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A REMARK ON EMBEDDING
TOPOLOGICAL GROUPS INTO PRODUCTS

VLADIMIR PESTOV

Let P b e a class of topological groups such that every topological group is isomor-
phic to a topological subgroup of the direct product (with Tychonoff topology) of
a subfamily of V. Then every Tychonoff space is homeomorphic to a subspace of
a group from V.

QUESTION. Let V be a certain class of topological groups. Is every topological
group isomorphic to a topological subgroup of the direct product (with the Tychonoff
topology) of a subfamily of V ?

This question was discussed for various classes of topological groups V by
Arhangel'skii [1, 2]. In particular, it was answered in the negative independently by
the author [8] and Guran [4] in the case where V was the class of all topological groups
with unity of type Gg, and also by Guran [5] in the case where V was the class of all
topological groups whose underlying topological spaces were sequential.

The following result throws new light on all possible questions of this kind.

THEOREM. Let V be a class of topological groups. Suppose that continuous
homomorphisms to the groups from V separate points in every Hausdorff topological
group G. Then every Tychonoff space is homeomorphic to a subspace of a group from
V.

PROOF: Let X be an arbitrary Tychonoff space. One can assume without loss in
generality that X is compact. It can be embedded into a Tychonoff space Y such that
any ordered n-tuple of pairwise distinct elements of Y can be sent to any other such
n-tuple by means of an autohomeomorphism of Y [7]. The full autohomeomorphism
group, Aut Y, of Y acts on the free topological group, F(Y), on Y [6] if one extends
autohomeomorphisms of Y to automorphisms of F(Y). This action is continuous if
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the group Aut Y is endowed with the discrete topology. Form the semidirect product
G = AutY «F(Y).

It follows from the assumption of the Theorem that here exist an H £ V and a
continuous f:G—>H such that f(Y) is non-trivial. The restriction of / to Y is one-to-
one. (Indeed, otherwise there exist pairwise distinct x,y,z EY such that /(x) = f(y) ^

f(z). There is an h G Aut Y with h~1xh = y, h~lyh = z, and h~1zh = x. One has
/(y) = f{h)~lf(x)f{h) = fiKf1 f(y)f{h) = /(*), a contradiction.) Therefore, f\x is
a homeomorphism by virtue of the compactness of X. D

COROLLARY . Let V be a class of topological groups. Suppose that every Haus-

dorff topological group G is isomorphic to a topological subgroup of the direct product

(with the Tychonoff topology) of a subfamily of V. Then every Tychonoff space is
homeomorphic to a subspace of a group from V. D

In particular, the two cases mentioned above receive simple answers in the negative.

We hope that our remark can be put in the context of generating varieties of

topological groups [3]. In particular, we suggest the following.

CONJECTURE . Let V be a dass of topological groups. The following are equiv-
alent:

(i) every Hausdorff topological group G is isomorphic to a topological sub-

group of the direct product (with the Tychonoff topology) of a subfamily

ofV;

(ii) every Hausdorff topological group G is isomorphic to a topological sub-

group of a group from V.
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