APPROXIMATION IN BOUNDED SUMMABILITY FIELDS

J. D. HILL AND W. T. SLEDD

1. Introduction. This paper deals with several related properties of bounded summability fields of regular, real matrices. For a matrix $A=\left(a_{n k}\right)$ and a sequence $x=\left\{x_{n}\right\}$, we write formally

$$
A_{n}(x)=\sum_{k} a_{n k} x_{k} \quad \text { and } \quad A(x)=\lim _{n} A_{n}(x)
$$

We denote by m the space of bounded real sequences, and by A^{*} the bounded summability field

$$
\left\{x: x \in m, \text { and } \lim _{n} A_{n}(x) \text { exists }\right\}
$$

of A. The strong summability field of A is the set

$$
|A|=\left\{x: x \in m \quad \text { and } \quad \lim _{n} \sum_{k}\left|a_{n k}\right|\left|x_{k}-a\right|=0 \text { for some } a\right\} .
$$

In $\S 2$ we characterize the bounded summability fields A^{*} whose elements can be uniformly approximated by finite linear combinations of characteristic functions (of disjoint subsets of the natural numbers) belonging to A^{*}. In §3 we study the multipliers of A^{*}, and we show that if the elements of the matrix A are non-negative, then the multipliers of A^{*} coincide with the sequences that are strongly summable by A. Section 4 deals with the strong summability field of a regular matrix.
2. Approximations by characteristic functions. We denote the set of positive integers by N and the normed linear space of bounded real sequences by m. Let L be a closed linear subspace of m. A subset E of N is L-admissible if the characteristic function χ_{E} is a member of L. An L-admissible partition of N is a finite partition of N into L-admissible subsets and an L-admissible function is a function of the form

$$
\Phi=\sum_{i=1}^{n} \lambda_{i} \chi_{E_{i}}
$$

where the coefficients λ_{i} are real numbers and the E_{i} constitute an L-admissible partition of N. We obtain first a sufficient condition for L to be an algebra and then, for the case where L is a bounded summability field, a necessary condition.

Theorem 2.1. If L is the closure of the L-admissible functions, then L is an algebra.

Proof. Let G_{1} and G_{2} be L-admissible sets, and set

$$
\psi=\chi_{G_{1}}+2 \chi_{G_{2}} .
$$

Then ψ is in L and hence there exists an L-admissible function Φ such that $\|\Phi-\psi\|<\frac{1}{2}$. We may write

$$
N=\bigcup_{i=1}^{4} F_{i} .
$$

where $F_{1}=N \backslash\left(G_{1} \cup G_{2}\right), F_{2}=G_{1} \backslash G_{2}, F_{3}=G_{2} \backslash G_{1}, F_{4}=G_{1} \cap G_{2}$. Let

$$
\Phi=\sum_{i=1}^{n} \lambda_{i} \chi_{E_{i}}
$$

For each $j=1, \ldots, n$ there is exactly one i between 1 and 4 such that $F_{i} \cap E_{j}$ is not empty. Otherwise, if $n_{1} \in F_{i_{1}} \cap E_{j}$ and $n_{2} \in F_{i_{2}} \cap E_{j}$, then $\Phi\left(n_{1}\right)=\Phi\left(n_{2}\right)$ while $\left|\psi\left(n_{1}\right)-\psi\left(n_{2}\right)\right| \geqslant 1$. But $\left|\psi\left(n_{1}\right)-\psi\left(n_{2}\right)\right|<1$ since $\|\Phi-\psi\|<\frac{1}{2}$.

Moreover, $F_{i} \supset E_{j}$ since

$$
\bigcup_{k=1}^{4} F_{k} \cap E_{j}=E_{j} .
$$

Thus because of the disjointness of the E_{p} 's and of the F_{q} 's, each F_{q} is the disjoint union of E_{p} 's and consequently each F_{q} is an L-admissible set. This implies that the class of L-admissible sets is an algebra of sets.

But this in turn implies that any function of the form

$$
\sum_{i=1}^{n} \lambda_{i} \chi_{G_{i}}
$$

(where all the G_{i} are L-admissible sets but not necessarily disjoint) is an L admissible function. Thus the set of L-admissible functions is an algebra, and since L is the uniform closure of the L-admissible functions, K is also an algebra.

Henriksen and Isbell (3) have shown that a bounded summability field is an algebra if and only if it is the strong summability field of a matrix method. Using their result, we obtain a partial converse of Theorem 2.1.

Theorem 2.2. If a bounded summability field A^{*} is a subalgebra of m, then it is the linear closure of the A^{*}-admissible functions.

Proof. We first prove that A^{*} is closed, a fact that does not depend on A^{*} being an algebra.

If $\left\{x^{(p)}\right\}$ is a sequence of elements from A^{*} and $\lim _{p} x^{(p)}=x$ in the uniform norm of m, then

$$
\begin{aligned}
&\left|A_{n}(x)-A_{j}(x)\right| \leqslant\left|A_{n}(x)-A_{n}\left(x^{(p)}\right)\right|+\left|A_{n}\left(x^{(p)}\right)-A_{j}\left(x^{(p)}\right)\right| \\
&+\left|A_{j}\left(x^{(p)}\right)-A_{j}(x)\right| .
\end{aligned}
$$

For sufficiently large p, the first and third terms are small. Fixing p and letting j and n become large, we see that $\left\{A_{n}(x)\right\}$ is a Cauchy sequence. It follows that x belongs to A^{*}, and hence A^{*} is closed.

Now we must show that each x in A^{*} may be approximated by an A^{*} admissible function. Assume without loss of generality that $\|x\| \leqslant 1$ and $A(x)=0$. Using the above-mentioned result of Henriksen and Isbell, let $A^{*}=|B|$. Then given $\epsilon>0$, let

$$
F_{p}=\left\{k: p \epsilon \leqslant x_{k}<(p+1) \epsilon\right\} \quad(p=0, \pm 1, \pm 2, \ldots)
$$

Observe that since x is bounded, all except finitely many F_{p} are empty. If $p \geqslant 1$, then

$$
\sum_{k}\left|b_{n k}\right| \chi_{F_{p}}(k) \leqslant \frac{1}{p \epsilon} \sum_{k}\left|b_{n k}\right|\left|x_{k}\right|
$$

while if $p<-1$, then

$$
\sum_{k}\left|b_{n k}\right| \chi_{F_{p}}(k) \leqslant \frac{1}{|p+1| \epsilon} \sum_{k}\left|b_{n k}\right|\left|x_{k}\right|
$$

Hence if $p \neq 0,-1$, then $\chi_{F_{p}}$ is strongly B-summable to 0 . Thus if

$$
E=N \backslash \cup_{P \neq 0,-1} F_{p}
$$

then χ_{E} is A-summable to 1 . Therefore, if we let

$$
\Phi(n)= \begin{cases}p & \text { if } n \in F_{p}, p \neq 0,-1 \text { and } F_{p} \text { is not empty, } \\ 0 & \text { if } n \in E,\end{cases}
$$

then Φ is an A^{*}-admissible function and $\|\Phi-x\|<\epsilon$.
3. Multipliers of bounded summability fields. We define a new subset of A^{*}. Let

$$
A^{* *}=\left\{x \in m: x y=\left\{x_{k} y_{k}\right\} \in A^{*} \text { for each } y \in A^{*}\right\}
$$

Since χ_{N} is in A^{*}, we see that $A^{* *} \subset A^{*}$ and $A^{* *}=A^{*}$ if and only if A^{*} is a subalgebra of m. Moreover, $A^{* *}$ is itself a closed subalgebra of m.

Our first theorem shows that the linear functional $A(x)$ is multiplicative on A^{*} when A^{*} is an algebra. This property of $A(x)$ has been assumed in previous papers dealing with summability fields that are algebras; see (1, 2).

Theorem 3.1. $A(x)$ is multiplicative on $A^{* *}$.
Proof. If x is in $A^{* *}$ and $A(x) \neq 0$, then $B=\left(a_{n k} x_{k} / A(x)\right)$ is a regular matrix, and if y is in A^{*}, then $x y$ belongs to A^{*} while $B_{n}(y)=A_{n}(x y) / A(x)$. Thus y belongs to B^{*} and therefore $A^{*} \subset B^{*}$. By the well-known consistency theorem of Brudno and of Mazur and Orlicz, $B(y)=A(y)$. But

$$
B(y)=A(x y) / A(x) ;
$$

hence $A(x y)=A(x) A(y)$.

If x is in $A^{* *}$ and $A(x)=0$, let $B=\left(a_{n k} x_{k}+a_{n k}\right)$. Then B is regular, and if y belongs to $A^{*}, B_{n}(y)=A_{n}(x y)+A_{n}(y)$. As before, $A^{*} \subset B^{*}$, so $A(y)=B(y)=A(x y)+A(y)$. Thus $A(x y)=0=A(x) A(y)$.

Theorem 3.2. Let x belong to $A^{* *}$, and let C denote the compact set of real numbers consisting of the closure of the range of the sequence x and the point $A(x)$. If F is a continuous real-valued function on C, and $y=\left\{F\left(x_{k}\right)\right\}$, then y belongs to $A^{* *}$ and $A(y z)=A(z) F(A(x))$ whenever z belongs to A^{*}.

Proof. By the previous theorem, $A\left(z x^{n}\right)=A(z)[A(x)]^{n}$ whenever x is in $A^{* *}, z$ belongs to A^{*}, and n is a non-negative integer. Therefore the theorem holds when F is a polynomial. Using the fact that $A(x)$ is continuous in the uniform norm on m and applying the Weierstrass polynomial approximation theorem we obtain the conclusion.

Theorem 3.3. If $a_{n k} \geqslant 0$ for all n and k, then $A^{* *}=|A|$.
Proof. Let $F(t)=|t|$ and let $z_{k}=1$ for each k. Since x is in $A^{* *}$ and

$$
\lim _{n} \sum_{k} a_{n k}\left(x_{k}-A(x)\right)=0
$$

it follows from Theorem 3.2 that

$$
\lim _{n} \sum_{k} a_{n k}\left|x_{k}-A(x)\right|=0
$$

Hence x belongs to $|A|$. The converse is clearly true.
Theorem 3.4. If x belongs to $A^{* *}$, then $A(x)$ lies in the interval $\left[\lim \inf x_{k}\right.$, $\lim \sup x_{k}$].

Proof. Let p be a positive integer and set

$$
y_{k}= \begin{cases}x_{k}, & k \geqslant p \\ \inf x_{k}, & k<p\end{cases}
$$

Since A is regular, y is in $A^{* *}$ and $A(y)=A(x)$. Let $a=\sup y_{k}$. Then $a-y_{k}=\left|a-y_{k}\right|$, and by Theorem 3.2 (with $F(t)=|t|$ and $z_{k}=1$ for each k)

$$
0 \leqslant|A(a-y)|=A(a-y)=a-A(y)=a-A(x)
$$

Therefore $A(x) \leqslant a=\sup _{k \geqslant p} x_{p}$. Since this is true for each $p, A(x) \leqslant \lim$ $\sup x_{k}$. Similarly, we see that $\lim \inf x_{k} \leqslant A(x)$.

A consequence of Theorem 3.4 is that if x belongs to $A^{* *}$, then $A(x)$ must be a limit point of the sequence x. Suppose that $A(x)=0$; then by Theorem 3.2, $|x|$ is in $A^{* *}$ and $|A(x)|=A(|x|)=0$. By Theorem 3.4, the point 0 lies in [$\left.\lim \inf \left|x_{k}\right|, \lim \sup \left|x_{k}\right|\right]$. Hence $\lim \inf \left|x_{k}\right|=0$. Brauer (1) has proved this result when $A^{* *}=A^{*}$.

In the next section we show that if x belongs to $|A|$, then $A(x)$ is a limit point of x in a very cogent sense.

4. Strong summability fields.

Theorem 4.1. If A is a regular matrix, then the bounded sequence x is strongly summable to a if and only if there exists a subset Z of N such that $\chi_{M \backslash Z}$ is strongly A-summable to 0 , and $\lim _{n \in Z} x_{n}=a$.

Proof. Suppose that there is a such a subset Z of N. Let

$$
x^{(1)}=\chi_{Z} \cdot x \quad \text { and } \quad x^{(2)}=\chi_{N \backslash Z} \cdot x
$$

so that $x=x^{(1)}+x^{(2)}$. Then

$$
\sum_{k}\left|a_{n k}\right|\left|x_{k}-a\right|=\sum_{k \in Z}\left|a_{n k}\right|\left|x_{k}^{(1)}-a\right|+\sum_{k \in N \backslash Z}\left|a_{n k}\right|\left|x_{k}^{(2)}-a\right| .
$$

The matrix $\left(\left|a_{n k}\right| \chi_{z}(k)\right)$ carries null sequences into null sequences, while the matrix $\left(\left|a_{n k}\right| \chi_{N \backslash z}(k)\right)$ carries every bounded sequence into a null sequence. Since $\lim _{k \in Z}\left(x_{k}{ }^{(1)}-a\right)=0$ and $\left|x_{k}{ }^{(2)}-a\right|$ is bounded,

$$
\lim _{n} \sum_{k}\left|a_{n k}\right|\left|x_{k}-a\right|=0
$$

Conversely, suppose that the last relation holds. Let $y_{k}=x_{k}-a$, and for each positive integer p, let

$$
E_{p}=\left\{k ;\left|y_{k}\right| \geqslant 1 / p\right\}
$$

Then

$$
\sum_{k}\left|a_{n k}\right| \chi_{E_{p}}(k) \leqslant p \sum_{k}\left|a_{n k}\right|\left|y_{k}\right| ;
$$

hence

$$
\lim _{n} \sum_{k}\left|a_{n k}\right| \chi_{E_{p}}(k)=0
$$

We can now choose two sequences of positive integers $\left\{m_{r}\right\}$ and $\left\{n_{r}\right\}$ inductively so that

$$
\lim _{r} \max _{n_{r} \leqslant n<n_{r+1}}\left(\sum_{k<m_{r}}+\sum_{k>m_{r+2}}\right)\left|a_{n k}\right|=0 .
$$

and

$$
\lim _{r} \max _{n_{r} \leqslant n} \sum_{k}\left|a_{n k}\right| \chi_{E_{r+1}}(k)=0 .
$$

Let

$$
F_{r}=\left\{k \in E_{r}: m_{r} \leqslant k \leqslant m_{r+2}\right\}
$$

and let

$$
N \backslash Z=\cup_{r} F_{r} .
$$

Then if $n_{r} \leqslant n<n_{r+1}$, we have the inequality

$$
\sum_{k}\left|a_{n k}\right| \chi_{N \backslash Z}(k) \leqslant\left(\sum_{k<m_{r}}+\sum_{k>m_{r+2}}\right)\left|a_{n k}\right|+\sum_{k}\left|a_{n k}\right| \chi_{E_{r+1}}(k) .
$$

Thus

$$
\lim _{n} \sum_{k}\left|a_{n k}\right| \chi_{N \backslash Z}(k)=0,
$$

and if k is in Z and $m_{r} \leqslant k \leqslant m_{r+2}$, then $\left|y_{k}\right|<1 / r$. Therefore

$$
\lim _{n \in Z} y_{n}=0
$$

Theorem 4.2. If $A^{*} \subset B^{*}$, then $|A| \subset|B|$.
Proof. If x belongs to $|A|$, then

$$
\lim _{n} \sum_{k}\left|a_{n k}\right|\left|x_{k}-a\right|=0
$$

for some a, and hence if y belongs to m, then

$$
\lim _{n} \sum_{k}\left|a_{n k}\right|\left|x_{k}-a\right|\left|y_{k}\right|=0
$$

This implies that $(x-a) y$ belongs to A^{*} when y belongs to m, and since $A^{*} \subset B^{*}$, then $(x-a) y$ is in B^{*}. It follows from a theorem of Schur (4) that

$$
\lim _{n} \sum_{k}\left|b_{n k}\right|\left|x_{k}-a\right|=0
$$

so that x is in $|B|$.
The converse of Theorem 4.2 is false. For if A is the sequence-to-sequence transformation given by

$$
y_{n}=\left(x_{n}+x_{n+1}\right) / 2, \quad n=1,2, \ldots,
$$

and B is ordinary convergence, then $|B|=|A|$; yet B^{*} does not contain A^{*}.

References

1. G. Brauer, Evaluation of product sequences by matrix methods, Amer. Math. Monthly, 63 (1956), 323-326.
2. M. Henriksen, Multiplicative summability methods and the Stone-Čech compactification, Math. Z., 71 (1959), 427-435.
3. M. Henriksen and J. R. Isbell, Multiplicative summability methods and the Stone-Čech compactification, Abstract 608-611, Notices Amer. Math. Soc., 11 (1964), 90.
4. I. Schur, Über lineare Transformationen in der Theorie der unendlichen Reihen, J. Reine Angew. Math., 151 (1921), 79-111.

Michigan State University, East Lansing, Michigan

