Notes

Chapter 1

1 To avoid cluttering of brackets, we use the notation $e^{2} / 4 \pi \equiv e^{2} /(4 \pi)$, etc. Furthermore, units $\hbar=1, c=1$ will be used. Then dimensions are like $[$ mass $]=[$ energy $]=[$ momentum $]=\left[(\text { length })^{-1}\right]=\left[(\text { time })^{-1}\right]$, etc.
2 As a model for mesons we have to take the spins of the quarks into account. In a first approximation we can imagine neglecting spin-dependent forces. Then the maximum spin is $J=L+S$, with L the orbital angular momentum and $S=0,1$ the total spin of the quark-antiquark system. The π has the $q \bar{q}$ spins antiparallel, $S=0$, the ρ has parallel $q \bar{q}$ spins, $S=1$. In a second approximation spin-dependent forces have to be added, which split the π and ρ masses. In picking the right particles out of the tables of the Particle Data Group [2], we have to choose quantum numbers corresponding to the same S but changing L. This means that the parity and charge-conjugation parity flip signs along a Regge trajectory. The particles on the ρ trajectory in figure 1.3 are $\rho(769), a_{2}(1320), \rho_{3}(1690)$, and $a_{4}(2040)$, those on the π trajectory are $\pi(135), \pi(135), b_{1}(1235)$, and $\pi_{2}(1670)$. The mass m_{q} used in this model is an effective ('constituent') quark mass, $m_{u} \approx m_{d} \approx m_{\rho} / 2=385 \mathrm{MeV}$, which is much larger than the mass parameters appearing in the Lagrangian (the so-called 'current masses'), which are only a few MeV . In the last chapter we shall arrive at an understanding of this in terms of chiral-symmetry breaking.

Chapter 2

1 The formal canonical quantization of the scalar field in the continuum is done as follows. Given the Lagrangian of the system

$$
\begin{equation*}
L(\varphi, \dot{\varphi})=\int d^{3} x \frac{1}{2}(\dot{\varphi})^{2}-V(\varphi) \tag{N.1}
\end{equation*}
$$

the canonical momentum follows from varying with respect to $\dot{\varphi}$,

$$
\begin{equation*}
\delta_{\dot{\varphi}} L=\int d^{3} x \dot{\varphi} \delta \dot{\varphi} \Rightarrow \pi \equiv \frac{\delta L}{\delta \dot{\varphi}}=\dot{\varphi} \tag{N.2}
\end{equation*}
$$

Solving for $\dot{\varphi}$ in terms of π, the Hamiltonian is given by the Legendre transformation

$$
\begin{equation*}
H(\varphi, \pi)=\int d^{3} x \pi \dot{\varphi}-L(\varphi, \dot{\varphi})=\int d^{3} x \frac{1}{2} \pi^{2}+V(\varphi) \tag{N.3}
\end{equation*}
$$

Defining the Poisson brackets as

$$
\begin{equation*}
(A, B)=\int d^{3} x \frac{\delta A}{\delta \varphi(x)} \frac{\delta B}{\delta \pi(x)}-A \leftrightarrow B \tag{N.4}
\end{equation*}
$$

the canonical (equal time) Poisson brackets are given by

$$
\begin{equation*}
(\varphi(\mathbf{x}), \pi(\mathbf{y}))=\delta(\mathbf{x}-\mathbf{y}), \quad(\varphi(\mathbf{x}), \varphi(\mathbf{y}))=0=(\pi(\mathbf{x}), \pi(\mathbf{y})) \tag{N.5}
\end{equation*}
$$

The Lagrange (stationary-action) equations of motion are then identical to Hamilton's equations

$$
\begin{equation*}
\dot{\varphi}=(\varphi, H), \quad \dot{\pi}=(\pi, H) \tag{N.6}
\end{equation*}
$$

The canonically quantized theory is obtained by considering the canonical variables as operators $\hat{\varphi}$ and $\hat{\pi}$ in Hilbert space satisfying the canonical commutation relations obtained from the correspondence principle Poisson bracket \rightarrow commutator:

$$
\begin{equation*}
[\hat{\varphi}(\mathbf{x}), \hat{\pi}(\mathbf{y})]=i \delta(\mathbf{x}-\mathbf{y}), \quad[\hat{\varphi}(\mathbf{x}), \hat{\varphi}(\mathbf{y})]=0=[\hat{\pi}(\mathbf{x}), \hat{\pi}(\mathbf{y})] . \tag{N.7}
\end{equation*}
$$

Observables such as the Hamiltonian become operators (after symmetrizing products of $\hat{\varphi}$ and $\hat{\pi}$, if necessary). The quantum equations of motion then follow from Heisenberg's equations

$$
\begin{equation*}
\partial_{0} \hat{\varphi}=i[\hat{H}, \varphi], \quad \partial_{0} \hat{\pi}=i[\hat{H}, \hat{\pi}] . \tag{N.8}
\end{equation*}
$$

These need not, but often do, coincide with the classical equations of motion transcribed to $\hat{\varphi}$ and $\hat{\pi}$. From (N.7) one observes that the quantum fields are 'operator-valued distributions', hence products like $\hat{\pi}^{2}$ occuring in the formal Hamiltonian are mathematically ill-defined.

Chapter 4

1 The derivation leading to (4.72) is how I found the lattice gauge-theory formulation in 1972 (cf. [42]). I still find it instructive how a pedestrian approach can be brought to a good ending.

Chapter 8

1 Only Abelian chiral transformations form a group: if V and W are two chiral transformations, then $U=V W=V_{\mathrm{L}} W_{\mathrm{L}} P_{\mathrm{L}}+V_{\mathrm{L}}^{\dagger} W_{\mathrm{L}}^{\dagger} P_{\mathrm{R}}$ has $U_{\mathrm{L}}=V_{\mathrm{L}} W_{\mathrm{L}} \neq U_{\mathrm{R}}^{\dagger}=W_{\mathrm{L}} V_{\mathrm{L}}$, unless V_{L} and W_{L} commute.
2 This can be checked here by re-installing the lattice spacing, writing $M_{f}=m_{f}+4 r / a$, and $\psi_{f x}=a^{3 / 2} \psi_{f}(x)$, etc. with continuum fields $\psi(x)$, $\bar{\psi}(x)$ that are smooth on the lattice scale (the emerging overall factor a^{3} must be dropped to get the continuum currents and divergences). Using for convenience the two-index notation for the lattice gauge field
$\left(U_{\mu x}=U_{x, x+\mu}, U_{\mu x-\hat{\mu}}^{\dagger}=U_{x, x-\mu}\right)$, we may write
$U_{x, x \pm \hat{\mu} a} \psi_{g}(x \pm \hat{\mu} a)=\psi_{g}(x) \pm a D_{\mu} \psi_{g}(x)+\frac{1}{2} a^{2} D_{\mu}^{2} \psi_{g}(x)+\cdots$, with
$D_{\mu} \psi_{g}(x)=\left[\partial_{\mu}-i g G_{\mu}(x)\right] \psi_{g}(x)$ the continuum covariant derivative, this gives the expected result.
3 The way Σ is introduced here corresponds to four staggered flavors, $\Sigma=\sum_{f=1}^{4}\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle$. Using the $S U(2)$ value $a \sqrt{\sigma}=0.2634(14)$ [69] and $\sqrt{\sigma}$ $=420 \mathrm{MeV}$, the ratio $(0.00863 / 4)^{1 / 3} / 0.263=0.491$ corresponds to 206 MeV or $\Sigma=4(206 \mathrm{MeV})^{3}$. This number appears somewhat small, but we have to keep in mind that this is for $S U(2)$, not $S U(3)$, and it also has to be multiplied by the appropriate renormalization factor.
4 For staggered fermions to be sensitive to topology, quenched $S U(3)$ gauge couplings need to be substantially smaller than the value $\beta=6 / g^{2}=5.1$ used in [143, 144]. Vink [116, 117] found that values $\beta \gtrsim 6$ were needed in order to obtain reasonable correlations between the 'fermionic topological charge' and the 'cooling charge' (cf. figure 8.2). Note that the change $\beta=5.1 \rightarrow 6$ corresponds to a decrease in lattice spacing by a factor of about four.
5 Ironically, when the mechanism of canceling the anomalies out between different fermion species was proposed [148], I doubted that it was necessary, and this was one of the reasons (apart from a non-perturbative formulation of non-Abelian gauge theory) why I attempted to put the electroweak model on the lattice. On calculating the one-loop gauge-field self-energy and the triangle diagram, I ran into the species-doubling phenomenon, without realizing that the lattice produced the very cancellation mechanism I had wanted to avoid.
6 At the time of writing the direct Euclidean approach is considered suspect and a Lorentzian formulation is being pursued [176]. For an impression of what is involved in a non-perturbative computation of gravitational binding energy, see [177].
7 The problem here is that, in order to deal with the oscillating phase $\exp (i S)$ in the path integral, one has to make approximations right from the beginning. To incorporate sphalerons, kinks, etc. one needs a lattice formulation that allows arbitrarily inhomogeneous field configurations [178, 179].

