CROSSED PRODUCTS AND MAXIMAL ORDERS

SUSAN WILLIAMSON

Introduction. Let I be a maximal order over a complete discrete rank one valuation ring R in a central simple algebra over the quotient field of R. The purpose of this paper is to determine necessary and sufficient conditions for I to be equivalent to a crossed product over a tamely ramified extension of R.

It is a classical result that every central simple algebra over a field k is equivalent to a crossed product over a Galois extension of k. Furthermore, it has been proved by Auslander and Goldman in [2] that every central separable algebra over a local ring is equivalent to a crossed product over an unramified extension.

Let R denote a discrete rank one valuation ring. The set of maximal orders $M^{\prime}(R)$ over R forms a subset of the set of hereditary orders $H^{\prime}(R)$ over R (see [3]). An equivalence relation on the set of hereditary orders has been defined in [2]. Namely, if Λ_{1} and Λ_{2} are in $H^{\prime}(R)$, then Λ_{1} is said to be equivalent to Λ_{2} if there exist finitely generated free R-modules E_{1} and E_{2} and an R-algebra isomorphism

$$
\Lambda_{1} \otimes_{R} \operatorname{Hom}_{R}\left(E_{1}, E_{1}\right) \cong \Lambda_{2} \otimes_{R} \operatorname{Hom}_{R}\left(E_{2}, E_{2}\right) .
$$

It is established in [2] that an hereditary order which is equivalent to a maximal order is itself a maximal order.

The author has proved in [10] that every crossed product $\Delta(f, S, G)$ over a tamely ramified extension S of a discrete rank one valuation ring R is an hereditary order, and that $\Delta(f, S, G)$ is a maximal order if and only if the order of the conductor group H_{f} is one (see Section 1 for the definition of H_{f}). She has also exhibited in this paper an example of a non-maximal hereditary order which is not equivalent to a crossed product over a tamely ramified extension. Now let Γ be a maximal order over a complete discrete rank one valuation ring R in a central simple algebra Σ over the quotient field of R.

Received June 15, 1964.
Revised February 5, 1965.

The main theorem of this paper states that a necessary and sufficient condition for Γ to be equivalent to a crossed product over a tamely ramified extension of R is the existence of a splitting field K of Σ for which
(1) the integral closure S of R in K is a tamely ramified extension of R
(2) f is in the image of the natural map $Z^{2}(G, U(S)) \rightarrow Z^{2}(G, U(K))$ where f is a 2 -cocycle with the property that $\Delta(f, K, G)$ is equivalent to Σ.

At the end of the paper we present an example of a maximal order which is not equivalent to a crossed product over a tamely ramified extension.

The following notation shall be in use throughout the paper. If R is a local ring, then \bar{R} shall denote its residue class field. The multiplicative group of units of a ring R shall be denoted by $U(R)$. Unless otherwise stated, R shall always denote a complete discrete rank one valuation ring, S the integral closure of R in a finite Galois extension of the quotient field of R, and G the Galois group of the quotient field extension. Since R is complete, S is also a complete discrete rank one valuation ring. The inertia group and the inertia ring of the extension S of R shall be denoted by G_{l} and U respectively; and the image of a 2 -cocycle f under the natural map $Z^{2}(G, U(S)) \rightarrow Z^{2}(G, U(\bar{S})$) shall be denoted by \bar{f}. For the definitions of crossed product, hereditary order, and tamely ramified extension we refer the reader to [10]. For convenience we recall that when the extension S of R is a tamely ramified extension of complete discrete rank one valuation rings then the inertia group G_{I} is cyclic, and the $e^{t_{h}}$ roots of unity are present in the inertia ring U, where e is the order of G_{l}.

1. Cohomology and tame ramification. A crossed product over a tamely ramified extension is a maximal order if and only if its conductor group is trivial (see [10]). Therefore this section is devoted to the study of cohomology and the conductor group in the tamely ramified case.

Definition Let S be a tamely ramified extension of a complete discrete rank one valuation ring R. For each cohomology class [f] we define four subgroups of the cyclic group G_{l} :
(1) Ω_{f} is the maximal subgroup of G_{l} such that the image of $[f]$ under the restriction map $H^{2}(G, U(S)) \rightarrow H^{2}\left(\Omega_{f}, U(S)\right)$ is trivial,
(2) I'f is the maximal subgroup of G_{l} such that the image of $[\bar{f}]$ under the restriction map $H^{2}(G, U(\bar{S})) \rightarrow H^{2}\left(\Gamma_{f}, U(\bar{S})\right)$ is trivial,
(3) J_{f} is the maximal subgroup of G_{I} with the property that $[f]$ is in the image of the inflation map $H^{2}\left(G / J_{f}, U(S)\right) \rightarrow H^{2}(G, U(S))$,
(4.) H_{f} is the maximal subgroup of G_{l} with the property that $[\bar{f}]$ is in the image of the inflation map $H^{2}\left(G / H_{f}, U(\bar{S})\right) \rightarrow H^{2}(G, U(\bar{S}))$.

The group H_{f} was named the conductor group in [10]. An element f of $Z^{2}(G, U(S))$ is said to be properly normalized if f is trivial on $\Omega_{f} \times \Omega_{f}$. Similarly, an element \bar{f} in $Z^{2}(G . U(\bar{S}))$ is said to be properly normalized if \bar{f} is trivial on $\Gamma_{f} \times I_{f}^{\prime}$. The purpose of this section is to establish the equalities $\Omega_{f}=\Gamma_{f}$ and $J_{f}=H_{f}$.

Profosition 1.1. Let S be a tamely ramified extension of a complete discrete rank one valuation ring R, and f an element of $Z^{2}(G, U(S))$. Then $\Omega_{f}=\Gamma_{f}$, and f is cohomologous to a properly normalized 2 -cocycle.

Proof. Since the image of $[f]$ under the restriction map $H^{2}(G, U(S)) \rightarrow$ $H^{2}\left(\Omega_{f}, U(S)\right)$ is trivial, certainly the image of $[\bar{f}]$ under the map $H^{2}(G, U(\bar{S}))$ $\rightarrow H^{2}\left(\Omega_{f}, U(\bar{S})\right)$ is trivial. Therefore $\Omega_{f} \subseteq \Gamma_{f}$.

Let U denote the inertia ring of S over R. Since S is a tamely ramified extension of R we know that $\bar{U}=\bar{S}$. To show that $\Gamma_{f} \subseteq \Omega_{f}$ we shall make use of the fact that Γ_{f} is a cyclic group to first observe that the map $\Psi: H^{2}\left(\Gamma_{f}\right.$, $U(S)) \rightarrow H^{2}\left(\Gamma_{f}, U(\bar{U})\right)$ induced by the natural map $S \rightarrow \bar{S}=\bar{U}$ is a monomorphism. For let [f_{Γ}] be in the kernel of Ψ, and let u be an element of $U /(T)$ such that [$\left.f_{\Gamma}\right]$ corresponds to $u \bmod N(U(S))$ under the canonical identification $H^{2}\left(\Gamma_{f}\right.$, $U(S))=U(T) / N(U(S))$ where T is the integral closure of R in the fixed field of Γ_{f}, and $N(U(S))$ denotes the norm of $U(S)$ in T. Since $\Psi\left(\left[f_{\Gamma}\right]\right)$ is the identity we know that $(\bar{u})\left(\bar{c}^{n}\right)=\overline{1}$ for some element \bar{c} in $U(\bar{U})$ where n is the order of I_{f}^{\prime} using the identification $\left.H^{2}\left(\Gamma_{f}, U(\bar{U})\right)=U(\bar{U}) /(U \bar{U})\right)^{n}$. Therefore the separable polynomial $\bar{P}(X)=X^{n}-1 / \bar{u}$ in $\bar{U}[X]$ has a root in \bar{U}. By Hensel's lemma it follows that $P(X)=X^{n}-1 / u$ has a solution, say c, in U. Therefore $N(c)=c^{n}$ and $u c^{n}=1$, and hence f_{Γ} is cohomologus to the trivial 2cocycle and Ψ is a monomorphism.

Now letting f_{Γ} denote the restriction of f to $\Gamma_{f} \times I_{f}$ it follows from the definition of Γ_{f} together with the above observation that f_{Γ} is cohomologous to the trivial 2 -cocycle in $Z^{2}\left(\Gamma_{f}, U(S)\right)$. Therefore there exists a map $\phi: I_{f}^{\prime}$ $\rightarrow U(S)$ such that $f_{\Gamma}(\sigma, \tau)=\phi(\sigma) \phi^{\gamma}(\tau) / \phi(\sigma \tau)$ for σ and τ in Γ_{f}. Extend ϕ to
G by defining $\phi(\rho)=1$ if ρ is not in Γ_{f}. Then the element g of $Z^{2}(G, U(S))$ defined by $g(\sigma, \tau)=f(\sigma, \tau) \phi(\sigma \tau) / \phi(\sigma) \phi^{\sigma}(\tau)$ is cohomologous to f and has the property that $g(\sigma, \tau)=1$ when σ and τ are in Γ_{f}. Thus $\Gamma_{f} \subseteq \Omega_{f}$ and this concludes the proof.

In order to establish that $J_{f}=H_{f}$ we next prove three preliminary lemmas in which it is always assumed that S is a tamely ramified extension of a complete discrete rank one valuation ring R.

Lemma 1.2. For each element f of $Z^{2}(G, U(S))$ there exists an element g of $Z^{2}(G, U(S))$ such that g is cohomologous to f, whenever ρ is in H_{f} it is true that $g(\tau, \rho)=1$, and $\bar{g}(\tau, \rho)=1$ if τ or ρ is in H_{f}.

Proof. By Prop. 1.1 we may as well assume that f is a properly normalized 2 -cocycle. Then \bar{f} is also properly normalized. From the definition of H_{f} we know by Prop. 2.3 of [10] that there exists a map $\bar{\phi}: G \rightarrow U(\bar{S})$ such that the 2 -cocycle \bar{g} in $H^{2}(G, U(\bar{S}))$ defined by $\bar{g}(\tau, \sigma)=\bar{f}(\tau, \sigma) \bar{\phi}(\tau) \bar{\phi}^{\tau}(\sigma) / \bar{\phi}(\tau \sigma)$ has the property that $\bar{g}(\tau, \sigma)=1$ if τ or σ is in H_{f}, and that the restriction of $\bar{\phi}$ to H_{f} takes values in the multiplicative group of $h^{t h}$ roots of unity where h is the order of H_{f}.

We shall use \bar{g} to produce the definition of the desired 2 -cocycle g. Let $G=U \tau_{j} H_{f}$ be a disjoint left coset decomposition of G relative to the subgroup H_{f}, and let σ now denote a generator of H_{f}. If $\bar{\phi}(\sigma)$ is the $h^{\text {th }}$ root of unity $\bar{\eta}$, define $\phi(\sigma)$ to be η where η is an $h^{t h}$ root of unity in $U(S)$ whose existence is guaranteed by the assumption that the extension S of R is a tamely ramified extension of complete local rings and Hensel's lemma.

For each j define $\phi\left(\tau_{j}\right)$ and $\phi\left(\tau_{j \sigma}\right)$ by choosing representatives of $\bar{\phi}\left(\tau_{j}\right)$ and $\bar{\phi}\left(\tau_{j} \sigma\right)$ in $U(S)$ such that $g\left(\tau_{j}, \sigma\right)=1$ where $g\left(\tau_{j}, \sigma\right)$ is defined by $g\left(\tau_{j}, \sigma\right)=$ $f\left(\tau_{j}, \sigma\right) \phi\left(\tau_{j}\right) \phi^{\tau}(\sigma) / \phi\left(\tau_{j \sigma}\right)$. We next define $\phi\left(\tau_{j} \sigma^{2}\right)$ to be a representative of $\bar{\phi}\left(\tau_{j} \sigma^{2}\right)$ for which $g\left(\tau_{j} \sigma, \sigma\right)=1$ where $g\left(\tau_{j} \sigma, \sigma\right)=f\left(\tau_{j} \sigma, \sigma\right) \phi\left(\tau_{j} \sigma\right) \phi^{\tau}{ }^{\sigma}(\sigma) / \phi\left(\tau_{j} \sigma^{2}\right)$. Proceeding in this way we finally define $\phi\left(\tau_{j} \sigma^{h-1}\right)$ by choosing a representative of $\bar{\phi}\left(\tau_{j} \sigma^{h-1}\right)$ for which $g\left(\tau_{j} \sigma^{h-2}, \sigma\right)=1$ where $g\left(\tau_{j} \sigma^{h-2}, \sigma\right)=f\left(\tau_{j} \sigma^{h-2}, \sigma\right) \phi\left(\tau_{j} \sigma^{h-2}\right)$ $\phi^{\tau j} \sigma^{h-2}(\sigma) / \phi\left(\tau_{j} \sigma^{h-1}\right)$. Thus we have defined a map $\phi: G \rightarrow U(S)$. It remains to verify that the 2 -cocycle g cohomologous to f by ϕ satisfies the conclusion of the lemma. In order to do this we first check that the above definitions imply that $g\left(\tau_{j} \sigma^{n-1}, \sigma\right)=1$. Now

$$
\begin{aligned}
g\left(\tau_{j} \sigma^{h-1}, \sigma\right) & =f\left(\tau_{j} \sigma^{h-1}, \sigma\right) \phi\left(\tau_{j} \sigma^{h-1}\right) \phi^{\tau_{j g} h^{h-1}}(\sigma) / \phi\left(\tau_{j}\right) \\
& =\prod_{i=0}^{h-1} f\left(\tau_{j} \sigma^{i}, \sigma\right) \phi^{\tau} j_{j} \sigma^{i}(\sigma) / \prod_{i=0} g\left(\tau_{j} \sigma^{i}, \sigma\right) \\
& =f\left(\tau_{j}, \sigma^{h}\right)\left[\phi^{\tau^{\tau}}(\sigma)\right]^{h} \\
& =1
\end{aligned}
$$

since the $h^{\text {th }}$ root of unity $\phi(\sigma)$ is present in the inertia ring and hence is left fixed by σ.

Therefore $g(\tau, \sigma)=1$ for all τ in G where σ is a generator of H_{f}. We verify finally that $g\left(\tau, \sigma^{i}\right)=1$ for $1 \leq i \leq h$. From the associativity relation on g together with the above, we have that $g\left(\tau, \sigma^{i}\right)=g\left(\tau \sigma^{i-1}, \sigma\right) g\left(\tau, \sigma^{i-1}\right) / g^{\tau}\left(\sigma^{i-1}, \sigma\right)$ $=1$ for $1 \leq i \leq h$ and therefore $g(\tau, \sigma)=1$ for all τ in G and ρ in H_{f}.

As in Prop. 2.1 of [10], for each element τ of G we let $n(\tau)$ be the integer defined modulo e by the relation $\tau \sigma \tau^{-1}=\sigma^{n(\tau)}$ where σ is a generator of G_{I} and e is the order of G_{l}. With this definition it is easy to check that $\tau \rho \tau^{-1}=\rho^{n(;)}$ for each ρ in G_{I}.

Lemma 1.3. Assume the notation of Lemma 1.2. Then there exists a 2 . cocycle \hat{g} in $Z^{2}(G, U(S))$ cohomologous to g such that $\hat{g}(\tau, \rho)=\hat{g}\left(\rho^{n(\tau)}, \tau\right)=1$ for each element ρ in H_{f} and τ in G.

Proof. Let ρ be in H_{f} and τ in G. Denote by K the quotient field of S and by F the fixed field of $\left\{\rho^{n(\tau)}\right\}$. We first show that $N_{K / F}\left(g\left(\rho^{n(\tau)}, \tau\right)\right)=1$. By the assumption on g and its associativity property we have that $g\left(\rho^{n(\tau)}, \tau \rho^{i}\right)$ $=g\left(\rho^{n(\tau)}, \tau\right)$ and $g\left(\rho^{i n(\tau)}, \tau\right)=g\left(\rho_{j-1}^{n(\tau)}, \tau \rho^{i-1}\right) g^{\rho^{n(\tau)}}\left(\rho^{(i-1) n(\tau)}, \tau\right)$ for all i. These equalities imply that $g\left(\rho^{j n(\tau)}, \tau\right)=\prod_{i=0} g^{\rho^{i n(\tau)}}\left(\rho^{n(\tau)}, \tau\right)$ for $1 \leq j \leq b$, from which it follows that $\prod_{i=0}^{b-1} g^{\rho^{i n(\tau)}}\left(\rho^{n(\tau)}, \tau\right)=g\left(\rho^{b n(\tau)}, \tau\right)=g(1, \tau)=1$ where b is the order of $\left\{\rho^{n(\tau)}\right\}$. Thus $N_{K / F}\left(g\left(\rho^{n(\tau)}, \tau\right)\right)=1$.

Since $N_{K / F}\left(g\left(\rho^{n(\tau)}, \tau\right)\right)=1$ it follows from Th. 3 p. 171 of [11] and the fact that K is a tamely ramified inertial extension of F that $g\left(\rho^{n(\tau)}, \tau\right)=y^{\rho^{n(\tau)}} \xi / y$ for some y in $U(S)$ and $b^{t h}$ root of unity ξ. And $\xi=1$ since $\overline{g\left(\rho^{n(\tau)}, \tau\right)}=\overline{1}$. Now we may construct \hat{g}. Let $G=\cup H_{f} \tau ;$ be a disjoint coset decomposition of G relative to H_{f}. Fix a generator σ of H_{f}. For each τ in G define $\phi(\tau)=1 / y$ where τ is in $H_{f} \tau_{j}$ and y is an element of $U(S)$ for which $g\left(\sigma^{n\left(\tau_{j}\right)}, \tau_{j}\right)=y^{n\left(\tau_{j}\right)} / y$. Now define \hat{g} by $\hat{g}(\tau, \beta)=g(\tau, \beta) \phi(\tau) \phi^{\tau}(\beta) / \phi(\tau \beta)$. It is easy to verify that \hat{g} has the desired properties.

Lemma 1.4. Assume the notation of Lemma 1.3. Then there exists acocycle q in $Z^{2}(G, U(S))$ cohomologous to \hat{g} and satisfying $q(\tau, \sigma)=1$ whenever τ or σ is in H_{f}.

Proof. Let $G=\cup H_{f} \tau_{j}$ be a disjoint right coset decomposition of G relative to the subgroup H_{f}. Define $\phi: G \rightarrow U(S)$ by $\phi\left(\sigma \tau_{j}\right)=1 / \hat{g}\left(\sigma, \tau_{j}\right)$ where σ is in H_{f}. Define $q: G \times G \rightarrow U(S)$ by $q(\tau, \rho)=\hat{g}(\tau, \rho) \phi(\tau \sigma) / \phi(\tau) \phi^{\tau}(\rho)$. Let $\tau=\omega \tau j$ be any element of G where ω is in H_{f}, and let σ be any element of H_{f}.

Then from the definition of q we obtain the equality $q(\tau, \sigma)=q\left(\omega \tau_{j}, \sigma\right)=$ $\hat{g}\left(\omega \tau_{j}, \sigma\right) \hat{g}\left(\omega, \tau_{j}\right) / \hat{g}\left(\omega \sigma^{n\left(\tau_{j}\right)}, \tau_{j}\right)$. By the associativity relation satisfied by the 2-cocycle \hat{g} we have that $\hat{g}\left(\omega \sigma^{n\left(\tau_{j}\right)}, \tau_{j}\right) \hat{g}\left(\omega, \sigma^{n\left(\tau_{j}\right)}\right)=\hat{g}\left(\omega, \sigma^{n\left(\tau_{j}\right)} \tau_{j}\right) \hat{g}^{(\omega}\left(\sigma^{n\left(\tau_{j}\right)}, \tau_{j}\right)$; and together with the assumption on \hat{g} this implies that $\hat{g}\left(\omega \sigma^{n\left(\tau_{j}\right)}, \tau_{j}\right)=\hat{g}(\omega$, $\left.\tau_{j} \sigma\right)$. Since $\hat{g}\left(\omega \tau_{j}, \sigma\right) \hat{g}\left(\omega, \tau_{j}\right)=\hat{g}\left(\omega, \tau_{j} \sigma\right) \hat{g}^{\prime \prime \prime}\left(\tau_{j}, \sigma\right)=\hat{g}\left(\omega, \tau_{j \sigma}\right)$ we conclude that $\boldsymbol{q}(\tau, \sigma)=1$.

On the other hand $q(\sigma, \tau)=q\left(\sigma, \omega \tau_{j}\right)=\hat{g}\left(\sigma, \omega \tau_{j}\right) \hat{g}^{\sigma}\left(\omega, \tau_{j}\right) / \hat{g}\left(\sigma \omega, \tau_{j}\right)$. But $\hat{g}\left(\sigma, \omega \tau_{j}\right) \hat{g}^{\sigma}\left(\omega, \tau_{j}\right)=\hat{g}\left(\sigma \omega, \tau_{j}\right) \hat{g}(\sigma, \omega)=\hat{g}\left(\sigma \omega, \tau_{j}\right)$. Therefore $\boldsymbol{q}(\sigma, \tau)=1$, and this concludes the proof.

Proposition 1.5. Let S be a tamely ramified extension of a complete discrete rank one valuation ring R, and f an element of $Z^{2}(G, U(S))$. Then $H_{f}=J_{f}$.

Proof. By the definition of J_{f} there exists a 2 -cocycle g in $Z^{2}(G, U(S))$ such that g is cohomologous to f and $g(\sigma, \tau)=1$ if σ or τ is in J_{f}. If g is cohomologous to f by $\phi: G \rightarrow U(S)$, then \bar{g} is cohomologous to \bar{f} by $\bar{\phi}: G \rightarrow$ $U(\bar{S})$. The fact that $\bar{g}(\sigma, \tau)=1$ if σ or τ is in J_{f} implies that $J_{f} \subseteq H_{f}$.

To obtain the inclusion $H_{f} \subseteq J_{f}$ we apply the preceding lemmas to f, and so obtain a 2 -cocycle q in $Z^{2}(G, U(S)$) cohomologous to f and satisfying $q(\sigma, \tau)$ $=1$ whenever σ or τ is in H_{f}. It now follows from the definition of J_{f} that $H_{f} \subseteq J_{f}$.
2. Maximal orders. In order to establish necessary and sufficient conditions for a maximal order to be equivalent to a crossed product over a tamely ramified extension in the complete case, the following lemma shall be useful.

Lemma 2.1. Let Σ_{1} and Σ_{2} be equivalent central simple k-algebras, where k is the quotient field of a discrete rank one valuation ring R. If Γ_{1} and Γ_{2} are maximal orders in Σ_{1} and Σ_{2} respectively, then Γ_{1} is equivalent to Γ_{2}.

Proof. Since Σ_{1} and Σ_{2} are equivalent, there exist finitely generated k modules V_{1} and V_{2} such that

$$
\Sigma_{1} \otimes_{k} \operatorname{Hom}_{k}\left(V_{1}, V_{1}\right) \cong \Sigma_{2} \otimes_{k} \operatorname{Hom}_{k}\left(V_{2}, V_{2}\right)
$$

Let Ω_{1} and Ω_{2} be maximal orders in $\operatorname{Hom}_{k}\left(V_{1}, V_{1}\right)$ and $\operatorname{Hom}_{k}\left(V_{2}, V_{2}\right)$ respectively. It is a classical result that Ω_{1} and Ω_{2} are of the form $\Omega_{1}=\operatorname{Hom}_{R}\left(E_{1}, E_{1}\right)$ and $\Omega_{2}=\operatorname{Hom}_{R}\left(E_{2}, E_{2}\right)$ where E_{1} and E_{2} are finitely generated free R-submodules of V_{1} and V_{2} respectively. Now Ω_{1} and Ω_{2} are central separable R-algebras, and therefore it follows from Prop. 8.6 of [2] that $\Gamma_{1} \otimes_{R} Q_{1}$ and $\Gamma_{2} \otimes_{R} \Omega_{2}$ are maximal orders. Since all maximal orders in a central simple algebra over a discrete rank one valuation ring are isomorphic (see Prop. 3.5 of [3]) we conclude that $\Gamma_{1} \otimes \Omega_{1} \cong \Gamma_{2} \otimes \Omega_{2}$. Therefore Γ_{1} is equivalent to Γ_{2}.

Proposition 2.2. Let S be a tamely ramified extension of a complete discrete rank one valuation ring R, and f an element of $Z^{2}(G, U(S))$. Then every maximal order in the central simple k-algebra $\Delta(f, K, G)$ is equivalent to a crossed product over a tamely ramified extension of R.

Proof. By Lemma 1.4 we know that there exists a 2 -cocycle q in $Z^{2}(G$, $U(S))$ such that q is cohomologous to f and $q(\tau, \sigma)=1$ whenever τ or σ is in H_{f}.

The subgroup H_{f} is a normal subgroup of G, so that the fixed field L of H_{f} is a Galois extension of k with Galois group G / H_{f}. Let T denote the integral closure of R in L and observe that T is a tamely ramified extension of R. To show that q takes values in $U(T)$ we shall make use of the following definition. For each element τ of G let $m(\tau)$ be the integer defined modulo e by the relation $\tau^{-1} \omega \tau=\omega^{m(\tau)}$ where ω is a generator of the inertia group G_{I} and e is the order of G_{l}. We proceed to show that $q^{\sigma}(\tau, \rho)=q(\tau, \rho)$ for all σ in H_{f} and all τ and ρ in G. By the associativity property of q we have the equalities

$$
\begin{aligned}
& q(\sigma, \tau \rho) q^{\uparrow}(\tau, \rho)=q(\sigma \tau, \rho) q(\sigma, \tau) \\
& q\left(\tau \sigma^{m(\tau)}, \rho\right) q\left(\tau, \sigma^{m(\tau)}\right)=q\left(\tau, \sigma^{m(\tau)} \rho\right) q^{\tau}\left(\sigma^{m(\tau)}, \rho\right)
\end{aligned}
$$

from which it follows that $q^{\boldsymbol{T}}(\tau, \rho)=q(\sigma \tau, \rho)$ and also $q\left(\tau \sigma^{m(\tau)}, \rho\right)=q\left(\tau, \sigma^{m(\tau)} \rho\right)$. Therefore $q(\sigma \tau, \rho)=q\left(\tau \sigma^{m(\tau)}, \rho\right)=q\left(\tau, \rho \sigma^{m(\tau) m(\rho)}\right)$. And the equality

$$
q\left(\tau, \rho \sigma^{m(\tau) m(\rho)}\right) q^{\tau}\left(\rho, \sigma^{m(\tau) m(\rho)}\right)=q\left(\tau \rho, \sigma^{m(\tau) m(\rho)}\right) q(\tau, \rho)
$$

implies that $q^{\tau}(\tau, \rho)=q(\tau, \rho)$. Hence $q(\tau, \rho)$ is in the fixed field of H_{f}, and so q takes values in $U(T)$.

We may now consider the crossed product $\Delta\left(g, T, G / H_{f}\right)$ where g is the preimage of q under the inflation map $Z^{2}\left(G / H_{f}, U(T)\right) \rightarrow Z^{2}(G, U(S))$. It follows from the definition of the conductor group H_{f} and the second Noether isomorphism theorem, that the conductor group H_{g} is trivial. Therefore we conclude from Theorem 2.5 of [10] that $\Delta\left(g, T, G / H_{f}\right)$ is a maximal order in $\Delta\left(g, L, G / H_{f}\right)$. Now the central simple k-algebra $\Delta\left(g, L, G / H_{f}\right)$ is equivalent to $\Delta(q, K, G)$ (see [1]). If Γ denotes a maximal order in $\Delta(q, K, G)$ it follows from the preceding lemma that Γ is equivalent to the crossed product $\Delta\left(g, T, G / H_{f}\right)$.

Thus we have stablished the following main theorem.
Theorem 2.3. Let Γ be a maximal order over a complete discrete rank one valuation ring R in a central simple algebra Σ. For Γ to be equivalent to a crossed product over a tamely ramified extension of R it is necessary and sufficient that there exists a splitting field K of Σ such that
(1) the integral closure S of R in K is a tamely ramified extension of R
(2) f is in the image of the natural map $Z^{2}(G, U(S)) \rightarrow Z^{2}(G, U(K))$ where f is a 2 -cocycle for which $\Delta(f, K, G)$ is equivalent to Σ.

Corollary 2.4. Let Σ be a central simple algebra over the quotient field k of a complete discrete rank one valuation ring R. If Σ has a splitting field K such that the integral closure S of R in K is a tamely ramified inertial extension of R, then each maximal order Γ in Σ is equivalent to a crossed product over a tamely ramified extension of R.

Proof. We shall prove first that if an extension S of R is a tamely ramified inertial extension of complete discrete rank one valuation rings, then the natural map $H^{2}(G, U(S)) \rightarrow H^{2}(G, U(K))$ is an epimorphism, where K denotes the quotient field of S, and G is the Galois group of K over k. Let f be an element of $Z^{2}(G, U(K))$ and let $[f]$ correspond to $c \bmod N(U(K))$ under the canonical identification $\left.H^{2}(G, U(K))=U(k)\right) / N(U(K))$ which holds because G is a cyclic group. As usual, N denotes norm. Next write c in the form $c=u p^{x}$ where u is in $U(R), x$ is an integer, and p denotes the prime element of R. Let e be the order of G. Because of the assumption on S and R we know that for a
proper choice of the prime element P of S it is true that $P^{e}=v p$ for some element v in $U(R)$, and $\sigma(P)=\xi P$, where ξ is a primitive $e^{t h}$ root of unity in R and σ is a generator of G (see Prop. 3.1 of [10]). Therefore $N(P)= \pm v p$, and so the element $b=(\pm v p)^{-x}$ is also a norm. Hence $c b$ is an element of $U(R)$ which is congruent to $c \bmod N(U \backslash K)$), and from this it follows that the map $H^{2}(G, U(S)) \rightarrow H^{2}(G, U(K))$ is an epimorphism.

Now we may prove the corollary. Since Σ is split by K we know that Σ is equivalent to a crossed product $\Delta(f, K, G)$ for some element $[f]$ in $H^{2}(G$, $U(K)$), (see [1]). By the first part of the proof we may assume that f is in the image of the natural map $Z^{2}(G, U(S)) \rightarrow Z^{2}(G, U(K))$. It now follows from the theorem that a maximal order Γ in Σ is equivalent to a crossed product over a tamely ramified extension of R.

Example 2.5. We present an example to show that a maximal order over a discrete rank one valuation ring need not be equivalent to a crossed product over a tamely ramified extension.

Consider the ring of polynomials $Z[X]$ with coefficients in the integers Z. Let $R=Z[X]_{(2)}$ be the localization of $Z[X]$ at the minimal prime ideal generated by the element 2. Let $K=k(\sqrt{2})$ where k denotes the quotient field of R. Then the integral closure S of R in K is $S=R[\sqrt{2}]$ and the Galois group G of K over k is of order two. Note that S is not a tamely ramified extension of R since the field characteristic of \bar{R} and the ramification index of S over R are both equal to two. Consider the element $[f]$ of $H^{2}(G, U(S))$ which corresponds to $X \bmod N(U(S))$ under the canonical identification $H^{2}(G, U(S))=$ $U(R) / N(U(S))$, and the crossed product $\Delta=\Delta(f, S, G)$.

It may be verified by computation that $\Delta \sqrt{ } 2$ is the unique maximal twosided ideal of Δ. Since $\Delta \sqrt{2}$ is a free left Δ-module it follows from Theorems 2.2 and 2.3 of [3] that Δ is a maximal order.

Suppose now that $\Delta(f, S, G)$ is equivalent to a crossed product $\Delta(g, T, H)$. We shall prove that T cannot be a tamely ramified extension of R. The definition of equivalence implies that there exist finitely generated free R-modules E_{1} and E_{2} such that $\Delta(f, S, G) \otimes_{R} \operatorname{Hom}_{R}\left(E_{1}, E_{1}\right) \cong \Delta(g, T, H) \otimes_{R} \operatorname{Hom}_{R}\left(E_{2}, E_{2}\right)$. Let $\operatorname{rad} T=(A)$. Then the above isomorphism must map $\sqrt{ } 2$ into $A z$ where u is a unit in $\Delta(g, T, H) \otimes \operatorname{Hom}\left(E_{2}, E_{2}\right)$. Therefore $A^{2}=2 v$ for some element v in $U(T)$. Hence the ramification index of T over R is two, and so T cannot
be a tamely ramified extension of R.

References

[1] E. Artin, C. Nesbitt and C. Thrall, Rings with Minimum Condition, Michigan, (1955).
[2] M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. Vol. 97 (1960), pp. 367-409.
[3] M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc. Vol. 97 (1960), pp. 1-24.
[4] M. Auslander and D. S. Rim, Ramification Index and Multiplicity, Ill. J. of Math. Vol. 7 (1963), pp. 566-581.
[5] H. Cartan and S. Eilenberg, Homological Algebra, Princeton, (1956).
[6] M. Harada, Hereditary orders, Trans. Amer. Math. Soc. Vol. 107 (1963), pp. 273-290.
[7] D. G. Northcott, An Introduction to Homological Algebra, Cambridge University Press, (1960).
[8] O. Zariski and P. Samuel, Commutative Algebra, Vol. I, Van Nostrand, (1958).
[9] O. Zariski and P. Samuel, Commutative Algebra, Vol. II, Van Nostrand (1960).
[10] S. Williamson, Crossed Products and Hereditary Orders, Nagoya Math. J. Vol. 23 (1963), pp. 103-120.
[11] N. Bourbaki, Elèments de Mathèmatique, Livre II, Algèbre, Chap. V, Paris, Hermann, (1950).

Harvard University
Cardinal Cushing College

