b), (3.2)

where r is as in Lemma 3.5. To prove that s = V +(a, b), it is clearly sufficient to show
that S(P ) � s for each partition P = {a = t0 < t1 < · · · < tk = b} of [a, b].

Let E be the set of the indices i ∈ {0, . . . , k} such that ti ∈ P \ D̃. Fix ε > 0. It is easy
to see that, taking n sufficiently large, the partition Pn = {a = x0 < x1 < · · · < xm = b}
has the following properties:

(a) P ∩ D̃ ⊂ Pn;

(b) there exists an increasing function j : E → {0, . . . , m−1} such that, for each i ∈ E,
one has

xj(i) < ti < xj(i)+1 and ‖f(ti) − f(xj(i))‖ + ‖f(xj(i)+1) − f(ti)‖ � ε

k

(recall that f is continuous at each ti, i ∈ E).

Then

S(P ) � S(P ∪ Pn) � S(Pn) +
∑
i∈E

([f(ti) − f(xj(i))]+ + [f(xj(i)+1) − f(ti)]+).
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Consequently, S(P ) � s + zε where zε is the sum from the preceding formula. Since

‖zε‖ �
∑
i∈E

(‖f(ti) − f(xj(i))‖ + ‖f(xj(i)+1) − f(ti)‖) � ε

and the positive cone of each Banach lattice is closed (cf. Proposition 1.1.6 in [8]), we
can conclude that S(P ) � s.

We have proved that the positive-order variation V +(a, b) of f exists for each non-
degenerate interval [a, b] ⊂ I. Exactly as in the scalar case, one can prove that [a, b] �→
V +(a, b) is a non-negative additive interval function with values in Y . Thus, clearly,
the interval function [a, b] �→ V +(a, b) − [f(b) − f(a)] is also non-negative and additive.
Consequently, the mappings g (from (3.1)) and h := g − f are non-decreasing. Moreover,
g (and consequently also h) has bounded variation on each [a, b] ⊂ I since, for every
partition P = {a = t0 < · · · < tk = b}, we have by (3.2)

n∑
i=1

‖g(ti) − g(ti−1)‖ =
n∑

i=1

‖V +(ti−1, ti)‖ � r

n∑
i=1

var(ti−1, ti) = r · var(a, b).

It remains to prove that our decomposition f = g − h is minimal. Let f = g∗ − h∗

be another representation of f as the difference of non-decreasing mappings with locally
finite variation. Fix α, β ∈ I such that α < β. Then for every partition P = {α = t0 <

· · · < tn = β} of [α, β] we have

S(P ) =
n∑

i=1

[g∗(ti) − g∗(ti−1) − h∗(ti) + h∗(ti−1)]+

�
n∑

i=1

[g∗(ti) − g∗(ti−1)]+

= g∗(β) − g∗(α),

which implies that g(β) − g(α) = V +(α, β) � g∗(β) − g∗(α). �

Remark 3.8.

(i) Recall that a Nakano space is a Banach lattice in which every norm-bounded upper-
directed set M has a supremum satisfying ‖supM‖ = supx∈M ‖x‖. The particular
case of Theorem 3.7 when Y is a Nakano space could also be proved using known
results [7,10] on Jordan decomposition of finitely additive vector measures. Such
a procedure could also be used in a more general case of a Levi space Y , since we
could use Theorem 5.1 below. Of course, a direct proof is also quite easy in these
cases, since the existence of the positive-order variation V +(a, b) = sup{S(P )}
follows immediately ({S(P )} is an upper-directed set!) and the rest of the proof is
rather standard.

(ii) The following Banach lattices are Nakano spaces (and hence satisfy the σ-Levi
property).
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(a) All dual Banach lattices (cf. Proposition 2.4.19(ii) in [8]); in particular Lp(µ)
(1 < p < ∞, µ arbitrary), �∞(Γ ) for any set Γ , L∞(µ) when µ is σ-finite.

(b) The Banach lattices Y having the property (P) (i.e. there exists a positive
linear projection of norm one from Y ∗∗ onto Y ; this follows easily from (a));
in particular all AL-spaces (cf. [9]), e.g. L1(µ) for any µ.

(iii) There exist Banach lattices that have the σ-Levi property that are not Levi spaces
(and so they are not Nakano spaces). For instance, consider the space of all bounded
Borel functions on R with the supremum norm.

(iv) A version of Theorem 3.7, in which I is a closed interval and f , g, h have finite
variation, also holds. The proof needs only obvious changes.

Before stating our theorem, we shall need the following two simple lemmas.

Lemma 3.9. Let I ⊂ R be an open interval, let c be a point of I, and let Y be
a Banach lattice. Let g : I → Y be a non-decreasing mapping that is locally Bochner
integrable on I. Then the mapping G : I → Y , given by

G(t) =
∫ t

c

g(τ) dt,

is a continuous convex operator.

Proof. It is well known that the indefinite Bochner integral is continuous. Since, for
each y∗ ∈ Y ∗

+, the mapping τ �→ 〈g(τ), y∗〉 is non-decreasing, the function

t �→ 〈G(t), y∗〉 =
∫ t

c

〈g(τ), y∗〉 dτ

is clearly convex. Consequently, for each t1, t2 ∈ I and λ ∈ [0, 1],

〈(1 − λ)G(t1) + λG(t2) − G((1 − λ)t1 + λt2), y∗〉 � 0

whenever y∗ ∈ Y ∗
+. It follows that (1 − λ)G(t1) + λG(t2) − G((1 − λ)t1 + λt2) � 0

(cf. [8, 1.4.2]). �

Lemma 3.10. Let I ⊂ R be an open interval, let Y be a Banach space, and let
F : I → Y be a d.c. mapping on I. Then the mapping t �→ F ′

+(t) is everywhere defined
and locally Bochner integrable in I. Moreover, for each a, b ∈ I,

F (b) − F (a) =
∫ b

a

F ′
+(t) dt.

Proof. By Theorem 2.3 in [11], t �→ F ′
+(t) is everywhere defined and of locally

bounded variation on I. By Fact 3.6, the Bochner integral
∫ b

a
F ′

+(t) dt exists for each
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a, b ∈ I. Moreover, F is locally Lipschitz on I by Corollary 2.3; hence, for each y∗ ∈ Y ∗,
we have

〈F (b) − F (a), y∗〉 = y∗ ◦ F (b) − y∗ ◦ F (a) =
∫ b

a

(y∗ ◦ F )′(t) dt

=
∫ b

a

〈F ′
+(t), y∗〉 dt =

〈 ∫ b

a

F ′
+(t) dt, y∗

〉
,

which proves our formula. �

Theorem 3.11. Let I ⊂ R be an open interval and let Y be a Banach lattice having
the σ-Levi property. Then each d.c. mapping F : I → Y is order d.c.

Proof. By Theorem 2.3 in [11], the right derivative F ′
+(t) exists at each t ∈ I, and

the mapping F ′
+ has locally bounded variation. By Theorem 3.7, we can write F ′

+ = g−h

where g, h are non-decreasing mappings with locally bounded variation on I. By Fact 3.6,
g and h are locally Bochner integrable. Fix c ∈ I and put

G(t) =
∫ t

c

g(τ) dτ, H(t) =
∫ t

c

h(τ) dτ.

By Lemma 3.9, G and H are continuous convex operators. Using Lemma 3.10, we get

F (t) = F (c) +
∫ t

c

F ′
+(t) dt = (F (c) + G(t)) − H(t),

which completes the proof. �

4. When order d.c. implies d.c.

The following easy proposition is the only positive result of this sort that we know. Note
the duality between the assumptions in Proposition 3.1 and Proposition 4.1 (see (1.1),
(1.2) and (1.3) in § 1).

Proposition 4.1. Let Y be an ordered normed space whose positive cone is well-
based. Then each order-d.c. mapping into Y is d.c.

Proof. Let C be an open convex subset of a normed linear space X and let F : C → Y

be a continuous convex operator. Since Y+ is well-based, there exists ϕ ∈ Y ∗ such that
ϕ(u) � ‖u‖ for each u ∈ Y+ (see § 1). Then, for each x, y ∈ C,

‖ 1
2F (x) + 1

2F (y) − F ( 1
2 (x + y))‖ � ϕ( 1

2F (x) + 1
2F (y) − F ( 1

2 (x + y))),

which implies that F is controlled by the function ϕ ◦ F (see [11, Corollary 1.18]). Since
the difference of two d.c. mappings is d.c., the proof is complete. �

Corollary 4.2. Let Y be any of the spaces L1(µ), L∞(µ)∗, Cb(T )∗. Then each order-
d.c. mapping into Y is d.c.
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Proof. The set B := {f ∈ L1(µ) : f � 0,
∫

f dµ = 1} is clearly a bounded base
for (L1(µ))+ and 0 /∈ B̄. The rest clearly follows from (1.1) and (1.3) (cf. the proof of
Corollary 3.2). �

The following proposition extends Proposition 21 in [4], where only mappings F : X →
�2 with X separable were considered. We shall briefly say that a mapping is nowhere d.c.
if it is d.c. on no open convex set.

Proposition 4.3. For every (non-trivial) Banach space X and every infinite-dimen-
sional Lp(µ) space with 1 < p < ∞, there exists an order-d.c. mapping F : X → Lp(µ)
which is nowhere d.c.

Proof. In the proof we will use the easy fact that the composition (A1◦F or F ◦A2) of
a d.c. mapping F and a continuous affine mapping (A1 or A2) is d.c. (cf. [11, Lemma 1.5]).

By Proposition 21 in [4], there exists an order-d.c. mapping R → �2 which is nowhere
d.c. Since the proof therein uses only the fact that the sequence {1/n} lies in �2 but not
in �1, the mapping constructed in [4] (Proposition 20 and Proposition 21 for X = R) is
an order-d.c. mapping F1 : R → �p (1 < p < ∞) which is nowhere d.c.

It is easy to see that, since Lp(µ) is infinite dimensional, there exists a countable
family {En} of pairwise disjoint µ-measurable sets of a positive finite measure. Then the
mapping

T : �p → Lp(µ), y �→ Ty :=
∞∑

n=1

y(n)
µ(En)1/p

χEn

is an order-preserving (linear) isometry. Consequently, the mapping F2 := T ◦ F1 : R →
Lp(µ) is an order-d.c. mapping which is clearly nowhere d.c.

Fix an arbitrary 0 	= a∗ ∈ X∗ and define F := F2 ◦ a∗. Suppose that F is d.c. on
some open convex C ⊂ X. Fix x0 ∈ C and v ∈ X with a∗(v) > 0. Then the mapping
f(t) := F (x0 + tv) (t ∈ R) is d.c. on some neighbourhood of 0. On the other hand,
f(t) = F2(α + βt) where α = a∗(x0) and β = a∗(v) > 0; it clearly implies that f is
nowhere d.c., a contradiction. �

Remark 4.4. The statement of Proposition 4.3 also holds for p = ∞, but the proof
is slightly different. Put

gn,r(t) := (|n| + 1)−1|t − n − r| for t ∈ R, n ∈ Z, r ∈ Q0 := Q ∩ (0, 1)

(where Z (Q) is the set of all integers (rational numbers)). Then g := (gn,r)(n,r)∈Z×Q0 is
a continuous convex operator from R into �∞(Z × Q0) ∼= �∞ which is nowhere d.c. The
rest of the proof is similar to that for the case 1 < p < ∞ using an order-preserving
linear isometry T : �∞ → L∞(µ).

5. Jordan decomposition of finitely additive measures

Let A be an algebra of subsets of a set E, let Y be a Banach lattice and let µ : A → Y

be a finitely additive measure of finite variation. The Jordan decomposition theorem for
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such µ holds in the case when Y is a Nakano space (see [10] and [7]). We observe that
the natural decomposition procedure (essentially the same as is sketched in [7]) and a
well-known result of [8] on Levi spaces imply that the Jordan decomposition theorem
also holds in the more general case when Y is a Levi space.

Theorem 5.1. Let A be an algebra of subsets of a set E, let Y be a Banach lattice with
the Levi property, and let µ : A → Y be a finitely additive measure of finite variation.
Then there exist non-negative finitely additive measures µ2 of finite variation such that
µ = µ1 − µ2. Moreover, if µ = µ∗

1 − µ∗
2, where µ∗

1, µ∗
2 are non-negative finitely additive

measures, then µ1 � µ∗
1 and µ2 � µ∗

2.

Proof. Since Y is a Levi space, by [8, Proposition 2.4.19(i)], we can choose r > 0 such
that, for each norm-bounded upper-directed set M in Y+, one has ‖supM‖ � r·sup{‖x‖ :
x ∈ M}.

For each A ∈ A, we put
µ1(A) := sup

P
{S(P )} ∈ Y,

where the least upper bound (in Y ) is taken over all partitions P = {A1, . . . , Ak} of A

(i.e. Ai ∈ A are pairwise disjoint and A =
⋃k

i=1 Ai), and

S(P ) =
k∑

i=1

[µ(Ai)]+.

The set of all sums S(P ) is clearly an upper-directed set. Since it is also norm bounded
(because ‖S(P )‖ � var(µ, A), where var(µ, A) is the norm variation of µ on A), we deduce
that µ1(A) is well defined and

‖µ1(A)‖ � r · var(µ, A) for each A ∈ A. (5.1)

It is easy to show that µ1 is finitely additive and µ � µ1. Also, µ1 has finite variation
by (5.1). Putting µ2 := µ1 − µ, we obtain the desired decomposition. The proof of the
minimality is standard (cf. the proof of Theorem 3.7). �

Remark 5.2. Under the assumptions of Theorem 5.1, the space M of all finitely
additive Y -valued measures of finite variation on A is a lattice. Indeed, by Theorem 5.1,
µ1 = sup{µ, 0} and clearly sup{µ, ν} = µ + sup{ν − µ, 0}. On the other hand, we do not
obtain that M (equipped with the norm ‖µ‖ = var(µ, E)) is a normed lattice. If Y is a
Nakano space, then M is a Banach lattice (see [10] and [7]).

Denote by A∗ the algebra of subsets of E := [a, b) generated by all intervals [c, d) ⊂ E.
Then, for A = A∗, the assertion of Theorem 5.1 holds under the weaker assumption
that Y is σ-Levi. (Indeed, it is sufficient to use Remark 3.8 (iv) and the standard cor-
respondence between finitely additive Y -valued measures on A∗ and Y -valued functions
on [a, b].)

We do not know whether the assumption that Y is σ-Levi is sufficient for some general
class of algebras.
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12. L. Veselý and L. Zaj́ıček, On D.C. mappings and differences of convex operators, Acta

Univ. Carolin. Math. Phys. 42 (2001), 89–97.

https://doi.org/10.1017/S0013091505000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000040

