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ABSTRACT

In this paper we study a transform introduced by DE PRIL (1989) for recursive
evaluation of convolutions of counting distributions with a positive probability in
zero. We discuss some cases where the evaluation of this transform is simplified
and relate the transform to infinitely divisible distributions. Finally we discuss an
algorithm presented by DHAENE & VANDEBROEK (1994) for recursive evaluation of
convolutions.
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1. INTRODUCTION

1A. In SUNDT (1992) we discussed the properties of a class of counting
distributions F whose discrete density / satisfies a recursion in the form

(i) /(o= I k + -}f(.i-j) a = i, 2,...)
J = I ^ * )

with f(i) - 0 for / < 0. We obviously must have / (0) > 0. The distribution given
by (1) was denoted by Rk[a,b] with a = (a{, ..., ak) and b - (bx, ..., bk).
Furthermore, we denoted by 0lk the class of such distributions with a fixed number
k of terms in the recursion, and we introduced

the class 9l0 consists of the degenerate distribution concentrated in zero.
Expressing a distribution in the form Rk [a, b] can in many cases simplify

evaluation of convolutions and compound distributions, and such representations
therefore seem to be of some interest.

In particular, any counting distribution F with a positive probability in zero can
be expressed in the form Rx [0, c], and thus S?x is the class of all such distributions.
By solving

(2) /(0 = - I cjf(i-j)
i j = \
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20 BJ0RN SUNDT

with respect to c, we obtain

(3) c,- = -

i - l

0 - I cjf(i-j)\; (« = 1 ,2 , . . . )
/(0)

in this paper we interpret 2_, =0 when s < r. From the way we constructed this
i = r

recursion it is obvious that the sequence c is uniquely determined. We shall call c
the De Pril transform of the distribution F. When we in the following discuss the
De Pril transform of a distribution, it is silently assumed that the distribution
belongs to $lm.

The following theorem indicates the usefulness of De Pril transforms.

Theorem 1. The De Pril transform of the convolution of a finite number of
distributions in £%«, is the sun of the De Pril transforms of these distributions.

Theorem 1 was first proved by De Pril (1989) and restated in terms of the classes
9Lk by Sundt (1992).

From Theorem 1 we see that we can evaluate the convolution of a finite number
of distributions in £%„ by first evaluating the De Pril transform of each of the
distributions by (3), then finding the De Pril transform of the convolution by
summing the De Pril transforms of the individual distributions, and finally finding
the discrete density of the convolution by (2).

As we have seen, a distribution is uniquely determined by its De Pril transform.
However, unfortunately we cannot apply the recursion (2) directly to find a discrete
density if we only know the De Pril transform as we also need the initial value /(0).
If/has a finite support, then we can in principle start with an arbitrary value of/(0)
and then rescale afterwards so that the probabilities sum to one. However, the
situation is much simpler when/(0) is known, and this would normally be the case.
For instance, when calculating convolutions by using (3), Theorem 1, and (2), we
know that the probability in zero of the convolution is the product of the
probabilities in zero of the original distributions.

It should be emphasised that when using Theorem 1 to evaluate convolutions,
then the condition that each of the individual distributions should have a positive
probability at zero, is not a serious restriction. If one of the distributions, F, has a
positive probability in the integer m 4= 0 and probability zero in all integers less than
m, then we can replace it with the shifted distribution Fo given by

F0(i) = F(i-m) ( i = l , 2, ...)

and shift the resulting convolution the opposite way.
Unfortunately, calculating convolutions by Theorem 1 can sometimes be rather

time-consuming as for each of the individual distributions we first have to evaluate
the elements of its De Pril transform recursively by (3), and then perform the
recursion (2) after having summed the c,'s from the different distributions.
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Therefore, De Pril (1989) suggested a less time-consuming approximation to the
De Pril transform. Such approximations have been further studied by Dhaene &
De Pril (1994) and Dhaene & Sundt (1994).

IB. In Section 2 of the present paper we shall deduce a recursive algorithm for
evaluating the De Pril transform of distributions in the form Rk [a, b] in terms of a
and b. If k is small, this algorithm seems to be more efficient than using (3). When
k = 1, we can easily find simple explicit expressions for the elements of the De Pril
transform from the algorithm of Section 2, and this is the topic of Section 3.
Section 4 is devoted to De Pril transforms of compound distributions. Finally, in
Section 5 we consider an alternative way of evaluating convolutions, recently
presented by Dhaene & Vandebroek (1994).

Some of the results that we prove in this paper, have been proved earlier, but we
have included new proofs to relate the results to De Pril transforms.

2. THE CLASSES 3lk

2A. The following result can be applied for recursive evaluation of the De Pril
transform of a distribution in <3lk.

Theorem 2. The De Pril transform c of the distribution Skk [a, b] satisfies the
recursion

k

(4) Cf = iai + bi+ Y, cijCi-i (* = !< 2> - )
. 7 = 1

with at = bj-0 for i > k and c, = 0 for i < 0.

Proof. In Sundt (1992) it was shown that a distribution is in the form Rk [a, b] if
and only if the derivative of the natural logarithm of its probability generating
function can be expressed as e(s)s~l/(l -d(s)) with

* k

a(s) = X a<sl e » = X («»,• + W -
i = l i = 1

Thus

c(s) = X c,V
/ = I

has to satisfy

c(s)s '=
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which we rewrite as

(5) c(s) = e(s) + a(s)c(s).

By expressing the right-hand side as a power series and comparing coefficients with
the left-hand side, we obtain (4). Q.E.D.

As some of the quantities in (4) are equal to zero, this formula can be rewritten as

(6) c, = ia, + bt+ X ajci-j (i = L 2- •••> k)

(7) C / = X «/ c ' - r (i = * + l , * + 2,...)
J = I

We see that (7) is a homogeneous linear difference equation of order k with
constant coefficients. In principle it can be solved by using the values of ct,..., ck as
constraints when &<°°. However, for numerical evaluation it would normally be
more efficient to use the recursive form (6)-(7).

2B. From Theorems 1 and 2 we easily obtain the following result, which was also
proved in Sundt (1992).

Theorem 3. The convolution of the n distributions Rk[a,b(r)] (r = \,...,n) is
Rk[a,b] with

n

(8) bt = (n-l)ia,+ X b\r\ (i=l,...,Jfc)
r= 1

Proof. Let c(r) denote the De Pril transform of Rk[a, b{n] (r = 1,..., n) and c the
De Pril transform of their convolution. Then

r = l r=\ y = l

n k k

iat + (n-l)iat+ ^ b\r + £j aici-j = <fl; + b,•+ 2^ajCt_j,
r = \ i = l y = 1

which proves the theorem. Q.E.D.

By letting £ = °° and a = 0 in Theorem 3, we obtain Theorem 1.

2C. In Sundt (1992) we proved the following theorem.

Theorem 4. A distribution on the range {0, 1,..., k] with a positive probability at
zero and discrete density / can be expressed as Rk [a, b] with

(9) a, = fe,• = 2 ; . 0 = 1,..., £)
/(0) /(0)
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By inserting (9) in (4) we obtain (3). Hence, by applying Theorem 4 to express a
distribution in the form Rk [a, b] we simply obtain the original recursion (3) for the
De Pril transform and no simplification.

3. THE CASE k - 1

When the distribution is in the form /?, [a, b], (6) and (7) reduce to

C) - a + b

c, = ac,-_,, (/ = 2, 3,...) .

from which we obtain

(10) c, = (.a + b)a'-1. (i = 1,2,...)

The following theorem is proved in Sundt & Jewell (1981).

Theorem 5. The distribution Rt [a, b] is binomial if a<0, Poisson if a = 0, and
negative binomial if a > 0.

Let us look at (10) in the three cases described in Theorem 5.

i) Binomial

f(i) = \ |yr''(l - j r ) '~ ' . (i = 0, 1, ..., t; t = 1, 2, ...; 0 < J T < 1 )

Then

JT Jt

a= - b =
\-7l l-Jt

(11) c,= -t\ . ( i = l , 2, ...)
{jt-lj

Formula (11) illustrates a disappointing aspect of application of Theorem 1 for
calculating convolutions. Although f(i) = 0 for all i > t, ct 4= 0 for all values of i,
even for i>t, and if n>\, then c is unbounded.

ii) Poisson

f(i) = — e-x. 0 = 0, 1, ...; A>0)
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Then

a=0 b=X

(12) c, = Mlti, ( «=1 ,2 , . . . )

where dtj denotes the Kronecker delta. This simple result is not surprising. Already
from Theorem 5 we had that the Poisson distribution could be represented in the
form R{ [0, b]. Only the degenerate distribution concentrated in zero has a simpler
De Pril transform than the Poisson distribution; for the degenerate distribution all
elements of the De Pril transform are equal to zero.

iii) Negative binomial

Ul-Ji)aJi'. (i = 0, 1, ...; a>0; 0<7T<l)

In that case

(13) Cl = aji\ (i = 1, 2, ...)

We see that unlike the binomial distribution, the negative binomial distribution will
always have a bounded De Pril transform.

4. COMPOUND DISTRIBUTIONS

4A. The following theorem is proved in Sundt (1992).

Theorem 6. A compound distribution in S?« with counting distribution Rk [a, b] and
severity distribution with discrete density h can be expressed as Ry, [d, c] with

k k ,
bX a,

j=\ i=\ i
(14) d,- = • c,. = f . 0 = 1 , 2,

To find the De Pril transform of the compound distribution, one can first evaluate
d and c by (14) and then use Theorem 2 to find the De Pril transform. However, a
natural question is whether one could arrive more directly from the De Pril
transform of the counting distribution if this transform is known. The following
corollary to Theorem 6 expresses the De Pril transform of the compound
distribution in terms of the De Pril transform of the counting distribution and the
discrete density of the severity distribution and is obtained from Theorem 6 by
putting k - °° and a = 0.
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Corollary 1. A compound distribution in 01^ with counting distribution /?„ [0, b]
and severity distribution with discrete density h has De Pril transform c with

(15) c,- = i X - V * ( ' " ) - ( i = l , 2, ...)
J = I j

We have silently assumed that the sum in (15) (as well as the sums in the
numerators in (14) when fc = o°) converges to a finite value. In the following we
shall discuss some cases where the summand in this sum differs from zero only for
a finite number of values of j , and then this condition is obviously fulfilled. In
particular we see that if /z(0) = 0, then hj*(i) = 0 for i<j, and (15) reduces to

i ,

(16) cf = i X - V ( 0 - (i=l, 2, ...)
;= i j

4B. We now consider the case

(17) h(i) = dmJ (i = 0, 1, ...)

for some positive integer m, that is, all severities are equal to m with probability
one. Then

*;*(0 = < W 0 = 0, 1, ...;./= 1,2,...)

Insertion in (15) gives that

(18) ckm = mbk (k = 1, 2, ...)

and c, = 0 for all other values of i.
The relation (18) can be applied if we want to find the De Pril transform of an

arithmetic distribution with span m>\. In this case we first rescale the distribution
so that it obtains span one, then we find the b/s, e.g. by (3) or Theorem 2, and
finally we find the c,-'s by (18).

It is interesting to compare (18) with evaluation of the De Pril transform d of the
m-fold convolution of Rx[0,b]. From Theorem 1 follows that

di^mbi, (i = 1, 2, ...)

that is, we get the same elements as in the case when mis a scaling factor, but in
the latter case these elements are more "spread out".

4C. Let us now consider the case when the counting distribution is the Poisson
distribution presented in Section 3, that is, i?, [0, A]. In that case (15) reduces to

(19) Ci = ah(i). (i = 1, 2, ...)

We shall deduce a characterisation of compound Poisson distributions in terms of
De Pril transforms. For that purpose we shall need the following lemma.
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Lemma 1. A distribution in 0lx with a non-negative De Pril transform c satisfies
the condition

Proof. Let / be the discrete density of a distribution in 3kx with a non-negative De
Pril transform c. From (3) we obtain for i = 1, 2, ...

l i J
as the sum is obviously non-negative. Summation over / gives

<00_ Q E D

Theorem 7. A distribution in S/lx is a compound Poisson distribution if and only if
its De Pril transform is non-negative.

Proof. From (19) we immediately see that the De Pril transform of a compound
Poisson distribution is non-negative.

Now let us consider a distribution in 9?oo with a non-negative De Pril transform c.
From Lemma 1 we see that

Then the function h defined by

(20) • h(i) = — ( i = l , 2, ...)

is non-negative and satisfies the condition T̂ h{i)=\. Thus h is the dis-
; = I

crete density of a probability distribution on the non-negative integers, and as c
satisfies (19), c is the De Pril transform of a compound Poisson distribution with
Poisson parameter X and severity distribution on the non-negative integers with
discrete density h.

This completes the proof of Theorem 7. Q.E.D.

From Theorem 1 and (19) we easily obtain the following well-known result.

Theorem 8. The convolution of n compound Poisson distributions with Poisson
parameter A(r> and discrete severity density h(r) on the non-negative integers (r = 1,
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..., n) is a compound Poisson distribution with Poisson parameter

and discrete severity density

Proof. Let c{r) denote the De Pril transform of the rth compound distribution
(r = 1, ..., ri) and c the De Pril transform of the convolution. Then

r = 1 r = 1

that is, c is the De Pril transform of a compound Poisson distribution with Poisson
parameter X and discrete severity density h. This proves the theorem. Q.E.D.

Now let / denote the discrete density of the compound distribution. If h (0) = 0,
then/(0) = e ~ \ that is,

(21) A= - ln / (0 ) .

Furthermore h is given by (20). In general, also if c does not represent a compound
Poisson distribution, we can always define a quantity X by (21) and a function h by
(20), so that the distribution formally looks like a compound Poisson distribution.
This has motivated Hiirlimann (1990) to call distributions in 01^ pseudo compound
Poisson distributions. The function h is a proper discrete probability density if and
only if / is the discrete density of a compound Poisson distribution.

4D. A distribution F is called infinitely divisible if for all integers n there exists
a distribution Fn such that F is the n-fold convolution of Fn. It can be shown (cf.
e.g. Feller (1968, Section XI.2)) that a distribution in Sft^ is infinitely divisible if
and only if it can be expressed as a compound Poisson distribution. Combining this
result with Theorem 7 gives the following characterisation of infinitely divisible
distributions in S/ix in terms of De Pril transforms, which was proved by Katti
(1967).

Theorem 9. A distribution in 01^ is infinitely divisible if and only if its De Pril
transform c is non-negative.

By applying Theorem 9 together with (13) and (11), we see that negative
binomial distributions are infinitely divisible whereas binomial distributions are
not.
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4E. Let us now consider the case when the counting distribution is a Bernoulli
distribution with probability. In this case

JI = 1 - / (0 )

h(i)= , ( , , )
1 - / (0 )

that is, JI is the probability that the compound variable is positive, and h is the
discrete density of the conditional distribution of this variable given that it is
positive.

Insertion of (11) in (16) gives

(22) c- -i X - — V\i). (i = l, 2, ...)

AU
Thus we have now obtained an explicit expression for c, that holds for all
distributions in <3lm. Formula (22) was deduced by De Pril (1989).

4F. With a life assurance policy we often have the situation that when a claim
occurs, then it has a fixed amount m. We assume that m is a positive integer. Let %
be the probability that a claim occurs.

We are now in the frame-work of the previous subsection with h given by (17)
and obtain

( JI V
Cfa, = - « (k = 1, 2, ...)

{ji-lj
and c, = 0 for all other values of i.

This model has been studied by De Pril (1986).

5. THE DHAENE-VANDEBROEK ALGORITHM

5A. We want to evaluate the discrete density / of the convolution of n
distributions in 8%x with discrete density/<r) and De Pril transform c(r) (r = 1, ..., n).
Let c denote the De Pril transform of the convolution. By Theorem 1

n

r= 1

As described in Section 1, we can evaluate / recursively by evaluating c/r)

recursively by (3) for each ;', summing

(23) c, - X c\r\

and finally evaluating /(/) by (2).

https://doi.org/10.2143/AST.25.1.563251 Published online by Cambridge University Press

https://doi.org/10.2143/AST.25.1.563251


ON SOME PROPERTIES OF DE PRIL TRANSFORMS OF COUNTING DISTRIBUTIONS • 29

Let us look a bit more closely at the two last steps. By insertion of (23) in (2) and
interchanging the order of summations we obtain

1 "
(24) f(i) = - X dir) (' = 1. 2 ' - )

i r=\

with

(25) < / , ( r ) = I c f / ( i - j ) . ( i= 1,2, ...; r = 1, ...,«)
;=i

For convenience we also introduce J-r) = 0 for (' < 0.
Dhaene & Vandebroek (1994) have deduced the following algorithm for

recursive evaluation of the d-r)'s and shown that in many situations / can be
evaluated more efficiently by using this algorithm together with (24) than by
applying the procedure described above.

Theorem 10. The djr)\ defined by (25) can be evaluated recursively by

(26) d(p = -Tr- X \jf(i ~J) ~ d\r)-j]fr) (/•)• (i = 1, 2, ...)

5B. In Theorem 2 we showed that c{r) could be evaluated more efficiently than by
(3) if the distribution belonged to 0ik when k is small. The following theorem gives
an analogous result for the d-r)'s.

Theorem 11. If/<r) is the discrete density of Rk[a, b], then
k

(27) d\r) = X [(jaj+bj)f{i -j) + ajdjij]. (i - 1, 2, ...)

Proof. We introduce the power series
k k

a {s) = X a,-s' e(s) = X ('a,- + b,)s'

1 = 1

[ = 1

From (5) we see that

(28) c{r)(s) = e(
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and from (25) we obtain

(29) d{r\s) = c(r)

By multiplying (28) by f(s) and inserting (29) we obtain

(30) d{r) (s) = e (s)f(s) + a(s)du) (s),

and by comparing coefficients in the power series expansions of both sides of (30)
we obtain (27). Q.E.D.

Analogous to Theorem 2, when determining a and b by Theorem 4, (27) brings
us back to (26).

5C. Let us now consider the special case when / is the discrete density of
Rk[a,b{r)] (r = 1, ..., n). Application of (24) and (27) gives

1 n 1 n k

i r = l I r = \ j = \

* k n n

- X [(nJaj+ X btjr))f(i-j) + aj X d(i-j] =
i j=\ r=l r=l

1 n I h \

i j=\ r=\ j=l\ i J

with b given by (8), that is, we obtain the defining recursion (1) of Rk [a, b]. Thus
we have found yet another proof of Theorem 3.

In particular, if the n distributions are identical and a and b{l) are determined by
Theorem 4, then Theorem 10 and (24) give De Pril's (1985) recursion for the n-fold
convolution of a distribution in 01^. This has also been pointed out by Dhaene &
Vandebroek (1994).

5D. Unlike c(r), the d\r)\ do not only depend on f(r\ but also on the other
distributions. If we were only to evaluate the convolution of n given distributions,
this is not a drawback. However, if we also want to evaluate the convolution of
other combinations of the same distributions, then we can immediately apply the De
Pril transforms that we have already evaluated, for evaluating the convolutions by
Theorem 1 and formula (3).
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