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A FURTHER RESULT ON THE COMPLEX OSCILLATION
THEORY OF PERIODIC SECOND ORDER LINEAR

DIFFERENTIAL EQUATIONS*
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We prove the following: Assume that B(£)=g(t*i) + JJmlb±£±', where p is an odd positive integer, g(Q is a
transcendental entire function with order of growth less than 1, and set A(z) = B{e"). Then for every solution
/ # 0 of f" + A(z)f = 0, the exponent of convergence of the zero-sequence is infinite, and, in fact, the stronger
conclusion log+ N{r, l//)^o(r) holds. We also give an example to show that if the order of growth of g(£)
equals 1 (or, in fact, equals an arbitrary positive integer), this conclusion doesn't hold.

1980 Mathematics subject classification (1985 Revision): 30D35

1. Introduction

S. Bank, and I. Laine proved in [1]: Let A(z) = B(e") be a periodic entire function
with period a> = 2ni/a. and rational in e". If B(£) has poles of odd order at both £ = oo
and ( = 0 , then for every solution / ^ 0 of equation (1)

f" + A(z)f = 0, (1)

the exponent of convergence of the zero-sequence is infinite.
In [2], S. Bank generalized this result: The above conclusion still holds if we just

suppose that both £ = oo and £ = 0 are poles of B(£), and at least one is of odd order.
Gao Shian also obtained the same generalization in [4] ([4] was written before seeing
the paper of S. Bank), but S. Bank replaced the above conclusion with the stronger
conclusion

log+JV(r, l / /)#o(r) a s r - + oo. (2)

In the case where B(£) has a pole at one of £ = oo and £ = 0, and at the other point
B(£) is analytic, Gao Shian also proved in [4]:

Let A(z) = B(exz) be a polynomial of odd degree in e" (including those which can be
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144 S. GAO

changed into this case by varying the period of A{z)), i.e. B(() = £*=06jC', where k is an
odd positive integer, bk^0. If

16 '

where s^fc is an odd positive integer, then for every solution / # 0 of equation (1), the
exponent of convergence of the zero-sequence is infinite. Conversely, if s is an odd
positive integer of the form k(2n+ l),«^0, then equation (1) may possibly have two
linearly independent solutions / ^ O , / 2 # 0 whose zero-sequences have exponents not
bigger than 1.

It is easy to prove that we can also replace this conclusion about the infinite exponent
of convergence of the zero-sequence with the stronger conclusion (2) of S. Bank.

The above conclusions can be summarized as follows:
Assume

where bj are constants, p and q are nonnegative integers, bp=t0 if p^l,fc_,#O if q^.1.
Then,

(i) If min(p,<ji)^l, and at least one of p and q is an odd positive integer, then for
every solution / # 0 of equation (1), the exponent of convergence of the zero-sequence is
infinite, and, in fact, the stronger conclusion (2) holds, where A(z) = B(e").

(ii) If min(p, q) = 0, and max(p, q) = k is an odd positive integer, and

1 6 '

where s^/c is an odd positive integer, then for every solution / # 0 of equation (1), the
exponent of convergence of the zero-sequence is infinite, and, in fact, the stronger
conclusion (2) holds, where A(z) = B(e"). Conversely, if

with s as above, then this conclusion may not hold.
These results are only in the case where B(C) is rational and analytic on 0< | ( |< +oo.

If B(C) is transcendental and analytic on 0<|£|< +oo, what can we say? We will try to
answer this question in part. In this paper, we first generalize Theorem 4 in [1], and
add a new property to it; second, using this generalization and our new property we get
a relation between the solutions /(z) and f(z + co) of equation (1); finally, by proving
another contrary relation between /(z) and f(z + co) we obtain our main result: Let g(Q
be a transcendental entire function with order of growth less than 1, and
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i = l

or

where p is an odd positive integer, then for every solution / ^ 0 of equation (1), the
exponent of convergence of the zero-sequence is infinite, and, in fact, the stronger
conclusion (2) holds, where A(z) = B(e"z) in (1). We also give an example to show that if
the order of growth of g(C) equals 1 (or, in fact, equals an arbitrary positive integer), this
conclusion doesn't hold.

We will use the standard notations of Nevanlinna theory, see [5]. In addition, we will
denote the exponent of convergence of the zero-sequence of /(z) by A(/), and the order
of growth of /(z) by a(f). The other notations will be shown when we need to use
them.

2. Main theorem and corollary

Theorem. Let A(z) = B(e"z) be a periodic entire function with period co = 2ni/oc and
transcendental in e", i.e. B(£) is transcendental and analytic on 0 < | ( | < + oo. / / there
exists a constant 8 with 0 < 3 < 1 such that

logT(r, A)<5\a.\r for r near + oo, (3)

and if B(() has a pole of odd order at ( = 00 or ( = 0 (including those which can be
changed into this case by varying the period of A(z)), then for every solution / ^ 0 of
equation (1), A(/)= + 00, and, in fact, the stronger conclusion (2) holds.

Corollary. Let g(() be a transcendental entire function with a(g)< 1, and

or

1 = 1

where b±i are constants, p is an odd positive integer, £>±p#0, then for every solution
of equation (1), A(/)= +00, and, in fact, the stronger conclusion (2) holds.
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In Section 5, we give an example to show that the corollary doesn't hold if p is even.
We also give another example to show that the corollary doesn't hold if a(g) is an
arbitrary positive integer and p is odd. If p is odd and a(g) isn't a positive integer but is
bigger than 1, could the corollary be true or not? This is still an open problem.

Remark. The condition (3) is equivalent to the following condition: There exists a
constant <50 with 0 < <50 < 1 such that

loglogM(r,/4)<(50|a|r for r near + oo, (4)

where M(r,A) =max^Sr\A(z)\. From [5, Theorem 1.6], we have

where e is an arbitrary positive constant. It is easy to check that this is true by choosing
e such that 0<<5(l+e)<l. Hence, we will regard the conditions (4) and (3) as the same
from now on.

3. Proof of theorem

The proof of the theorem will be completed by a series of lemmas.

Lemma 1. Let V(£) be analytic on 0 < | £ | < + oo, and set w{z) = V(e"). If
Iog+N(r, l/w) = o(r) as r-> + oo, then A0O(F) = 0, Ao(F) = 0, where we denote the exponent
of convergence of the zero-sequence of K(() on l ^ | C | < + o o by -^(K), and A0(K) =
*JV*) K*(C) K ( 1 / C ) ( [ l ] )

Proof. Denote the counting function of the zeros of w(z) with |ea2|^ 1 by N^r, 1/w).
It is clear that

log+N1(r,l/w) = o(r) asr-> + oo. (5)

If we denote the counting function of the zeros of V(Q on 1 ^|C|< +°° by NK(p, 1/V),
then

p~* + CD logp

Assuming that Aoo(K)>0, then there must exist a constant 5>0 and a sequence
{pj} -*• + oo such that

Denote the zeros of K(C) on 1^|C|<P; by Ci,C2,•••,CPj- Let eXZk = (k,k=l,2,...,pJ, then
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zl,z2,...,zPj are zeros of w(z) satisfying |ca z |^l- The set {z;|e"| = py} is clearly
unbounded, so there is a point zje{z;\eaz\=Pj} such that |zt|<|z*|,fc=l,2,...,pj. Let
e"'i = PjeWj, \0j\^n. From ixzj = logPj+Wj, it follows that |<xz*|^2 logp, if j is large
enough, and zj-*oo as Pj—» + oo. Hence,

But it is clear (because if Co is a zero of F(() and eaz° = £0, then

2kn.
z 0 + — ,

are zeros of w(z)) that

Thus

and this contradicts (5). Hence, A0O(K) = 0. We can prove Ao(F) = 0 by the same
reasoning.

The following Lemma 2 is Lemma C in [2].

Lemma 2. Let A(z) be a nonconstant periodic entire function with period co, and / # 0
be a solution of equation (1) such that

log+JV(r,l//) = o(r) asr-> + oo, (6)

then f(z) and f(z + 2(o) are linearly dependent solutions of equation (1).

Lemma 3. Let A(z) be a nonconstant periodic entire function with period co, i.e.
A(z) = B(e"), where B(() is analytic on 0 < | £ | < +oo,

2ni
a = — ,

co

and let A(z) satisfy the condition (3). Assume / # 0 is a solution of equation (1) which
satisfies condition (6), and f(z) and f(z + co) are linearly independent. Set
£(z) = /(z)/(z + w). Then:

(a) there exists a constant 5t with 0<dl < 1 such that
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log T(r, E) < 8t \a\r for r near + oo;

(b) E(z)2 is a periodic function with period co, so we can write E(z)2 = <S>(e"), where 0 ( 0
is analytic on 0< |C| < + oo.

(c) if B(Q has an essential singularity at ( = 00 (resp. (=0) , then <D(£) has also an
essential singularity at £ = 00 (resp. ( = 0).

Proof, (a) Since /(z) satisfies (6), it is easy to check that f(z + a>) satisfies (6) also,
and so does E(z). From [1, Section 5(b) and Section 4(a)] and (3), we obtain

log T(r,E) <S\a\pr for r near + 00,

where /J is an arbitrary constant with /?>1. We can choose jS>l such that 0<8fi<l,
and then set Sl = 8fi. So part (a) is true.

(b) By Lemma 2, we have £(z + <y) = cE(z), where c is a nonzero constant. Thus, E'/E
and E"/E have period co, and so does £(z)2 from [1, Section 5(a)].

(c) <D(C) satisfies (see [1, p. 8])

+ (d)<D') + 4B(C)0>2 + cO = 0, (7)

or

From this, it is easy to see that part (c) is true.
The following Lemma 4 generalizes Theorem 4 in [1], and includes a new property

(vii).

Lemma 4. Let A(z) = B(e") be a periodic entire function with period a> — Ini/a., and be
transcendental in e", i.e. B(Q is transcendental and analytic on 0 < | £ | < + o o . Also let
/ ^ 0 be a solution of equation (1) which satisfies condition (6). Then, the following are
true:

(A) if /(z) and f(z + co) are linearly dependent, then /(z) can be represented in the form

d , (8)

where

(i) d is a constant,

(ii) H(Q and g(Q are analytic on 0 < | ( | < +00,

(iv) g[C) has at most a pole at ( = 00 (resp. C=0) if and only if B(Q has at most a pole
at ( = 00 (resp. ( = 0),
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(V) *„(*) = * . (* ) ,

(vii) if B(C) has at most a pole at ( = 00 (resp. C=0), then H(() /ias at most a pole at
( = 00 (resp. (=0).

(For t/ic notations ao(H), a^H),..., the reader is referred to [I, p. 4-5].)

(B) / / f(z) and f{z + m) are linearly independent, then f(z) can be represented in the
form

f(z) = edzH(/"2)z) exp(g(<>/2»z)), (9)

where d, H and g satisfy the conditions (i)—(-vii) listed in part (A).

Proof. Part (A). Assume f(z) and f(z + co) are linearly dependent. By [1, p. 14], we
have f(z) = efzU(z), where ft is a constant and U(z) is a periodic entire function with
period co. Thus we can write C/(z) = G(eaz), where G(() is analytic on 0<|£|< +00. Since
N(r, l/U) = N(r, 1//), from (6) we have

log+AT(r, l/l/) = o(r) asr-» + oo.

Then, from Lemma 1 we have Ao(G) = A0O(G) = 0. Let J/i(() (resp. H2(t)) be the canonical
product formed with the zeros of G(£) in |£|^1 (resp. G*(t) = G(l/t) in |t |>l), and
denote H(Q = H1(QH2(r

1). Since a(H1) = XJG) = 0, a(H2) = XO(G) = 0, \H(Q\ = (KHM))
as C->oo and H(C) = 0(H2(C"1)) as C-»0, we get ffao{H) = 0 and CTO(//) = O. It is clear that
G1(C) = G(C)///(C) is analytic and has no zeros on 0<|C|<-f-a>. Thus G^e") is entire
and has no zeros. Hence G1(e") = e"<z), where v(z) is entire. Since u'(z) = aG'1e"/G1 is
periodic with period co, we have v(z + co) — v(z) = K, where K is a constant. Choose
dx = — K/co, we see that v(z) + dtz is periodic with period a>. Hence v(z) + dlz=g{eaz),
where g(Q is analytic on 0<|C|<+oo. Setting d = fl — du we finally get the represen-
tation (8) and (i), (ii), (iii) have been verified also.

The proofs of (iv), (v) and (vi) are the same as [1, p. 15].
To prove (vii) in the case (=°o, we first show that (=°o is not a cluster point of

zeros of G((). If we assume the contrary, then G(() has an essential singularity at £ = oo.
It is easy to see that G(() satisfies the linear equation

a2C2G" + C(2a/? + a2)G'+(B(C) + /?2)G=0 (10)

whose coefficients each have at most a pole at ( = °O- From the Wiman-Valiron theory
summarized in [1, p. 4-6], we can write G(O = Cm '̂(C)w(C). where m is an integer, *F(O is
analytic and nonvanishing at ( = °o, and u(() is a transcendental entire function of finite
order of growth. Clearly, ( = 00 is also the cluster point of zeros of u((), hence u(C) has
infinitely many zeros. We have the representation u(() = Ho(C)exp(Q(()), where H0(Q is
the canonical product formed with the zeros of u(£), and Q(Q is a polynomial. From
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(10), G1 = Ge~Q satisfies also a linear equation whose coefficients each have at most a
pole at ( = 00. But since Gt(O = (m*£'(QH0((), again using the Wiman-Valiron theory
summarized in [1, p. 4-6], we have <j(Ho) = 5>0. Hence X(u) = 1(HO) = a(Ho) = 8>0. It
is easy to see that XO0(G) = k(u) = 5>0. SO by Lemma 1, log+ N(r,l/U)^o{r) as r-» + oo.
But log+7V(r, 1//) = log+N(r, 1/17), therefore Iog+N(r, l//)#o(r) and this contradicts
assumption (6). Thus ( = oo is not a cluster point of zeros of G((), and G(() has only
finitely many zeros in | f | ^ l . Then, the canonical product H^Q can be replaced with a
polynomial with these zeros. Since H2{C,~l) is analytic at C = oo, H{C) = H t(C)H 2(C~l)
has at most a pole at £ = oo. Setting G*(t) = G(t~1), we can prove (vii) in the case (=0
by the same reasoning.

Part (B). In this case, f(z) and f(z + oi) are linearly independent, but /(z) and
f(z + 2(o) are still linearly dependent by Lemma 2. Considering that A{z) has period 2co
and using Part (A), we obtain the representation (9) with the asserted properties.

Before proving the following Lemma 5, we define an R-set to be a countable union of
discs in the plane the sum of whose radii is finite, and remark that the set of d for which
the ray re'e meets infinitely many discs of a given R-set has measure zero (see [3, p.
11-12]).

Lemma 5. Let A(z) = B(e") be a periodic entire function with period co = Ini/a, and be
transcendental in e", i.e. B(() is transcendental and analytic on 0<|£|< +oo. Assume also
that A(z) satisfies condition (3). If f ^0 is a solution of equation (1) and satisfies condition
(6), then f(z) and f(z + co) are linearly dependent.

Proof. Suppose that /(z) and /(z + co) are linearly independent, and set

E(z) = f(z)f(z + co).

We first assume that B{Q has an essential singularity at ( = °o. From Lemma 3,
F(z) = £(z)2 = <5(e°12) is a periodic entire function with period co, and <S>(Q has an
essential singularity at £ = oo, and log T(r, F) = log T(r,E) + log2 <5,|a|r for r near +oo,
where St is a constant with 0<dt < 1.

From (7), <D(C) and B(() satisfy

(jK I ' •» A I ' A •—V9/ 1 H*J

Since <D(() has ah essential singularity at ( = <x>> we can write O(C) = Cm*P(C)"i(C)> where
m is an integer, *?(£) is analytic and nonvanishing at C=a>, and w^O is a transcenden-
tal entire function. We assert that CT(U1)< 1. If we assume the contrary, i.e.

^ l ,
logp

then for then for an arbitrary £i>0, there exists a sequence {pj}-* + <x> such that
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log log M(p7, MX) >(1— ejlogpj. Let (PJ be the points with |CPJ = P; at which |ui((w)| =
M(pj,ul), then loglog|u,(Cw)[>(l — e1)logpj. From this, it is easy to see that log log
|O(CPJ)|>(1—ejlogp,—Iog2 for sufficiently large j . Let Zj be points with e?Zi = CPr

Setting (>p. = pje
i6',\d^n, since <xzj=logPj+iOj, we have ^ ^ ^ ( l + e j l o g p ^ for suffi-

ciently large j , and Zj-»oo as p7—• + oo. Therefore,

log log \F(zj)\ = log log |d>(CPJ)| > j ^ i • |a| \zj\ - log 2.

Since we can choose ex >0 such that

this contradicts the condition above which is satisfied by F(z). Hence we must have
<T(M1)< 1. In addition, it is easy to see that

asC-co.

Thus, if |C| ^ 1 and ££ V, where V is an i?-set, standard estimates (see [7, p. 74]) yield an
M>0such that

\M

1

So by (11), if |C|^ !,£$ V and JM^C)^ 1, we have

for some positive integer N.
On the other hand, B(C) has the expansion

^(0= S bkC
k, 0<|C|< + oo.

k = - o o

Denote /i(C) = Xt+=°ô tC'1- Clearly, h{£) is a transcendetal entire function. We assert that
o(h)<\. If we assume the contrary, i.e.

H m log log M(P, h)

p^ + 0O logp

then for an arbitrary £i>0, there exists a sequence {p;}-> + oo such that
log log M(pj,h) >(1 —Ej) log pj. Let £P/ be the points with |{J = p7- at which |/i(CP>)| =
M(pj,h), then loglog|/i(CPJ)|>(1 — e1)logpJ. From this, it is easy to see that
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* = - oo

loglog|B(Cp,)| = l

>loglog|/i(Cw)|-log2>(l-£1)logpJ-log2

for sufficiently large j . Let zi be points with e"ZJ = £pj. Setting (,pj=Pjem', \6j\^n, since
OLZj — Xogpj + iQj, we have |a| |zj|g(l+£i)logp;- for sufficiently large ;, and ZJ-KJO as
pj-* + oo. Therefore,

log log \A(Zj\ = log log |B(CPJ)| > \ ^ |a| \zj\ - log 2.

Since we can choose et > 0 such that

l - i

this contradicts the condition (3) which is satisfied by A{z). So we must have a{h)<l.
We can also write

where

Clearly, |MC)| = O(|Cr). Since (12) holds if £$ V and l u ^ O ^ l , we have |MO| = 0(|C|W)
C$ V and |«i(C)|> 1- Thus, we can choose a constant K>0 such that

if C^Fand l u ^ O ^ l . Set

K

It is easy to see that u2(C) is a transcendental entire function with <J(U2)<1. Moreover,
|u2(C)| ^ 1 if C4 V and |u,(C)| > 1, as has been shown above.

Clearly, Df = {C; |«,(C)| > 1} are open sets, y= 1,2. Denote the boundary of Df by Ff.
It is clear that |u,(C)[=l f°r CeTJ. Since u,(C) are transcendental entire functions, there
must exist unbounded connected components D} of DJ. Denote the boundary of Dj by
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r,.. Then set £,(p) = {0;pe'fle£>;}, E(p) = {0;peiBe V). It is easy to check that £ , n £ 2 s £ .
Also set

6j(p)= f dO,j= 1,2, 0(p)= J d0.
£(P)

Clearly, for an arbitrarly e>0, there exists a po>O such that 0(p)<e for p^p0, We also
can choose p o > 0 such that the circle |C| = P intersects D} for p^p0.

Since a(Uj)<l, from [6, Theorem 111.68., p. 117] there exists a constant /?>0 and a
Pi j^Po such that (see the following remark)

for p ^ P i and j — 1,2. So

Thus, since

But 01(p) + 02(p)^27i + £ for p^pt. This gives

log JL< (2 -2/J) log p.
2Po

Since /?>0 is a constant and £>0 is arbitrary, this is impossible.
In the case where B(() has an essential singularity at C = 0, we make the change of

variable ( = l/t and reason as above at ( = oo.

Remark. The estimate in [6, Theorem 111.68., p. 117] is that

po 8f

where
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0*(O) = JJP
JKP) [ + 00

But if £1(p) = [0,27t], then 02(p)<e, and so

Thus

P/2
J ^ < l o g l o g M ( p ) M 2 ) + 0(l).
Po

£,(p) = [0,2^]

"f _£_4?<_L

if Kx ><T(U2) and p is large enough. So we get

P/2 ,T J ^

—<loglogM(p,Ul)+f/Ci
P 2;r

By the same reasoning, we also get

p/2 ^ ^^

g g ( p , 2 ) f K2logp + 0(l)
P 27T

for /C2><T(MI).

Lemma 6. Let /4(z) = B(e") be a periodic entire function with period a> = Ini/a. and be
transcendental in e*z, i.e. B(C) is transcendental and analytic on 0 < | f | < +oo. If B{Q has a
pole of odd order at £ = oo or at C = 0 (including those which can be changed into this case
by varying the period of A(z)), and equation (1) has a solution / ^ 0 which satisfies
condition (6), then f(z) and f(z + co) are linearly independent.

Proof. If we set a '= — a, the pole C=0 of B(() can be changed into the pole £= oo of
B(t~x). Thus, noting that f(z) = kf(z — co) is equivalent to f(z + (o) = kf(z), it is enough
to only consider the case that £ = oo is the pole of B(().

Assume equation (1) has a solution / # 0 which satisfies condition (6), and
f(z),f(z + co) are linearly dependent. From Part (A) of Lemma 4, we can write
f(z) = edzG(ea2), where

) ( £ dkC
fc),0<|C|<+oo, (13)
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q and v are integers, c ,dv /0 . Substituting edzG(e<lz) for /(z) in (1), we obtain

Since B(() has a pole of odd order at £ = oo, B(£) can be written as

B(C)= t W,0<|C|<+oo,

where p is an odd positive integer, bp#0. From (13), it is easy to check that we have for
C near oo

{ '

l '

where a = q,b = vdv,b^O. Substituting the right-hand sides of (15) and (16) for G'/G and
G"/G in (14), and noting that 2v^p, it is easy to see that (14) can not hold identically
for £ near oo, and a contradiction is obtained.

Under the assumptions of the theorem, if equation (1) has a solution / # 0 which
satisfies condition (6), then from Lemma 5 and Lemma 6, /(z) and f(z + co) are linearly
dependent and also linearly independent. This is impossible and the proof of the
theorem is completed.

Proof of the corollary

The following Lemma 7 not only shows that the corollary is true but also shows that
the corollary is equivalent to the theorem.

Lemma 7. Let A(z) = B{Q be a periodic entire function with period co = 2ni/oc, and be
transcendental in exz, i.e. B(C) is transcendental and analytic on 0 < | ( | < + o o . / / A(z)
satisfies condition (3), then we have the representation

, (17)

where g(Q and h(Q are entire functions with a(g)<l and <r(h)< 1, and at least one ofg(Q
and h(Q is transcendental. Furthermore if B(() has a pole at C=oo (resp. C = 0), then h(Q
(resp. g(0) is a nonconstant polynomial. The converse is also true.

Proof. First, from the assumption, we have the expansion
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+ 00

fl(0= E w\
* = - 0 0

If we set

k= - o o k = 0

then g(() and h(£) are entire functions, and at least one is transcendental. And also if
J5(C) has a pole at ( = oo (resp. ( =0), then /i(() (resp. g(()) is a nonconstant polynomial.
In Lemma 5, a{h)<\ has been shown. Setting l=l/t,B*{t) = B(l/t) and /l(z) = B*(e~"),
we can prove a(g) < 1 by the same reasoning as the proof of a(h) < 1.

Conversely, assume B(() has the representation (17), where g(Q and h{£) are entire
functions with ff(g)<l and <T(/I)<1, we show that A(z) satisfies the condition (3) (the
other properties are clear). Denote

Mt{r,A)= max \A(z)\,
\z[=r

Re(«) ̂  0

M2(r,A)= max \A(z)\.
|z|=r

Jic(otz) S 0

For an arbitrary r>0, let zr be a point with |zr| = r and Re(azr)^0 at which
\A(zr)\ = M1(r,A), and let e**r = £p = pe'9", \0p\^n. From azr = logp + i0p, \0p\^n and
Re(a.zr)^.O, it follows that |a||zr|^logp and p-> + oo as r-> + oo. Thus for a given e>0,
we have if r is sufficiently large (and p is also sufficiently large)

log log Mx (r, A) = log log \A{zr)\

^ log log S\T

On the other hand, if zr be a point with |zr| = r and Re(azr)^0 at which |/l(zr)| =
M2{r,A), setting /l(z)=g(e"") + ^(l/e"")=?(0 + 'I(l/0» we have as above

loglog M2(r, A) <(<r(g)+e)|a|r

for sufficiently large r (and, for the corresponding t of zr, |t| is also sufficiently large since
Re( — azr)^0). From 0gff(g)<l and 0^CT(/I)<1, we can choose e>0 such that
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0<a(g) + e < l and 0<o(h) + s<l. Setting do=max{a(g) + E,a(h) + s}, we have for r near
+ 00

log log M(r, A) = max {log log My{r, A), log log M2{r, A)}

<<50|a|r.

The condition (4) with 0<<50< 1 has been verified, and so has the condition (3).

In addition, it is easy to prove that log T(r, A) = o(r) is equivalent to max{a(g), a(h)} =
0. Thus, if <r(g)>0 or a(h)>0, we must have a(A)= +oo. From this and Lemma 7, we
know that the family of entire functions with infinite order of growth is quite large
under the condition (3).

5. Examples

The following Example 1 shows that if ( = oo (or ( = 0) is a pole of £(() with even
order, the conclusion of the theorem or corollary may be false.

Example 1. Let 4>(() be a transcendental entire function with CT(#)<1. It is easy to
check that

solves equation (1) in which

Clearly, A(/)=0. Setting g(C) = <x2(-0'2(C)C2 + 20'(C)-0"(C)C2-0'(C)O, it is clear that
o(g)<\ and B(C)=g(l/C) — a2£ — a2(2 has a pole of even order at ( = oo.

The following Example 2 shows that if a(g) is an arbitrary positive integer and ( = oo
(or C = 0) is a pole of B(() with odd order, the conclusion of the theorem or corollary
may also be false.

Example 2. Set £(z) = cz/2c(1/2)e"", where m is an arbitrary positive integer, and set

for j = 1,2. Then fx and f2 are non-vanishing entire functions, and / i / 2 = E. Also it is
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easy to check that that Wronskian W(/i,/2) = 2 and fuf2 solve equation (1) in which
(from [1, Section 5(a)])

•*•<§)'•©'

J3(C) has a pole of odd order at ( = 0, and it is easy to see that a(g) = m.
A problem naturally arises: If a(g) is greater than 1 but is not a positive integer, could

the theorem or corollary still hold?
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