APPROXIMATION IN BOUNDED SUMMABILITY FIELDS

J. D. HILL AND W. T. SLEDD

1. Introduction. This paper deals with several related properties of bounded summability fields of regular, real matrices. For a matrix $A = (a_{nk})$ and a sequence $x = \{x_n\}$, we write formally

$$A_n(x) = \sum_k a_{nk} x_k$$
 and $A(x) = \lim_n A_n(x)$.

We denote by m the space of bounded real sequences, and by A^* the bounded summability field

 $\{x: x \in m, \text{ and } \lim_n A_n(x) \text{ exists}\}$

of A. The strong summability field of A is the set

 $|A| = \{x: x \in m \text{ and } \lim_{n \to \infty} \sum_{k} |a_{nk}| |x_k - a| = 0 \text{ for some } a\}.$

In §2 we characterize the bounded summability fields A^* whose elements can be uniformly approximated by finite linear combinations of characteristic functions (of disjoint subsets of the natural numbers) belonging to A^* . In §3 we study the multipliers of A^* , and we show that if the elements of the matrix A are non-negative, then the multipliers of A^* coincide with the sequences that are strongly summable by A. Section 4 deals with the strong summability field of a regular matrix.

2. Approximations by characteristic functions. We denote the set of positive integers by N and the normed linear space of bounded real sequences by m. Let L be a closed linear subspace of m. A subset E of N is L-admissible if the characteristic function χ_E is a member of L. An L-admissible partition of N is a finite partition of N into L-admissible subsets and an L-admissible function is a function of the form

$$\Phi = \sum_{i=1}^n \lambda_i \, \chi_{E_i}$$

where the coefficients λ_i are real numbers and the E_i constitute an L-admissible partition of N. We obtain first a sufficient condition for L to be an algebra and then, for the case where L is a bounded summability field, a necessary condition.

THEOREM 2.1. If L is the closure of the L-admissible functions, then L is an algebra.

Received July 15, 1966.

Proof. Let G_1 and G_2 be L-admissible sets, and set

$$\psi = \chi_{G_1} + 2\chi_{G_2}.$$

Then ψ is in L and hence there exists an L-admissible function Φ such that $||\Phi - \psi|| < \frac{1}{2}$. We may write

$$N = \bigcup_{i=1}^{4} F_i$$

where $F_1 = N \setminus (G_1 \cup G_2)$, $F_2 = G_1 \setminus G_2$, $F_3 = G_2 \setminus G_1$, $F_4 = G_1 \cap G_2$. Let $\Phi = \sum_{i=1}^n \lambda_i \chi_{E_i}.$

For each $j = 1, \ldots, n$ there is exactly one *i* between 1 and 4 such that $F_i \cap E_j$ is not empty. Otherwise, if $n_1 \in F_{i_1} \cap E_j$ and $n_2 \in F_{i_2} \cap E_j$, then $\Phi(n_1) = \Phi(n_2)$ while $|\psi(n_1) - \psi(n_2)| \ge 1$. But $|\psi(n_1) - \psi(n_2)| < 1$ since $||\Phi - \psi|| < \frac{1}{2}$.

Moreover, $F_i \supset E_j$ since

$$\bigcup_{k=1}^{4} F_k \cap E_j = E_j.$$

Thus because of the disjointness of the E_p 's and of the F_q 's, each F_q is the disjoint union of E_p 's and consequently each F_q is an *L*-admissible set. This implies that the class of *L*-admissible sets is an algebra of sets.

But this in turn implies that any function of the form

$$\sum_{i=1}^n \lambda_i \chi_{G_i}$$

(where all the G_i are L-admissible sets but not necessarily disjoint) is an L-admissible function. Thus the set of L-admissible functions is an algebra, and since L is the uniform closure of the L-admissible functions, K is also an algebra.

Henriksen and Isbell (3) have shown that a bounded summability field is an algebra if and only if it is the strong summability field of a matrix method. Using their result, we obtain a partial converse of Theorem 2.1.

THEOREM 2.2. If a bounded summability field A^* is a subalgebra of m, then it is the linear closure of the A^* -admissible functions.

Proof. We first prove that A^* is closed, a fact that does not depend on A^* being an algebra.

If $\{x^{(p)}\}\$ is a sequence of elements from A^* and $\lim_p x^{(p)} = x$ in the uniform norm of m, then

$$|A_n(x) - A_j(x)| \le |A_n(x) - A_n(x^{(p)})| + |A_n(x^{(p)}) - A_j(x^{(p)})| + |A_j(x^{(p)}) - A_j(x)|.$$

For sufficiently large p, the first and third terms are small. Fixing p and letting j and n become large, we see that $\{A_n(x)\}$ is a Cauchy sequence. It follows that x belongs to A^* , and hence A^* is closed.

Now we must show that each x in A^* may be approximated by an A^* -admissible function. Assume without loss of generality that $||x|| \leq 1$ and A(x) = 0. Using the above-mentioned result of Henriksen and Isbell, let $A^* = |B|$. Then given $\epsilon > 0$, let

$$F_p = \{k: p \epsilon \leqslant x_k < (p+1)\epsilon\} \qquad (p = 0, \pm 1, \pm 2, \ldots).$$

Observe that since x is bounded, all except finitely many F_p are empty. If $p \ge 1$, then

$$\sum_{k} |b_{nk}| \chi_{F_p}(k) \leqslant \frac{1}{p\epsilon} \sum_{k} |b_{nk}| |x_k|,$$

while if p < -1, then

$$\sum_{k} |b_{nk}| \ \chi_{F_{p}}(k) \leqslant \frac{1}{|p+1|\epsilon} \sum_{k} |b_{nk}| \ |x_{k}|.$$

Hence if $p \neq 0, -1$, then χ_{F_p} is strongly *B*-summable to 0. Thus if

$$E = N \setminus \bigcup_{P \neq 0, -1} F_p,$$

then χ_E is A-summable to 1. Therefore, if we let

$$\Phi(n) = \begin{cases} p & \text{if } n \in F_p, \ p \neq 0, -1 \text{ and } F_p \text{ is not empty,} \\ 0 & \text{if } n \in E, \end{cases}$$

then Φ is an A*-admissible function and $||\Phi - x|| < \epsilon$.

3. Multipliers of bounded summability fields. We define a new subset of A^* . Let

$$A^{**} = \{x \in m: xy = \{x_k y_k\} \in A^* \text{ for each } y \in A^*\}.$$

Since χ_N is in A^* , we see that $A^{**} \subset A^*$ and $A^{**} = A^*$ if and only if A^* is a subalgebra of m. Moreover, A^{**} is itself a closed subalgebra of m.

Our first theorem shows that the linear functional A(x) is multiplicative on A^* when A^* is an algebra. This property of A(x) has been assumed in previous papers dealing with summability fields that are algebras; see (1, 2).

THEOREM 3.1. A(x) is multiplicative on A^{**} .

Proof. If x is in A^{**} and $A(x) \neq 0$, then $B = (a_{nk} x_k/A(x))$ is a regular matrix, and if y is in A^* , then xy belongs to A^* while $B_n(y) = A_n(xy)/A(x)$. Thus y belongs to B^* and therefore $A^* \subset B^*$. By the well-known consistency theorem of Brudno and of Mazur and Orlicz, B(y) = A(y). But

$$B(y) = A(xy)/A(x);$$

hence A(xy) = A(x)A(y).

If x is in A^{**} and A(x) = 0, let $B = (a_{nk} x_k + a_{nk})$. Then B is regular, and if y belongs to A^* , $B_n(y) = A_n(xy) + A_n(y)$. As before, $A^* \subset B^*$, so A(y) = B(y) = A(xy) + A(y). Thus A(xy) = 0 = A(x)A(y).

THEOREM 3.2. Let x belong to A^{**} , and let C denote the compact set of real numbers consisting of the closure of the range of the sequence x and the point A(x). If F is a continuous real-valued function on C, and $y = \{F(x_k)\}$, then y belongs to A^{**} and A(yz) = A(z)F(A(x)) whenever z belongs to A^* .

Proof. By the previous theorem, $A(zx^n) = A(z)[A(x)]^n$ whenever x is in A^{**} , z belongs to A^* , and n is a non-negative integer. Therefore the theorem holds when F is a polynomial. Using the fact that A(x) is continuous in the uniform norm on m and applying the Weierstrass polynomial approximation theorem we obtain the conclusion.

THEOREM 3.3. If $a_{nk} \ge 0$ for all n and k, then $A^{**} = |A|$.

Proof. Let F(t) = |t| and let $z_k = 1$ for each k. Since x is in A^{**} and

$$\lim_{k}\sum_{k}a_{nk}(x_{k}-A(x))=0,$$

it follows from Theorem 3.2 that

$$\lim_{k \to \infty} \sum_{k} a_{nk} |x_{k} - A(x)| = 0.$$

Hence x belongs to |A|. The converse is clearly true.

THEOREM 3.4. If x belongs to A^{**} , then A(x) lies in the interval [lim inf x_k , lim sup x_k].

Proof. Let p be a positive integer and set

$$y_k = \begin{cases} x_k, & k \ge p, \\ \inf x_k, & k < p. \end{cases}$$

Since A is regular, y is in A^{**} and A(y) = A(x). Let $a = \sup y_k$. Then $a - y_k = |a - y_k|$, and by Theorem 3.2 (with F(t) = |t| and $z_k = 1$ for each k)

$$0 \le |A(a - y)| = A(a - y) = a - A(y) = a - A(x).$$

Therefore $A(x) \leq a = \sup_{k \geq p} x_p$. Since this is true for each p, $A(x) \leq \lim \sup x_k$. Similarly, we see that $\lim \inf x_k \leq A(x)$.

A consequence of Theorem 3.4 is that if x belongs to A^{**} , then A(x) must be a limit point of the sequence x. Suppose that A(x) = 0; then by Theorem 3.2, |x| is in A^{**} and |A(x)| = A(|x|) = 0. By Theorem 3.4, the point 0 lies in [lim inf $|x_k|$, lim sup $|x_k|$]. Hence lim inf $|x_k| = 0$. Brauer (1) has proved this result when $A^{**} = A^*$.

In the next section we show that if x belongs to |A|, then A(x) is a limit point of x in a very cogent sense.

4. Strong summability fields.

THEOREM 4.1. If A is a regular matrix, then the bounded sequence x is strongly summable to a if and only if there exists a subset Z of N such that $\chi_{N\setminus Z}$ is strongly A-summable to 0, and $\lim_{n \in \mathbb{Z}} x_n = a$.

Proof. Suppose that there is a such a subset Z of N. Let

$$x^{(1)} = \chi_Z \cdot x$$
 and $x^{(2)} = \chi_N \setminus_Z \cdot x$,

so that $x = x^{(1)} + x^{(2)}$. Then

$$\sum_{k} |a_{nk}| |x_{k} - a| = \sum_{k \in \mathbb{Z}} |a_{nk}| |x_{k}^{(1)} - a| + \sum_{k \in \mathbb{N} \setminus \mathbb{Z}} |a_{nk}| |x_{k}^{(2)} - a|.$$

The matrix $(|a_{nk}| \chi_Z(k))$ carries null sequences into null sequences, while the matrix $(|a_{nk}| \chi_{N\setminus Z}(k))$ carries every bounded sequence into a null sequence. Since $\lim_{k\in \mathbb{Z}} (x_k^{(1)} - a) = 0$ and $|x_k^{(2)} - a|$ is bounded,

$$\lim_{n}\sum_{k}|a_{nk}||x_{k}-a|=0.$$

Conversely, suppose that the last relation holds. Let $y_k = x_k - a$, and for each positive integer p, let

$$E_p = \{k; |y_k| \ge 1/p\}.$$

Then

$$\sum_{k} |a_{nk}| \chi_{E_p}(k) \leqslant p \sum_{k} |a_{nk}| |y_k|;$$

hence

$$\lim_n \sum_k |a_{nk}| \chi_{E_p}(k) = 0.$$

We can now choose two sequences of positive integers $\{m_r\}$ and $\{n_r\}$ inductively so that

$$\lim_{r} \max_{n_r \leq n < n_{r+1}} \left(\sum_{k < m_r} + \sum_{k > m_{r+2}} \right) |a_{nk}| = 0.$$

and

$$\lim_{\tau} \max_{n_{\tau} \leqslant n} \sum_{k} |a_{nk}| \chi_{E_{\tau+1}}(k) = 0.$$

Let

$$F_r = \{k \in E_r: m_r \leqslant k \leqslant m_{r+2}\}$$

and let

$$N \setminus Z = \bigcup_r F_r.$$

Then if $n_r \leq n < n_{r+1}$, we have the inequality

$$\sum_{k} |a_{nk}| \chi_{N \setminus Z}(k) \leqslant \left(\sum_{k < m_r} + \sum_{k > m_r + 2} \right) |a_{nk}| + \sum_{k} |a_{nk}| \chi_{E_{r+1}}(k).$$
$$\lim_{n} \sum_{k} |a_{nk}| \chi_{N \setminus Z}(k) = 0,$$

Thus

and if k is in Z and
$$m_r \leq k \leq m_{r+2}$$
, then $|y_k| < 1/r$. Therefore

 $\lim_{n\in Z} y_n = 0.$

THEOREM 4.2. If $A^* \subset B^*$, then $|A| \subset |B|$.

Proof. If x belongs to |A|, then

$$\lim_n \sum_k |a_{nk}| |x_k - a| = 0$$

for some a, and hence if y belongs to m, then

 $\lim_{n} \sum_{k} |a_{nk}| |x_{k} - a| |y_{k}| = 0.$

This implies that (x - a)y belongs to A^* when y belongs to m, and since $A^* \subset B^*$, then (x - a)y is in B^* . It follows from a theorem of Schur (4) that

$$\lim_{n}\sum_{k}|b_{nk}||x_{k}-a|=0$$

so that x is in |B|.

The converse of Theorem 4.2 is false. For if A is the sequence-to-sequence transformation given by

$$y_n = (x_n + x_{n+1})/2, \quad n = 1, 2, \ldots,$$

and B is ordinary convergence, then |B| = |A|; yet B^* does not contain A^* .

References

- 1. G. Brauer, Evaluation of product sequences by matrix methods, Amer. Math. Monthly, 63 (1956), 323-326.
- M. Henriksen, Multiplicative summability methods and the Stone-Čech compactification, Math. Z., 71 (1959), 427–435.
- M. Henriksen and J. R. Isbell, Multiplicative summability methods and the Stone-Čech compactification, Abstract 608-611, Notices Amer. Math. Soc., 11 (1964), 90.
- 4. I. Schur, Über lineare Transformationen in der Theorie der unendlichen Reihen, J. Reine Angew. Math., 151 (1921), 79–111.

Michigan State University, East Lansing, Michigan