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The Batalin–Vilkovisky Algebra in the String
Topology of Classifying Spaces

Katsuhiko Kuribayashi and LucMenichi

Abstract. For almost any compact connected Lie groupG and any ûeldFp ,we compute the Batalin–
Vilkovisky algebra H∗+dim G

(LBG;Fp) on the loop cohomology of the classifying space introduced
byChataur and the second author. In particular, if p is odd or p = 0, this Batalin–Vilkovisky algebra
is isomorphic to the Hochschild cohomology HH∗

(H∗(G),H∗(G)). Over F2 , such an isomor-
phism of Batalin–Vilkovisky algebras does not hold when G = SO(3) or G = G2 . Our elaborate
considerations on the signs in string topology of the classifying spaces give rise to a general theo-
rem on graded homological conformal ûeld theory.

1 Introduction

Let M be a closed oriented smoothmanifold and let LM denote the space of free loops
on M. Chas and Sullivan [4] have deûned a product on the homology of LM, called
the loop product,H∗(LM)⊗H∗(LM)→ H∗−dim M(LM). _ey showed that this loop
product, together with the homological Batalin–Vilkovisky operator ∆ ∶ H∗(LM) →
H∗+1(LM), make the shi�ed free loop space homology H∗(LM) ∶= H∗+dim M(LM)
into a Batalin–Vilkovisky algebra, or BV-algebra. Over Q, when M is simply con-
nected, this BV-algebra can be computed using Hochschild cohomology [11]. In
particular, if M is formal over Q, there is an isomorphism of BV-algebras between
H∗(LM) and

HH∗(H∗(M;Q),H∗(M;Q)),
the Hochschild cohomology of the symmetric Frobenius algebra H∗(M;Q). Over a
ûeld Fp , if p ≠ 0, this BV-algebraH∗(LM) is hard to compute. It has been computed
only for complex Stiefel manifolds [41], spheres [34], compact Lie groups [19,35], and
complex projective spaces [5, 18].

Let G be a connected compact Lie group of dimension d and let BG be its clas-
sifying space. Motivated by Freed, Hopkins, and Teleman twisted K-theory [13] and
by a structure of symmetric Frobenius algebra on H∗(G), Chataur and the second
author [6] proved that the homology of LBG, the free loop spacewith coeõcients in a
ûeldK, admits the structure of a d-dimensional homological conformal ûeld theory.
(More generally, ifG acts smoothly onM, Behrend,Ginot,Noohi, andXu [1,_eorem
14.2] proved that H∗(L(EG ×G M)) is a (d − dimM)-homological conformal ûeld
theory.) In particular, the operation associated with a cobordism connecting one-
dimensional manifolds called the pair of pants, deûnes a product on the cohomology
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of LBG, called the dual of the loop coproduct, H∗(LBG)⊗H∗(LBG)→ H∗−d(LBG).
Chataur and the second author showed that the dual of the loop coproduct, together
with the cohomological BV-operator ∆ ∶ H∗(LBG) → H∗−1(LBG), make the shi�ed
free loop space cohomology H∗(LBG) ∶= H∗+d(LBG) into a BV-algebra up to signs.
Over F2, Hepworth and Lahtinen [20] extended this result to non-connected com-
pact Lie groups andmore diõcult, they showed that this d-dimensional homological
conformal ûeld theory, in particular this algebraH∗(LBG), has a unit. One of our re-
sults aims to solve the sign issues and to show that, indeed,H∗(LBG) is a BV-algebra
(Corollary C.3).

In fact, one of the highlights in this manuscript is to show that more generally, the
dual of a d-homological ûeld theory has, a�er a d degree shi�, the structure of a BV-
algebra (_eorems B.1 and C.1). Our elaborate considerations on the signs givemany
explicit computations on H∗(LBG) as mentioned below. Surprisingly, these compu-
tations enable us to determine the signs on the product of the prop in _eorem B.1;
that is, such local computations in string topology of BG give rise to a general theorem
on graded homological conformal ûeld theory.

Lahtinen [30] computed some non-trivial higher operations in the structure of
this d-dimensional homological conformal ûeld theory on the cohomology of BG
for some compact Lie groups G. In this paper, we compute the most important part
of this d-dimensional homological conformal ûeld theory, namely the BV-algebra
H∗(LBG;Fp) for almost any connected compact Lie group G and any ûeld Fp . Ac-
cording to our knowledge, this BV-algebra H∗(LBG;Fp) has never been computed
on any example.

Very recently, Grodal and Lahtinen [15] showed that the mod p cohomology of
a ûnite Chevalley group admits a module structure over this algebra H∗(LBG;Fp),
whereG is the p-compact group ofC-rational points associatedwith the ûnite group.
_is result appears in the program to attack Tezuka’s question [45] about an isomor-
phism compatible with the cup products between this group cohomology and this
free loop space cohomology of BG. _us our explicit computations are also strongly
relevant to the program.

Our method is completely diòerent from the methods used to compute the BV-
algebra H∗(LM) in the known cases recalled above. Suppose that the cohomology
algebra of BG over Fp , H∗(BG;Fp), is a polynomial algebra Fp[y1 , . . . , yN] (few
connected compact Lie groups do not satisfy this hypothesis). _en the cup prod-
uct on H∗(LBG;Fp) was ûrst computed by the ûrst author [28](see [24] for a quick
calculation). Tamanoi [42] explained the relation between the cap product and the
loop product on H∗(LM). Dually, in _eorem 2.2 we give the relation between the
cup product on H∗(LBG) and the BV-algebra H∗(LBG). Knowing the cup prod-
uct on H∗(LBG), this relation gives the dual of the loop coproduct on H∗(LBG)
(_eorem 3.1). But now, since the cohomological BV-operator ∆ (see Appendix E)
is a derivation with respect to the cup product, ∆ is easy to compute. So ûnally, on
H∗(LBG) we have computed the cup product and the BV-algebra structure at the
same time. _is has never been done for the BV-algebraH∗(LM).

If there is no top degree Steenrod operation Sq1 on H∗(BG;F2) or if p is odd or
p = 0, applying _eorem 3.1, we give an explicit formula for the dual of the loop
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coproduct ⊙ in _eorem 4.1 and we show in _eorem 6.2 that there is an isomor-
phism of BV-algebras betweenH∗(LBG;Fp) and HH∗(H∗(G;Fp),H∗(G;Fp)), the
Hochschild cohomology of the symmetric Frobenius algebra H∗(G;Fp).

_e case p = 2 is more intriguing. When p = 2, in general we do not give an
explicit formula for the dual of the loop coproduct ⊙ (however, see _eorem 5.4
for a general equation satisûed by ⊙). But for a given compact Lie group G, ap-
plying _eorem 3.1, we are able to give an explicit formula. As examples, we com-
pute the dual of the loop coproduct when G = SO(3) (_eorem 5.7) or G = G2
(_eorem 5.1). We show (_eorem 6.3) that the BV-algebras H∗(LBSO(3);F2) and
HH∗(H∗(SO(3);F2),H∗(SO(3);F2)), theHochschild cohomology of the symmet-
ric Frobenius algebra H∗(SO(3);F2), are not isomorphic, although the underlying
Gerstenhaber algebras are isomorphic. Such a curious result was observed [34] for
the Chas–Sullivan BV-algebras H∗(LS2;F2).

However, for any connected compact Lie group such that H∗(BG;Fp), is a poly-
nomial algebra, we show (Corollary 4.3 and_eorem 5.8) that as graded algebras

H∗(LBG;Fp) ≅ H∗(G;Fp)⊗H∗(BG;Fp) ≅ HH∗(H∗(G;Fp),H∗(G;Fp)) .
Such isomorphisms of Gerstenhaber algebras should exist (Conjecture 6.1).

We now give the plan of the paper
Section 2: We carefully recall the deûnition of the loop product and of the loop

coproduct, insisting on orientation (_eorem 2.1), and we prove_eorem 2.2.
Section 3: When H∗(X) is a polynomial algebra, following [24, 28], we give the

cup product on H∗(LX). _erefore, (_eorem 3.1) the dual of the loop coproduct is
completely given by _eorems 2.1 and 2.2.

Section 4 is devoted to the simple casewhen the characteristic of the ûeld is diòer-
ent from two or when there is no top degree Steenrod operation.

Section 5: _e ûeld is F2. We give some general properties of the dual of the loop
coproduct (Lemma 5.3, _eorem 5.4). In particular, we show that it has a unit (_e-
orem 5.5). As examples, we compute the dual of the loop coproduct on

H∗(LBSO(3);F2) (_eorem 5.7),

H∗(LBG2;F2) (_eorem 5.1).

Up to an isomorphism of graded algebras, H∗(LX;F2) is just the tensor product of
algebras

H∗(X;F2)⊗H−∗(ΩX;F2) = F2[V]⊗ Λ(sV)∨ (_eorem 5.8).

As examples, we compute the BV-algebra

H∗+3(LBSO(3);F2) ≅ Λ(u−1 , u−2)⊗ F2[v2 , v3] (_eorem 5.13)

and the BV-algebra

H∗+14(LBG2;F2) ≅ Λ(u−3 , u−5 , u−6)⊗ F2[v4 , v6 , v7] (_eorem 5.14).

Section 6: A�er studying the formality and the coformality of BG, we compare
the associative algebras, the Gerstenhaber algebras, the BV-algebras H∗(LBG) and
HH∗(H∗(G),H∗(G)) under various hypothesis.

Section 7: Independently of the rest of the paper,we show that the loop product on
H∗(LBG;Fp) is trivial if and only if the inclusion of the ûbre ι ∶ ΩBG↪ LBG induces
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a surjectivemap in cohomology, if and only if H∗(BG;Fp) is a polynomial algebra, if
and only if BG is Fp-formal (when p is odd).
Appendix A: We solve some sign problems in the results [6]. In particular, we

correct the deûnition of integration along the ûbre and the main dual theorem con-
cerning the prop structure on H∗(LX).
Appendix B: H∗(LX) is equipped with a graded associative and graded commu-

tative product ⊙.
AppendixC: In fact,H∗(LX) equippedwith⊙ and the BV-operator∆ is aBV-alge-

bra since the BV identity arises from the lantern relation.
Appendix D: _is BV identity comes from seven equalities involving Dehn twists

and the prop structure on themapping class group.
Appendix E: We compare diòerent deûnitions of the BV-operator ∆ ∶ H∗(LX) →

H∗−1(LX).
Appendix F: We compute the Gerstenhaber algebra structure on the Hochschild

cohomology HH∗(S(V), S(V)) of a free commutative graded algebra S(V) (_eo-
rem F.3). In particular, we give the BV-algebra structure on theHochschild cohomol-
ogy HH∗(Λ(V),Λ(V)) of a graded exterior algebra Λ(V).

2 The Dual of the Loop Coproduct

In this paper, for simplicity, all the results are stated for a connected compactLie group
G. But they are also valid for an exotic p-compact group. Indeed, following [6], we
only require that G is a connected topological group (or a pointed loop space) with
ûnite-dimensional cohomology H∗(G;Fp). _is is the main diòerence from [20],
whereHepworth and Lahtinen required the smoothness of G.

Let K be a ûeld. Let X be a simply-connected space satisfying the condition that
H∗(ΩX;K) is of ûnite dimension. _en there exists a unique integer d such that
H i(ΩX;K) = 0 for i > d and Hd(ΩX;K) ≅ K. In order to describe our results,
we ûrst recall the deûnitions of the product Dlcop on H∗+d(LX;K) and of the loop
product on H∗−d(LX;K) in [6].

Let F be the pair of pants regarded as a cobordism between one ingoing circle and
two outgoing circles. _e ingoingmap in ∶ S1 ↪ F and outgoingmap out ∶ S1∐ S1 ↪ F
give the correspondence

LX map(F , X)
map(in,X)oooo map(out,X) // // LX × LX

where map(in, X) and map(out, X) are orientable ûbrations. A�er orienting them,
the integration along the ûbre induces amap in cohomology

map(in, X)! ∶ H∗+d(map(F , X))Ð→ H∗(LX)

and amap in homology

map(out, X)! ∶ H∗(LX)⊗2 Ð→ H∗+d(map(F , X)).
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See AppendixA for the deûnition of the integration along the ûbre. By deûnition, the
loop product is the composite

H∗(map(in, X)) ○map(out, X)! ∶ Hp−d(LX)⊗Hq−d(LX)
Ð→ Hp+q−d(map(F , X))Ð→ Hp+q−d(LX).

By deûnition, the dual of the loop coproduct, denoted Dlcop, is the composite

map(in, X)! ○H∗(map(out, X)) ∶ Hp+d(LX)⊗Hq+d(LX)
Ð→ Hp+q+2d(map(F , X))Ð→ Hp+q+d(LX).

_e pair of pants F is themapping cylinder of c∐ π ∶ S1∐(S1∐ S1)→ S1 ∨ S1 where
c ∶ S1 → S1 ∨ S1 is the pinch map and π ∶ S1∐ S1 → S1 ∨ S1 is the quotient map.
_erefore the wedge of circles S1 ∨ S1 is a strong deformation retract of the pair of
pants F. _e retract r ∶ F ≈↠ S1 ∨ S1 corresponds to lowering his pants and tucking up
his trouser legs at the same time:

Figure 1: _e homotopy between the pairs of pants and the ûgure eight.

_us we have the commutative diagram

LX map(F , X)
map(out,X) //map(in,X)oo LX×2

LX ×X LX
Comp

hh

q

55

map(r ,X)≈

OO

where Comp is the composition of loops and q is the inclusion. If X were a closed
manifold M of dimension d, Comp and q would be embeddings. And the Chas–
Sullivan loop product is the composite

H∗(Comp) ○ q! ∶ Hp+d(LM)⊗Hq+d(LM)
Ð→ Hp+q+d(LM ×M LM))Ð→ Hp+q+d(LM).

while the dual of the loop coproduct is the composite

Comp! ○H∗(q) ∶ Hp−d(LM)⊗Hq−d(LM)
Ð→ Hp+q−2d(LM ×M LM)Ð→ Hp+q−d(LM).

_erefore, although Comp and q are not ûbrations, by an abuse of notation, we will
sometimes say that in the case of string topology of classifying spaces [6], the loop
product on H∗−d(LX) is still H∗(Comp) ○ q!, while Dlcop is Comp! ○H∗(q).
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_e shi�ed cohomologyH∗(LX) ∶= H∗+d(LX) together with the dual of the loop
coproduct Dlcop deûned in [6] is a BV-algebra, in particular a graded commutative
associative algebra, only up to signs, for two reasons.

• First, the integration along the ûbre deûned in [6] usually does not satisfy the
usual property with respect to the product. We have corrected this sign mistake in
Appendix A.
• Second, as explained in Appendix A, this is also due to the non-triviality of the

prop detH1(F , ∂out;Z)⊗d (if d is odd).

Nevertheless, we have_eorem C.1. In particular, we have thatH∗(LX) equipped
with the operator ∆ induced by the action of the circle on LX (see our deûnition
in Appendix E) is a BV-algebra with respect to the product ⊙ deûned by a ⊙ b =
(−1)d(d−∣a∣)Dlcop(a ⊗ b) for a ⊗ b ∈ H∗(LX)⊗H∗(LX); see Corollary C.3.

In order to investigate Dlcop more precisely, we need to know how the ûbration
map(in, X) is oriented. As explained in [6, §11.5], we must choose a pointed homo-
topy equivalence f ∶ F/∂in

≈→ S1. _en the ûbre map∗(F/∂in , X) of map(in, X) is
oriented by the composite

τ ○Hd(map∗( f , X)) ∶ Hd(map∗(F/∂in , X))Ð→ Hd(ΩX)Ð→ K,

where τ is the chosen orientation on ΩX. In this paper, we choose f such that we
have the following homotopy commutative diagram

map∗(F/∂in , X) incl // map(F , X)

ΩX

map∗( f ,X) ≈

OO

j
// LX ×X LX

map(r ,X)≈

OO

where incl is the inclusion of the ûbre of map(in, X) and j is the map deûned by
j(ω) = (ω,ω−1).

_eorem 2.1 Let ι ∶ ΩX ↪ LX be the inclusion of pointed loops into free loops. Let
S be the antipode of the Hopf algebra H∗(ΩX). Let τ ∶ Hd(ΩX) → K be the chosen
orientation on ΩX. Let a ∈ Hp(LX) and b ∈ Hq(LX) such that p + q = d. _en with
the above choice of pointed homotopy equivalence f ∶ F/∂in

≈→ S1,

a ⊙ b = (−1)d(d−p)τ (Hp(ι)(a) ∪ S ○Hq(ι)(b)) 1H∗(LX) .

Proof Let F
incl
↪Ð→ E

projÐÐ→→ B be anoriented ûbrationwithorientation τ ∶ Hd(F)→ K.
By deûnition or by naturalitywith respect to pull-backs, the integration along the ûbre
proj! is in degree d the composite

Hd(E) Hd(incl)ÐÐÐÐ→ Hd(F) τÐ→ K
ηÐ→ H0(B)
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where η is the unit of H∗(B). _erefore Dlcop is given by the commutative diagram

Hd(LX × LX)
Hd map(out,X)

vv
Hd(q)
��

Hd(ι×ι)

((
Hd(map(F , X))

Hd map(r ,X)//

Hd(incl)
��

map(in,X)!

&&

Hd(LX ×X LX)

Hd( j)
��

Hd(incl)// Hd(ΩX ×ΩX)

Hd(Id× Inv)
��

Hd(map∗(F/∂in))
Hd map∗( f ,X)

// Hd(ΩX)

τ

��

Hd(ΩX ×ΩX)
Hd(∆)

oo

H0(LX) K
ηoo

where incl ∶ ΩX ×ΩX ↪ LX ×X LX is the inclusion and Inv ∶ ΩX → ΩX maps a loop
ω to its inverse ω−1. _erefore,

Dlcop(a ⊗ b) = τ(Hp(ι)(a) ∪ S ○Hq(ι)(b)) 1H∗(LX) .

We deûne a bracket { ⋅ , ⋅} on H∗(LX) with the product ⊙ and the BV-operator
∆ ∶ H∗(LX)→ H∗−1(LX) by

{a, b} = (−1)∣a∣∆(a ⊙ b) − (−1)∣a∣∆(a)⊙ b − a ⊙ ∆(b)

for a, b in H∗(LX). By _eorem C.3, this bracket is exactly a Lie bracket. _e fol-
lowing theorem is an analogue for the string topology of classifying spaces [6] to the
theorems ofTamanoi [42] forChas–Sullivan string topology [4]. _is analogy is quite
surprising and complete. For our calculations, in the rest of the paper, we use only
parts (i)–(iii) of this theorem. Let ev ∶ LX ↠ X be the evaluation map deûned by
ev(γ) = γ(0) for γ ∈ LX.

_eorem 2.2 (Cup products in string topology of classifying spaces) Let X be a simply-
connected space such that H∗(ΩX;K) is ûnite-dimensional. Let P, Q ∈ H∗(X), and a
and b ∈ H∗(LX).

(i) (Cf. [42,_eorem A (1.2)]) _e dual of the loop coproduct

⊙∶ H∗(LX)⊗H∗(LX)Ð→ H∗(LX)

is amorphism of le� H∗(X)⊗H∗(X)-modules:

(H∗(ev)(P) ∪ a)⊙ (H∗(ev)(Q) ∪ b)
= (−1)(∣a∣−d)∣Q ∣H∗(ev)(P) ∪H∗(ev)(Q) ∪ (a ⊙ b).

(ii) (See [42,_eoremA (1.3)])_e cup productwith ∆○H∗(ev)(P) is a derivation
with respect to the algebra (H∗(LX),⊙):

∆ ○H∗(ev)(P) ∪ (a ⊙ b) = (∆ ○H∗(ev)(P) ∪ a)⊙ b
+ (−1)(∣P∣−1)(∣a∣−d)a ⊙ (∆ ○H∗(ev)(P) ∪ b).
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(iii) Let r ≥ q0. Let P1, . . . , Pr be r elements of H∗(X). Denote by X i ∶= ∆ ○
H∗(ev)(Pi). _en

(H∗(ev)(P) ∪ a)⊙ (H∗(ev)(Q) ∪ X1 ∪ ⋅ ⋅ ⋅ ∪ Xr ∪ b) = (−1)(∣a∣−d)(∣Q ∣+∣X1 ∣+⋅⋅⋅+∣Xr ∣)

× ∑
0≤ j1 , . . . , jr≤1

±H∗(ev)(P)∪H∗(ev)(Q)∪X1− j1
1 ∪⋅ ⋅ ⋅∪X1− jr

r ∪((X j1
1 ∪⋅ ⋅ ⋅∪X

jr
r ∪a)⊙b) ,

where ± is the sign (−1) j1+⋅⋅⋅+ jr+∑r
k=1(1− jk)∣Xk ∣( j1 ∣X1 ∣+⋅⋅⋅+ jk−1 ∣Xk−1 ∣).

(iv) (See [42,_eoremA(1.4) ])_e cup productwith∆○H∗(ev)(P) is a derivation
with respect to the bracket

∆ ○H∗(ev)(P) ∪ {a, b}
= {∆ ○H∗(ev)(P) ∪ a, b} + (−1)(∣P∣−1)(∣a∣−d−1){a, ∆ ○H∗(ev)(P) ∪ b} .

(v) (See [42, formula p. 1220, line -9])_e following formula gives a relation for the
cup product of H∗(ev)(P) with the bracket

{H∗(ev)(P) ∪ a, b}
= H∗(ev)(P) ∪ {a, b} + (−1)∣P∣(∣a∣−d−1)a ⊙ (∆ ○H∗(ev)(P) ∪ b).

(vi) (See [42,_eorem B])_e direct sum H∗(X)⊕H∗(LX) is a BV-algebrawhere
the dual of the loop coproduct ⊙, the bracket, and the ∆ operator are extended by

P ⊙ a ∶= H∗(ev)(P) ∪ a, P ⊙ Q ∶= P ∪ Q

{P, a} ∶= (−1)∣P∣∆ ○H∗(ev)(P) ∪ a, {P,Q} ∶= 0,
∆(P) ∶= 0.

(vii) (See [42, _eorem C]) Suppose that the algebra (H∗(LX),⊙) has a unit I.
Let s! ∶ H∗(X) → H∗+d(LX) be the map sending P to H∗(ev)(P) ∪ I. _en s! is a
morphism of BV-algebras with respect to the trivial BV-operator on H∗(X) and

H∗(ev)(P) ∪ a = s!(P)⊙ a and (−1)∣P∣∆ ○H∗(ev)(P) ∪ a = {s!(P), a}.

To prove parts (i) and (ii), it is shorter to use the following lemma. _is lemma is
just the cohomological version of [4, _eorem 8.2] when we replace the correspon-

dence LM × LM
q

↪Ð→ LM ×M LM
CompÐÐÐ→ LM by its opposite

LX
Comp←ÐÐÐ LX ×X LX

q
↪Ð→ LX × LX .

Similarly, itwould have been shorter for Tamanoi to prove [42,_eoremA (1.2), (1.3)]
using [4,_eorem 8.2].

Lemma 2.3 Let a = ∑ a1 ⊗ a2 ∈ H∗(LX × LX) and A ∈ H∗(LX) such that
H∗(Comp)(A) = H∗(q)(a). _en for any z1, z2 ∈ H∗(LX),

A∪ (z1 ⊙ z2) =∑(−1)(∣z1 ∣−d)∣a2 ∣(a1 ∪ z1)⊙ (a2 ∪ z2).
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Proof Integration along the ûbre, Comp!, is a morphism of le� H∗(LX)-modules
with the correct signs (see our deûnition of integration along the ûbre in cohomology
in Appendix A). _erefore

Comp!(H∗(Comp)(A) ∪ y) = (−1)d ∣A∣A∪Comp!(y).
Let z ∶= z1 ⊗ z2 ∈ H∗(LX × LX). Since H∗(q) is amorphism of algebras,

(−1)d ∣A∣Dlcop(a ∪ z) = (−1)d ∣A∣Comp! ○H∗(q)(a ∪ z)
= (−1)d ∣A∣Comp!(H∗(Comp)(A) ∪H∗(q)(z))
= A∪Comp! ○H∗(q)(z) = A∪Dlcop(z).

_en the previous equation is

A∪ (−1)d(∣z1 ∣−d)z1 ⊙ z2

=∑(−1)d(∣a1 ∣+∣a2 ∣)(−1)d(∣a1 ∣+∣z1 ∣−d)(−1)∣a2 ∣∣z1 ∣(a1 ∪ z1)⊙ (a2 ∪ z2).

Proof of_eorem 2.2 (i) We have the commutative diagram

LX

ev
''

LX ×X LX
Compoo q //

��

LX × LX

ev× ev
��

X
δ

// X × X

_erefore by applying Lemma 2.3 to a ∶= H∗(ev× ev)(P⊗Q),A ∶= H∗(δ○ev)(P⊗Q),
z1 ∶= a, and z2 ∶= b, we obtain (i).

(ii) By [42, Proof of_eorem 4.2 (4.5)]

Comp∗(∆ ○H∗(ev)(P)) = H∗(q)(∆ ○H∗(ev)(P) × 1 + 1 × ∆ ○H∗(ev)(P)).
So we can apply Lemma 2.3 to a ∶= ∆ ○ H∗(ev)(P) × 1 + 1 × ∆ ○ H∗(ev)(P) and
A ∶= ∆ ○H∗(ev)(P).

(iii) _e case r = 0 is just (i). Now, by induction on r,

(H∗(ev)(P) ∪ a)⊙ (H∗(ev)(Q) ∪ X1 ∪ ⋅ ⋅ ⋅ ∪ Xr−1 ∪ (Xr ∪ b))
= (−1)(∣a∣−d)(∣Q ∣+∣X1 ∣+⋅⋅⋅+∣Xr−1 ∣) ∑

0≤ j1 , . . . , jr−1≤1
±H∗(ev)(P) ∪H∗(ev)(Q)

∪ X1− j1
1 ∪ ⋅ ⋅ ⋅ ∪ X1− jr−1

r−1 ∪ ((X j1
1 ∪ ⋅ ⋅ ⋅ ∪ X jr−1

r−1 ∪ a)⊙ (Xr ∪ b))
But by (ii),

(X j1
1 ∪ ⋅ ⋅ ⋅ ∪ X jr−1

r−1 ∪ a)⊙ (Xr ∪ b)

=
1

∑
jr=0

(−1)∣Xr ∣(∣a∣−d)+ jr+(1− jr)∣Xr ∣∑r−1
l=1 j l ∣X l ∣X1− jr

r ∪ ((X j1
1 ∪ ⋅ ⋅ ⋅ ∪ X jr

r ∪ a)⊙ b).

(iv) By using _eorem 2.2 (ii), the same argument as in [42, Proof of_eorem 4.5]
deduces the derivation formula on the bracket.

(v)Again, the arguments are identical to those given by Tamanoi [42, end of proof
of_eorem 4.7].
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(vi) As explained by Tamanoi [42, proof of _eorem 4.7], (ii), (iv), and (v) are
equivalent to the Poisson and Jacobi identities in the Gerstenhaber algebra

H∗(X)⊕H∗(LX).

By deûnition of the bracket, this Gerstenhaber algebra is a BV-algebra [42, proof of
_eorem 4.8].

(vii) Since H∗+d(LX) is an H∗(X)-algebra, (_eorem 2.2 (i)), themap

s! ∶ H∗(X)→ H∗+d(LX), P ↦ H∗(ev)(P) ∪ I,

is amorphism of unital commutative graded algebras (we denote this map s! because
this map should coincide with some Gysin map of the trivial section s ∶ X ↪ LX [6].
Indeed, byH∗(LX)-linearity, s!(P) = s!○H∗(s)○H∗(ev)(P) = (−1)d ∣P∣H∗(ev)(P)∪
s!(1).

Since the cup productwith∆○H∗(ev)(P) is a derivationwith respect to the dual of
the loop coproduct, ∆ ○H∗(ev)(P)∪ I = 0. SinceH∗(LX) is a BV-algebra, ∆(I) = 0.
_erefore, since ∆ is a derivation with respect to the cup product,

∆(s!(P)) = ∆ ○H∗(ev)(P) ∪ I + (−1)∣P∣H∗(ev)(P) ∪ ∆(I) = 0 + 0.

Now we can conclude using the same arguments as in [42, proof of_eorem 5.1].

Remark 2.4. Suppose that the algebra H∗(LX) is generated by H∗(X) and
∆(H∗(X)). _en by _eorem 2.2 (iii) when b = 1, we see that the dual of the loop
coproduct ⊙ is completely given by the cup product, by the ∆ operator, and by its re-
striction onH∗(LX)⊗ 1. In the following section, we show that this is the case when
H∗(X) is a polynomial (see Remark 3.2).

3 The Cup Product on Free Loops and the Main Theorem

Let X be a simply-connected space with polynomial cohomology: H∗(X) is a poly-
nomial algebra K[y1 , . . . , yN]. _e cup product on the free loop space cohomology
H∗(LX;K) was ûrst computed by the ûrst author [28,_eorem 1.6]. We now explain
how to recover simply this computation following [24, p. 648].

Let σ ∶ H∗(X)→ H∗−1(ΩX) be the suspension homomorphism and σ(y i) be the
suspension image of y i . By Borel’s theorem [38, ChapterVII.Corollary 2.8(2)],which
can be easily proved using the Eilenberg–Moore spectral sequence associatedwith the
path ûbration ΩX ↪ PX ↠ X since E∗,∗2 ≅ Λ(σ(y1), . . . , σ(yN)),

H∗(ΩX;K) = ∧(σ(y1), . . . , σ(yN)),

where ∧σ(y i) denotes an algebra with a simple system of generators σ(y i) (Here
an algebra with a simple system of generators x i is a graded commutative algebra,
denoted ∧x i , such that the products of the form x i1x i2 ⋅ ⋅ ⋅ x ir with 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ <
ir ≤ N and r ≥ 0 form a linear basis of the algebra [38, Deûnition p. 367]). If ch(K) ≠
2, ∧σ(y i) is just the exterior algebra Λσ(y i).

Let ∆ ∶ H∗(LX) → H∗−1(LX) be the operator induced by the action of the cir-
cle on LX (Appendix E). Let D ∶= ∆ ○H∗(ev) denote themodule derivation in [28].
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Since ∆ is a derivationwith respect to the cup product,D is a (H∗(ev),H∗(ev))-deri-
vation [28, Proposition 3.3]. Since ∆ and H∗(ev) commutes with the Steenrod op-
erations, D also commutes with them [28, Proposition 3.3]. Since the composite
H∗(ι) ○D is the suspension homomorphism σ [24, Proposition 2(1)], H∗(ι) is sur-
jective and so by the Leray–Hirsch theorem,

H∗(LX;K) = H∗(X)⊗ ∧(D(y1), . . . ,D(yN))
as H∗(X)-algebra. Modulo 2, it follows from above that H∗(LX;F2) is the polyno-
mial algebra F2[H∗(ev)(y i),Dy i] quotiented by the relations

(Dy i)2 =D(Sq∣y i ∣−1 y i).
In particular, we have ∆(H∗(ev)(y i)) = Dy i and ∆(Dy i) = 0, since ∆ ○ ∆ = 0.
_erefore,we know the cup product and the ∆ operator onH∗(LX;K). _e following
theorem shows that we also know the dual of the loop coproduct.

_eorem 3.1 Let X be a simply-connected space such thatH∗(X;K) is the polynomial
algebraK[y1 , . . . , yN]. Denote again by y i , the element of H∗(LX), H∗(ev)(y i), and
by x i , ∆ ○H∗(ev)(y i). O�en, the cup product a∪ b on H∗(LX) is now simply denoted
ab. With respect to this cup product, as algebras we have

H∗(LX) = K[y1 , . . . , yN]⊗ ∧(x1 , . . . , xN).
Let d be the degree of x1 ⋅ ⋅ ⋅ xN . _en the dual of the loop coproduct

⊙∶ H i(LX)⊗H j(LX)Ð→ H i+ j−d(LX)
is given inductively (Remark 3.2) by the following four formulas.

(i) For any a and b ∈ H∗(LX), for all 1 ≤ i ≤ N ,

a ⊙ x ib = (−1)∣x i ∣(∣a∣−d)x i(a ⊙ b) − (−1)d ∣x i ∣ax i ⊙ b
(ii) Let {i1 , . . . , i l} and { j1 , . . . , jm} be two disjoint subsets of {1, . . . ,N} such that

{i1 , . . . , i l} ∪ { j1 , . . . , jm} = {1, . . . ,N}. If we orient τ ∶ Hd(ΩX) ≅→ K by
τ ○H∗(ι)(x1 . . . xN) = 1,

then x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x jm = (−1)Nm+mε, where ε is the signature of the permutation

( 1 ⋅ ⋅ ⋅ l +m
i1 ⋅ ⋅ ⋅ i l j1 ⋅ ⋅ ⋅ jm

) .

(iii) Let {i1 , . . . , i l} and { j1 , . . . , jm} be two disjoint subsets of {1, . . . ,N} such that
{i1 , . . . , i l} ∪ { j1 , . . . , jm} ≠ {1, . . . ,N}. _en x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x jm = 0.

(iv) ⊙ is a morphism of le� H∗(X) ⊗ H∗(X)-modules: for P,Q ∈ H∗(X) and
a, b ∈ H∗(LX), one has (−1)∣Q ∣(∣a∣−d)Pa ⊙ Qb = PQ(a ⊙ b).

Proof Note that if y i is of odd degree, then 2 = 0 in K. (i) and (iv) are particular
cases of_eorem 2.2 (i) and (ii). Since x i1 ⋅ ⋅ ⋅ x i l ⊗ x j1 ⋅ ⋅ ⋅ x jm is of degree less than d,
for degree reasons, we have (iii).

(ii) Since H∗(ι)(x i) = H∗(ι) ○ ∆ ○ H∗(ev)(y i) is the suspension of y i , denoted
σ(y i), by _eorem 2.1,

x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x jm = (−1)Nmτ(σ(y i1) ⋅ ⋅ ⋅ σ(y i l ) ∪ S(σ(y j1) ⋅ ⋅ ⋅ σ(y jm)) 1.
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Since σ(y i) is a primitive element, S(σ(y i)) = −σ(y i). Since the antipode

S ∶ H∗(ΩX)→ H∗(ΩX)

is also amorphism of commutative graded algebras,

x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x jm = (−1)Nm+mετ(σ(y1) ⋅ ⋅ ⋅ σ(yN)).

Remark 3.2. We now explainwhy the four formulas of_eorem 3.1 determine induc-
tively the dual of the loop coproduct⊙. For P ∈ H∗(X) and {i1 , . . . , i l} a strict subset
of {1, . . . ,N}, by (ii), (iii), and (iv), Px i1 ⋅ ⋅ ⋅ x i l ⊙1 = 0 and Px1 ⋅ ⋅ ⋅ xN⊙1 = P. _erefore,
we know the restriction of ⊙ onH∗(LX)⊗ 1. Since the algebra H∗(LX) is generated
byH∗(X) and ∆(H∗(X)), the product⊙ is now given inductively by (i) and (iv) (see
Remark 2.4).

_e restriction of⊙∶ H∗(LX)⊗ 1→ H∗(X) looks similar to the intersection mor-
phism ι! ∶ H∗(LM)→ H∗(ΩM) for amanifoldM given by the loop productwith the
constant pointed loop.

4 Case p Odd or No Sq1

Let Sq1 be the operator H∗(BG;F2) → H∗(BG;F2) deûned by Sq1(x) = Sqdeg x−1 x
for x ∈ H∗(BG;F2).

Suppose that H∗(BG;K) is a polynomial algebraK[y1 , . . . , yN] and that

(H) : Sq1 ≡ 0 on H∗(BG) ifK = F2 or the characteristic ofK is
diòerent from 2.

(Since Sq1(PQ) = P2 Sq1(Q) + Sq1(P)Q2, it suõces to check that Sq1(y i) = 0 for
all i.) _en it follows from Section 3 (or [26, Remark 3.4]) that

H∗(LBG;K) = ∧(x1 , . . . , xN)⊗K[y1 , . . . , yN]

as an algebra where x i ∶= ∆ ○H∗(ev)(y i). _en we have the following.

_eorem 4.1 Under hypothesis (H), an explicit form of the dual of the loop coproduct
⊙∶ H∗(LBG;K)⊗H∗(LBG;K)→ H∗−dim G(LBG;K) is given by

x i1 ⋅ ⋅ ⋅ x i l a ⊙ x j1 ⋅ ⋅ ⋅ x jmb = (−1)ε
′+ε+m+u+lu+Nmxk1 ⋅ ⋅ ⋅ xku ab

if {i1 , . . . , i l} ∪ { j1 , . . . , jm} = {1, . . . ,N} and x i1 ⋅ ⋅ ⋅ x i l a ⊙ x j1 ⋅ ⋅ ⋅ x jmb = 0 otherwise,
where {i1 , . . . , i l} ∩ { j1 , . . . , jm} = {k1 , . . . , ku}, a, b ∈ H∗(BG),

(−1)ε = sgn( j1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ jm
k1⋅ ⋅ ⋅ ku j1 ⋅ ⋅ ⋅ k̂1 ⋅ ⋅ ⋅ k̂u ⋅ ⋅ ⋅ jm

) ,

(−1)ε
′
= sgn( i1⋅ ⋅ ⋅ i l j1 ⋅ ⋅ ⋅ k̂1 ⋅ ⋅ ⋅ k̂u ⋅ ⋅ ⋅ jm

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ N
) .

Here x̂ means that the element x disappears from the presentation.
OverR, Behrend,Ginot,Noohi, andXu [1, 17.23]had the same formulawithout any

signs for their dual hidden loop product⋆ onH∗([G/G]). With our signs,⊙ is graded
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associative and graded commutative (Corollary B.3). In [1, 17.23], ⋆ is commutative,
but not graded commutative. For example, by [1, 17.23],

x1 ⋅ ⋅ ⋅ xN−1 ⋆ x2 ⋅ ⋅ ⋅ xN = x2 ⋅ ⋅ ⋅ xN = x2 ⋅ ⋅ ⋅ xN ⋆ x1 ⋅ ⋅ ⋅ xN−1 ,

although x1 ⋅ ⋅ ⋅ xN−1 and x2 ⋅ ⋅ ⋅ xN are of odd degree in H∗+d(LBG).

Proof of_eorem 4.1 To prove_eorem 4.1, by _eorem 3.1 (iv) it suõces to show
the formula for the element x i1 ⋅ ⋅ ⋅ x i l ⊗ x j1 ⋅ ⋅ ⋅ x jm , namely where a = b = 1.

Since x2
k1
= 0, x i1 ⋅ ⋅ ⋅ x i l xk1 ⊙ x j1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x jm = 0. So by _eorem 3.1 (i),

x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x jm = (−1)∣xk1 ∣(∣x i1 ⋅⋅⋅x i l x j1 ⋅⋅⋅x̂k1 ∣−d)xk1(x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x jm).
By induction on u,

x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x jm = (−1)u(l−d)+εxk1 ⋅ ⋅ ⋅ xku(x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x̂ku ⋅ ⋅ ⋅ x jm).
By _eorem 3.1 (ii) and (iii),

x i1 ⋅ ⋅ ⋅ x i l ⊙ x j1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x̂ku ⋅ ⋅ ⋅ x jm

=
⎧⎪⎪⎨⎪⎪⎩

(−1)N(m−u)+m−u+ε′ if {i1 , . . . , i l} ∪ { j1 , . . . , jm} = {1, . . . ,N},
0 otherwise.

Corollary 4.2 Under hypothesis (H), the graded associative commutative algebra
(H∗(LBG),⊙) of Corollary B.3 is unital.

Proof We see that x1 ⋅ ⋅ ⋅ xN is the unit. _eorem 4.1 yields that

x1 ⋅ ⋅ ⋅ xN ⊙ x j1 ⋅ ⋅ ⋅ x jmb =

sgn( j1 ⋅ ⋅ ⋅ jm
j1 ⋅ ⋅ ⋅ jm

) sgn( 1 ⋅ ⋅ ⋅N
1 ⋅ ⋅ ⋅N)(−1)m+m+mN+Nmx j1 ⋅ ⋅ ⋅ x jmb.

x i1 ⋅ ⋅ ⋅ x i l a ⊙ x1 ⋅ ⋅ ⋅ xN = sgn( 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ N
i1⋅ ⋅ ⋅ i l 1 ⋅ ⋅ ⋅ î1 ⋅ ⋅ ⋅ î l ⋅ ⋅ ⋅N

)

sgn( i1⋅ ⋅ ⋅ i l 1 ⋅ ⋅ ⋅ î1 ⋅ ⋅ ⋅ î l ⋅ ⋅ ⋅N
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ N)(−1)N+l+l 2+N2

x i1 ⋅ ⋅ ⋅ x i l a.

_eorem 4.3 Under hypothesis (H), H∗(LBG) = H∗+dim G(LBG;K) is isomorphic
as BV algebras to the tensor product of algebras

H∗(BG;K)⊗H−∗(G;K) ≅ K[y1 , . . . , yN]⊗ ∧(x∨1 , . . . , x∨N)
equippedwith theBV-operator∆ given by∆(x∨i ∧x∨j ) = ∆(y i y j) = ∆(x∨j ) = ∆(y i) = 0
for any i , j and

∆(y i ⊗ x∨j ) =
⎧⎪⎪⎨⎪⎪⎩

0 if i ≠ j,
1 if i = j.

855

https://doi.org/10.4153/CJM-2018-021-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-021-9


K. Kuribayashi and L. Menichi

Proof SinceH∗(G) is theHopf algebraΛx i with x i = σ(y i) primitive, its dual is the
Hopf algebra Λx∨i . By Corollary B.3 and Corollary 4.2, we see that the shi�ed coho-
mology H∗(LBG) is a graded commutative algebra with unit x1 ⋅ ⋅ ⋅ xN . _is enables
us to deûne amorphism of algebras Θ from

H∗(BG;K)⊗H−∗(G;K) = K[y1 , . . . , yn]⊗ Λ(x∨1 , . . . , x∨N)

to

H∗(LBG) = K[y1 , . . . , yn]⊗ Λ(x1 , . . . , xN)

by

Θ(1⊗ x∨j ) = (−1) j−11⊗ (x1 ∧ ⋅ ⋅ ⋅ ∧ x̂ j ∧ ⋅ ⋅ ⋅ ∧ xN),
Θ(a ⊗ 1) = a ⊗ (x1 ∧ ⋅ ⋅ ⋅ ∧ xN)

for any a in K[V]. By induction on p, using _eorem 4.1, we have

Θ(a ⊗ (x∨j1 ∧ ⋅ ⋅ ⋅ ∧ x∨jp)) = ±a ⊗ (x1 ∧ ⋅ ⋅ ⋅ ∧ x̂ j1 ∧ ⋅ ⋅ ⋅ ∧ x̂ jp ∧ ⋅ ⋅ ⋅ ∧ xN)

for any a ∈ K[V]. _erefore themap Θ is an isomorphism.
_e isomorphism Θ sends 1 ⊗ Λ(x∨1 , . . . , x∨N) to 1 ⊗ Λ(x1 , . . . , xN) and sends

K[y1 , . . . , yN]⊗1 toK[y1 , . . . , yN]⊗x1 ⋅ ⋅ ⋅ xN . Since ∆ is null on 1⊗Λ(x1 , . . . , xN) and
K[y1 , . . . , yN]⊗x1 ⋅ ⋅ ⋅ xN , ∆ isnull on 1⊗Λ(x∨1 , . . . , x∨N) andK[y1 , . . . , yN]⊗1;wehave
the ûrst equalities. Moreover,we see that Θ(y i⊗x∨j ) = (−1) j−1 y ix1∧⋅ ⋅ ⋅∧ x̂ j∧⋅ ⋅ ⋅∧xN

and hence ∆Θ(y i⊗x∨j ) = 0 if i ≠ j. _e equalities ∆((−1)i−1 y ix1∧⋅ ⋅ ⋅∧ x̂ i∧⋅ ⋅ ⋅∧xN) =
x1 ∧ ⋅ ⋅ ⋅ ∧ xN = Θ(1) enable us to obtain the second formula.

5 Mod 2 Case

In the casewhere the operation Sq1 is non-trivial on H∗(BG;F2), the loop coproduct
structure on H∗(LBG;F2) is more complicated in general. For example, we compute
the dual of the loop coproduct on H∗(LBG2;F2), where G2 is the simply-connected
compact exceptional Lie group of rank 2. Recall that

H∗(LBG2;F2) ≅ ∧(x3 , x5 , x6)⊗ F2[y4 , y6 , y7]

≅ F2[x3 , x5]⊗ F2[y4 , y6 , y7]/(
x4
3 + x5 y7 + x2

3 y6
x2
5 + x3 y7 + x2

3 y4
)

as algebras over H∗(BG2;F2) ≅ F2[y4 , y6 , y7], where deg x i = i and deg y j = j;
see [28,_eorem 1.7].

_eorem 5.1 _e dual to the loop coproduct

Dlcop ∶ H∗(LBG2;F2)⊗H∗(LBG2;F2)→ H∗−14(LBG2;F2)

is commutative and the only non-trivial forms restricted to the submodule

∧(x3 , x5 , x6)⊗ ∧(x3 , x5 , x6)
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are given by

Dlcop(x3x5x6 ⊗ 1) = Dlcop(x3x5 ⊗ x6) = Dlcop(x3x6 ⊗ x5)
= Dlcop(x5x6 ⊗ x3) = 1,

Dlcop(x3x5x6 ⊗ x3) = Dlcop(x3x5 ⊗ x3x6) = x3 ,
Dlcop(x3x5x6 ⊗ x5) = Dlcop(x3x5 ⊗ x5x6) = x5 ,
Dlcop(x3x5x6 ⊗ x6) = Dlcop(x3x6 ⊗ x5x6) = x6 + y6 ,

Dlcop(x3x5x6 ⊗ x3x5) = x3x5 ,
Dlcop(x3x5x6 ⊗ x3x6) = x3x6 + x3 y6 ,
Dlcop(x3x5x6 ⊗ x5x6) = x5x6 + x5 y6 + y4 y7 ,

Dlcop(x3x5x6 ⊗ x3x5x6) = x3x5x6 + x3x5 y6 + x3 y4 y7 + y2
7 .

_e proof of_eorem 5.1 will be given a�er the proof of_eorem 5.7.

Lemma 5.2 Let k ∶ {1, . . . , q}→ {1, . . . ,N}, j ↦ k j be amap such that for 1 ≤ i ≤ N ,
the cardinality of the inverse image k−1({i}) is less than or equal to 2. In H∗(LX;F2) =
F2[y1 , . . . , yN]⊗ ∧(x1 , . . . , xN), the cup product satisûes the equality

xk1 ⋅ ⋅ ⋅ xkq = ∑
0≤l≤cardinal of {k1 , . . . ,kq},

1≤i1<⋅⋅⋅<i l≤N

Pi1 , . . . , i l x i1 ⋅ ⋅ ⋅ x i l ,

where Pi1 , . . . , i l are elements of F2[y1 , . . . , yN].

Proof Suppose by induction that the lemma is true for q−1. If the elements k1 , . . . , kq
are pairwise distinct, take {i1 , . . . , i l} = {k1 , . . . , kq}. Otherwise by permuting the
elements xk1 , . . . , xkq , suppose that kq−1 = kq .

x2
kq
= ∆ ○H∗(ev) ○ Sq∣ykq ∣−1(ykq) =

N

∑
i=1

x iPi ,

where P1 , . . . , PN are elements ofF2[y1 , . . . , yN]. So xk1 ⋅ ⋅ ⋅ xkq = ∑N
i=1 xk1 ⋅ ⋅ ⋅ xkq−2x iPi .

Since kq = kq−1, by hypothesis, kq in{k1 , . . . , kq−2}. _erefore the cardinal of

{k1 , . . . , kq−2 , i}

is less or equal to the cardinal of {k1 , . . . , kq}. By our induction hypothesis,

xk1 ⋅ ⋅ ⋅ xkq−2x i = ∑
0≤l≤cardinal of {k1 , . . . ,kq−2 , i},

1≤i1<⋅⋅⋅<i l≤N

Pi1 , . . . , i l x i1 ⋅ ⋅ ⋅ x i l .

Lemma 5.3 Let k ∶ {1, . . . , q+ r}→ {1, . . . ,N}, j ↦ k j be a non-surjectivemap such
that for all 1 ≤ i ≤ N , the cardinality of the inverse image k−1({i}) is less than 2. _en

Dlcop(xk1 ⋅ ⋅ ⋅ xkq ⊗ xkq+1 ⋅ ⋅ ⋅ xkq+r) = 0.

Proof We do an induction on r ≥ 0.
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Case r = 0: By Lemma 5.2, since the cardinal of {k1 , . . . , kq}is less than N ,

Dlcop(xk1 ⋅ ⋅ ⋅ xkq ⊗ 1) = ∑
0≤l<N ,

1≤i1<⋅⋅⋅<i l≤N

Dlcop(Pi1 , . . . , i l x i1 ⋅ ⋅ ⋅ x i l ⊗ 1),

where Pi1 , . . . , i l are elements of F2[y1 , . . . , yN]. By _eorem 3.1 (iii), (iv), since l < N ,

Dlcop(Pi1 , . . . , i l x i1 ⋅ ⋅ ⋅ x i l ⊗ 1) = 0.

Suppose now by induction that the lemma is true for r − 1. _en by _eorem 3.1 (i),

Dlcop(xk1 ⋅ ⋅ ⋅ xkq ⊗ xkq+1 ⋅ ⋅ ⋅ xkq+r) = xkq+1 Dlcop(xk1 ⋅ ⋅ ⋅ xkq ⊗ xkq+2 ⋅ ⋅ ⋅ xkq+r)
+Dlcop(xk1 ⋅ ⋅ ⋅ xkq+1 ⊗ xkq+2 ⋅ ⋅ ⋅ xkq+r)

= xkq+1 ∪ 0 + 0.

Let I = {i1 , . . . , i l} ⊂ {1, . . . ,N}. In ∧(x1 , . . . , xN), denote the generator x i1 ∪ x i2 ∪
⋅ ⋅ ⋅∪x i l by xI . Sincewe consider the algebra over F2, the cup product is commutative,
so we do not need to assume that i1 < i2 < ⋅ ⋅ ⋅ < i l .

_eorem 5.4 Let I and J be two subsets of {1, . . . ,N}. _en

Dlcop(xI ⊗ xJ) =
⎧⎪⎪⎨⎪⎪⎩

Dlcop(x1 ⋅ ⋅ ⋅ xN ⊗ xI∩J) if I ∪ J = {1, . . . ,N},
0 otherwise.

In particular {xI , xJ} = ∆(Dlcop(xI ⊗ xJ)) = ∆(Dlcop(xI∪J ⊗ xI∩J)) = {xI∪J , xI∩J}.

Proof Let i1 , . . . , i l denote the elements of the relative complement I − J, j1 , . . . , jm
denote the elements of the relative complement J − I, and k1 , . . . , ku denote the ele-
ments of the intersection I ∩ J.
By Lemma 5.3, Dlcop(x i1 . . . x i l xk1 . . . xku ⊗ x j2 . . . x jm xk1 . . . xku) = 0. So by _e-

orem 3.1 (i),

Dlcop(x i1 ⋅ ⋅ ⋅ x i l xk1 ⋅ ⋅ ⋅ xku ⊗ x j1 ⋅ ⋅ ⋅ x jm xk1 ⋅ ⋅ ⋅ xku)
= x j1 ∪ 0 +Dlcop(x i1 ⋅ ⋅ ⋅ x i l x j1xk1 ⋅ ⋅ ⋅ xku ⊗ x j2 ⋅ ⋅ ⋅ x jm xk1 ⋅ ⋅ ⋅ xku).

By induction on m, this is equal to Dlcop(x i1 ⋅ ⋅ ⋅ x i l x j1 ⋅ ⋅ ⋅ x jm xk1 ⋅ ⋅ ⋅ xku ⊗ xk1 ⋅ ⋅ ⋅ xku).
So we have proved that Dlcop(xI ⊗ xJ) = Dlcop(xI∪J ⊗ xI∩J). By Lemma 5.3, if
I ∪ J ≠ {1, . . . ,N}, then Dlcop(xI ⊗ xJ) = 0.

_eorem 5.5 Let X be a simply-connected space such that H∗(X;F2) is the polyno-
mial algebra F2[y1 , . . . , yN]. _e dual of the loop coproduct admits

Dlcop(x1 ⋅ ⋅ ⋅ xN ⊗ x1 ⋅ ⋅ ⋅ xN) ∈ Hd(LX;F2)
as a unit.

Lemma 5.6 Let a ∈ H∗(LX;F2).
(i) For 1 ≤ i ≤ N , x i ∪Dlcop(a ⊗ a) = 0.
(ii) For any b ∈ H∗(LX;F2),

Dlcop(Dlcop(a ⊗ a)⊗ b) = b ∪Dlcop(Dlcop(a ⊗ a)⊗ 1).
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Proof (i) By _eorem 3.1 (i),

Dlcop(a ⊗ ax i) = x i Dlcop(a ⊗ a) +Dlcop(ax i ⊗ a).

Since Dlcop is graded commutative [6], Dlcop(a ⊗ ax i) = Dlcop(ax i ⊗ a). So
x i Dlcop(a ⊗ a) = 0.

(ii) By (i) and_eorem 3.1 (i),

Dlcop(Dlcop(a ⊗ a)⊗ bx i) = x i Dlcop(Dlcop(a ⊗ a)⊗ b) + 0.

_erefore by induction,

Dlcop(Dlcop(a ⊗ a)⊗ x i1 ⋅ ⋅ ⋅ x i l ) = x i1 ⋅ ⋅ ⋅ x i l Dlcop(Dlcop(a ⊗ a)⊗ 1).

Using _eorem 3.1 (iv), we obtain (ii).

Proof of_eorem 5.5 Since Dlcop is graded associative [6] and using _eorem 3.1
(ii) twice,

Dlcop(Dlcop(x1 . . . xN ⊗ x1 . . . xN)⊗ 1) = Dlcop(x1 . . . xN ⊗Dlcop(x1 . . . xN ⊗ 1))
= Dlcop(x1 . . . xN ⊗ 1) = 1.

_erefore using Lemma 5.6 (ii),

Dlcop(Dlcop(x1 ⋅ ⋅ ⋅ xN⊗x1 ⋅ ⋅ ⋅ xN)⊗ b)
= b ∪Dlcop(Dlcop(x1 ⋅ ⋅ ⋅ xN ⊗ x1 ⋅ ⋅ ⋅ xN)⊗ 1)
= b ∪ 1 = b.

_e simplest connected Lie group with non-trivial Steenrod operation Sq1 in the
cohomology of its classifying space is SO(3).

_eorem 5.7 _e cup product and the dual of the loop coproduct on the mod 2 free
loop cohomology of the classifying space of SO(3) are given by

H∗(LBSO(3);F2) ≅ ∧(x1 , x2)⊗ F2[y2 , y3]

≅ F2[x1 , x2]⊗ F2[y2 , y3]/(
x2
1 + x2

x2
2 + x2 y2 + y3x1

)

as algebras over H∗(BSO(3);F2) ≅ F2[y2 , y3], where deg x i = i and deg y j = j.

Dlcop(x1x2 ⊗ 1) = Dlcop(x1 ⊗ x2) = 1,
Dlcop(x1x2 ⊗ x1) = x1 ,
Dlcop(x1x2 ⊗ x2) = x2 + y2 ,
Dlcop(x1x2 ⊗ x1x2) = x1x2 + x1 y2 + y3 .

Proof _e cohomology H∗(BSO(3);F2) is the polynomial algebra on the Stiefel–
Whitney classes y2 and y3 of the tautological bundle γ3 [37,_eorem 7.1], [38, III Co-
rollary 5.10]. ByWu’s formula [38, III._eorem 5.12(1)], Sq1 y2 = y3 and Sq2 y3 = y2 y3.
Now the computation of the cup product and of the dual of the loop coproduct follows
from _eorem 3.1.
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In the following proof, we detail the computation of the cup product and the dual
of the loop coproduct following _eorem 3.1 for a more complicated example of Lie
group.

Proof of_eorem 5.1. Observe that Sq2 y4 = y6, Sq1 y6 = y7 [38,VII.Corollary 6.3]
and hence Sq3 y4 = Sq1 Sq2 y4 = y7. From [28, Proof of_eorem 1.7], Sq5 y6 = y4 y7
and Sq6 y7 = y6 y7. _erefore the computation of the cup product on H∗(LBG2;F2)
follows from _eorem 3.1: x2

3 = x6, x2
5 = x3 y7 + y4x6, and x2

6 = x5 y7 + y6x6.
Lemma 5.3 implies that monomials with non-trivial loop coproduct are only the

ones listed in the theorem.
By _eorem 3.1 (ii),

Dlcop(x3x5x6 ⊗ 1) = Dlcop(x3x5 ⊗ x6) = Dlcop(x3x6 ⊗ x5) = Dlcop(x5x6 ⊗ x3) = 1.

By Lemma 5.3, Dlcop(x3x2
5 ⊗ 1) = 0. By _eorem 3.1 (i),

Dlcop(x3x5x6 ⊗ x6) = x6Dlcop(x3x5x6 ⊗ 1) +Dlcop(x3x5x2
6 ⊗ 1).

Since x3x5x2
6 = x3x5(x5 y7 + y6x6), by _eorem 3.1 (iv),

Dlcop(x3x5x2
6 ⊗ 1) = y7Dlcop(x3x2

5 ⊗ 1) + y6Dlcop(x3x5x6 ⊗ 1) = y7 ∪ 0 + y6 ∪ 1

So ûnally Dlcop(x3x5x6 ⊗ x6) = x6 + y6.
By _eorem 5.4, Dlcop(x3x6 ⊗ x5x6) = Dlcop(x3x5x6 ⊗ x6).
Since x3x2

5x6 = x5 y2
7 + x6 y6 y7 + x3x5 y7 y4 + x3x6 y6 y4, by _eorem 3.1 (i) and

Lemma 5.3,

Dlcop(x3x5x6 ⊗ x5x6) = x5Dlcop(x3x5x6 ⊗ x6) +Dlcop(x3x2
5x6 ⊗ x6)

= x5(x6 + y6) + y2
7 ∪ 0 + y6 y7 ∪ 0 + y7 y4 ∪ 1 + y6 y4 ∪ 0.

_e other computations are le� to the reader.

We would like to emphasize that at the same time_eorem 5.1 gives the cup prod-
uct and the dual of the loop coproduct on H∗(LBG2;F2). As mentioned in the intro-
duction, ifwe forget the cup product, then the following theorem shows that the dual
of the loop coproduct is really simple.

_eorem 5.8 Let X be a simply-connected space such that H∗(X;F2) is the poly-
nomial algebra F2[V]. _en with respect to the dual of the loop coproduct, there is
an isomorphism of graded algebras between H∗+d(LX;F2) and the tensor product of
algebras H∗(X;F2)⊗H−∗(ΩX;F2) ≅ F2[V]⊗ Λ(sV)∨.

Lemma 5.9 Let X be a simply-connected space such that H∗(X;F2) = F2[V]. Let
x1 , . . . , xN be a basis of sV .

(i) Suppose that {i1 , . . . , i l} ∪ { j1 , . . . , jm} = {1, . . . ,N}. Let

{k1 , . . . , ku} ∶= {i1 , . . . , i l} ∩ { j1 , . . . , jm}.

_en H∗(ι) ○Dlcop(x i1 ⋅ ⋅ ⋅ x i l ⊗ x j1 ⋅ ⋅ ⋅ x jm) = xk1 ⋅ ⋅ ⋅ xku .
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(ii) Let Θ ∶ H−∗(ΩX) = ∧(sV)∨ ≅→ H∗+d(ΩX) = ∧(sV) be the linear isomor-
phism deûned by Θ(x∨j1 ∧ ⋅ ⋅ ⋅ ∧ x∨jp) = x1 ∪ ⋅ ⋅ ⋅ ∪ x̂ j1 ∪ ⋅ ⋅ ⋅ ∪ x̂ jp ∪ ⋅ ⋅ ⋅ ∪ xN . Here ∨ denotes
the dual and ̂ denotes omission. _en the composite

Θ−1 ○H∗(ι) ∶ H∗+d(LX)Ð→ H∗+d(ΩX) ≅Ð→ H−∗(ΩX)
is amorphism of graded algebras preserving the unit.

Proof of Lemma 5.9 (i) Suppose that ∣xk1 ∣ ≥ ⋅ ⋅ ⋅ ≥ ∣xku ∣. _ere exist polynomials
P1 , . . . , PN ∈ F2[y1 , . . . , yN], possibly null, such that

x2
k1
= ∆ ○H∗(ev) ○ Sq∣yk1 ∣−1(yk1) =

N

∑
i=1

x iPi .

If Pi is of degree 0, since ∣x i ∣ > ∣xk1 ∣, x i is not one of the elements xk1 , . . . , xku and so
by Lemma 5.3, Dlcop(x i1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x i l x i ⊗ x j1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x jm) = 0.

If Pi is of degree ≥ 1, by _eorem 3.1 (iv),

H∗(ι) ○Dlcop(Pix i1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x i l x i ⊗ x j1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x jm) = 0.

_erefore H∗(ι) ○ Dlcop(x i1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x i l x
2
k1
⊗ x j1 ⋅ ⋅ ⋅ x̂k1 ⋅ ⋅ ⋅ x jm) = 0. Now the same

proof as the proof of_eorem 4.1 shows (i).
(ii) Since H∗(ΩX;F2) is generated by the x i ∶= σ(y i), 1 ≤ i ≤ N , which are prim-

itives, H∗(ΩX;F2) is commutative and by [36, Proposition 4.20], all squares vanish
in H∗(ΩX;F2). _erefore H∗(ΩX;F2) is the exterior algebra Λσ(y i)∨.

Let I = {i1 , . . . , i l} ⊂ {1, . . . ,N}. Recall from _eorem 5.4 that in ∧(x1 , . . . , xN),
xI denotes the generator x i1 ∪ x i2 ∪ ⋅ ⋅ ⋅ ∪ x i l . Denote also in the exterior algebra
Λ(x∨1 , . . . , x∨N) by x∨I the element x∨i1 ∧x

∨
i2 ∧⋅ ⋅ ⋅∧x

∨
i l . _enwith this notation,Θ(x∨I ) =

xIc , where Ic is the complement of I in {1, . . . ,N}. Let
Comp! ∶ H∗+d(ΩX)⊗H∗+d(ΩX)Ð→ H∗+d(ΩX)

be the multiplication deûned by Comp!(xI ⊗ xJ) = xI∩J if I ∪ J = {1, . . . ,N} and 0
otherwise. By (i) and Lemma 5.3, H∗(ι) ∶ H∗+d(LX) → H∗+d(ΩX) commutes with
the products Dlcop and Comp!. Since x(I∪J)c = xIc∩Jc , Θ ∶ H−∗(ΩX) → H∗+d(ΩX)
commutes with the exterior product and Comp!.
By _eorem 5.5, Dlcop(x1 . . . xN ⊗ x1 . . . xN) is the unit of Dlcop. By (i),

Θ−1 ○H∗(ι) ○Dlcop(x1 . . . xN ⊗ x1 ⋅ ⋅ ⋅ xN) = Θ−1(x1 ⋅ ⋅ ⋅ xN) = 1.

_erefore Θ−1 ○H∗(ι) also preserves the unit.

Proof of_eorem 5.8 Denote the unit of H∗+d(LX;F2) (_eorem 5.5) by

I ∶= Dlcop(x1 . . . xN ⊗ x1 . . . xN).
By _eorem 2.2 (vii), themap s! ∶ H∗(X) → H∗+d(LX), a ↦ H∗(ev)(a)I, is amor-
phism of unital commutative graded algebras.
By Lemma 5.3, we have Dlcop(x1 . . . x̂ i . . . xN ⊗ x1 . . . x̂ i . . . xN) = 0. So let

σ ∶ H∗+d(ΩX)Ð→ H∗+d(LX)
be the unique linear map such that for 1 ≤ i ≤ N , σ(x1 . . . x̂ i ⋅ ⋅ ⋅ xN) = x1 ⋅ ⋅ ⋅ x̂ i ⋅ ⋅ ⋅ xN
and such that σ ○ Θ ∶ H−∗(ΩX) = Λ(sV)∨ → H∗+d(LX) is a morphism of unital
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commutative graded algebras. For 1 ≤ i ≤ N , Θ−1 ○ H∗(ι) ○ σ ○ Θ(x∨i ) = x∨i . By
Lemma 5.9, the composite Θ−1 ○H∗(ι) ∶ H∗+d(LX)→ H∗+d(ΩX) ≅→ H−∗(ΩX) is a
morphismof graded algebras. So the compositeΘ−1○H∗(ι)○σ ○Θ is the identitymap
and σ is a section of H∗(ι). So by the Leray–Hirsch theorem, the linear morphism
of H∗(X)-modules H∗(X) ⊗ H∗(ΩX) → H∗(LX), a ⊗ g ↦ H∗(ev)(a)σ(g), is an
isomorphism.

_e composite

φ ∶ H∗(X)⊗H−∗(ΩX) s !⊗σ○ΘÐÐÐÐ→ H∗+d(LX)⊗H∗+d(LX) DlcopÐÐÐ→ H∗+d(LX)

is a morphism of commutative graded algebras with respect to the dual of the loop
coproduct. By _eorem 3.1 (iv) and since I is the unit for Dlcop,

φ(a ⊗ g) = Dlcop(H∗(ev)(a)I⊗ σ ○Θ(g)) = H∗(ev)(a)σ ○Θ(g).

_erefore, φ is an isomorphism.

Example 5.10 With respect to the dual of the loop coproduct, there is an isomor-
phism of algebras between H∗+3(LBSO(3);F2) and

H−∗(SO(3);F2)⊗H∗(BSO(3);F2) ≅ ∧(u−1 , u−2)⊗ F2[v2 , v3].

Proof By_eorem 5.5, Dlcop(x1x2⊗x1x2) = x1x2+x1 y2+ y3 is the unit for the dual
of the loop coproduct on H∗+3(LBSO(3);F2). By Lemma 5.3,

Dlcop(x1 ⊗ x1) = Dlcop(x2 ⊗ x2) = 0.

So let φ ∶ ∧ (u−1 , u−2) ⊗ F2[v2 , v3] → H∗+3(LBSO(3);F2) be the unique morphism
of algebras such that φ(u−2) = x1, φ(u−1) = x2, φ(v2) = y2(x1x2 + x1 y2 + y3), and
φ(v3) = y3(x1x2 + x1 y2 + y3).
For all i, j ≥ 0, we see that φ(v i

2v
j
3) = y i

2 y
j
3(x1x2 + x1 y2 + y3), φ(u−1u−2v i

2v
j
3) =

y i
2 y

j
3, φ(u−1v i

2v
j
3) = x2 y i

2 y
j
3, and φ(u−2v i

2v
j
3) = x1 y i

2 y
j
3. _erefore φ sends a linear

basis of ∧(u−1 , u−2) ⊗ F2[v2 , v3] to a linear basis H∗+3(LBSO(3);F2). So φ is an
isomorphism.

Example 5.11 With respect to the dual of the loop coproduct, there is an isomor-
phism of algebras between H∗+14(LBG2;F2) and

H−∗(G2;F2)⊗H∗(BG2;F2) ≅ ∧(u−3 , u−5 , u−6)⊗ F2[v4 , v6 , v7].

Proof By _eorem 5.5, Dlcop(x3x5x6 ⊗ x3x5x6) = x3x5x6 + x3x5 y6 + x3 y4 y7 + y2
7

is the unit for the dual of the loop coproduct on H∗+14(LBG2;F2). By Lemma 5.3,

Dlcop(x5x6 ⊗ x5x6) = Dlcop(x3x6 ⊗ x3x6) = Dlcop(x3x5 ⊗ x3x5) = 0.

So let φ ∶ ∧ (u−3 , u−5 , u−6) ⊗ F2[v4 , v6 , v7] → H∗+14(LBG2;F2) be the unique mor-
phism of algebras such that φ(u−3) = x5x6, φ(u−5) = x3x6, φ(u−6) = x3x5, φ(v4) =
y4(x3x5x6 + x3x5 y6 + x3 y4 y7 + y2

7), φ(v6) = y6(x3x5x6 + x3x5 y6 + x3 y4 y7 + y2
7), and

φ(v7) = y7(x3x5x6 + x3x5 y6 + x3 y4 y7 + y2
7).

For all i, j, and k ≥ 0, we see that
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φ(v i
4v

j
6v

k
7 ) = y i

4 y
j
6 y

k
7(x3x5x6 + x3x5 y6 + x3 y4 y7 + y2

7),
φ(u−3u−5u−6v i

4v
j
6v

k
7 ) = y i

4 y
j
6 y

k
7 ,

φ(u−3u−5v i
4v

j
6v

k
7 ) = (x6 + y6)y i

4 y
j
6 y

k
7 ,

φ(u−3u−6v i
4v

j
6v

k
7 ) = x5 y i

4 y
j
6 y

k
7 ,

φ(u−5u−6v i
4v

j
6v

k
7 ) = x3 y i

4 y
j
6 y

k
7 ,

φ(u−3v i
4v

j
6v

k
7 ) = x5x6 y i

4 y
j
6 y

k
7 ,

φ(u−5v i
4v

j
6v

k
7 ) = x3x6 y i

4 y
j
6 y

k
7

φ(u−6v i
4v

j
6v

k
7 ) = x3x5 y i

4 y
j
6 y

k
7 .

_erefore φ sends a linear basis of ∧(u−3 , u−5 , u−6) ⊗ F2[v4 , v6 , v7] to a linear basis
H∗+14(LBG2;F2). So φ is an isomorphism.

Lemma 5.12 Let (A,⊙) be a commutative unital associative graded algebra. Let
x ∈ A such that x ⊙ x = 1. Let ψ ∶ A → A be the linear morphism mapping a to x ⊙ a.
_en ψ is an involutive isomorphism such that for any a, b in A, ψ(a)⊙ψ(b) = a ⊙ b.

Proof ψ(a)⊙ψ(b) = (x⊙a)⊙(x⊙b) = (x⊙x)⊙(a⊙b) = 1⊙(a⊙b) = a⊙b.

Second proof of_eorem 5.8 _is proof gives another (better?) algebra isomor-
phism. By commutativity and associativity of Dlcop and _eorem 5.5, applying
Lemma 5.12, ψ ∶ H∗(X)⊗H∗+d(ΩX)→ H∗+d(LX) deûned by

ψ(a ⊗ xk1 ⋅ ⋅ ⋅ xku) = Dlcop(x1 ⋅ ⋅ ⋅ xN ⊗ axk1 ⋅ ⋅ ⋅ xku)

is an involutive isomorphism such that

Dlcop(ψ(a ⊗ xI)⊗ ψ(b ⊗ xJ)) = Dlcop(axI ⊗ bxJ)

for any subsets I and J of {1, . . . ,N}.
Case I ∪ J = {1, . . . ,N}. By _eorem 5.4,

Dlcop(axI ⊗ bxJ) = Dlcop(x1 . . . xN ⊗ abxI∩J) = ψ(ab ⊗ xI∩J)
= ψ(ab ⊗Comp!(xI ⊗ xJ)).

Case I ∪ J ≠ {1, . . . ,N}. By _eorem 5.4,

Dlcop(axI ⊗ bxJ) = 0 and Comp!(xI ⊗ xJ) = 0.

_erefore ψ is amorphism of graded algebras. One can show that

{ψ(1⊗Θ(x∨i )),ψ(1⊗Θ(x∨j ))} = 0.

_at is why this isomorphism might be better.
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_eorem 5.13 As a BV-algebra,

H∗+3(LBSO(3);F2) ≅ ∧(u−1 , u−2)⊗ F2[v2 , v3]
where for all i , j ≥ 0,

∆(v i
2v

j
3) = 0,

∆(u−1u−2v i
2v

j
3) = iu−2v i−1

2 v j
3 + ju−1v i

2v
j−1
3 ,

∆(u−2v i
2v

j
3) = iu−1v i−1

2 v j
3 + jv i

2v
j−1
3 + ju−2v i+1

2 v j−1
3 + ju−1u−2v i

2v
j
3 ,

∆(u−1v i
2v

j
3) = iv i−1

2 v j
3 + (i + j)u−2v i

2v
j
3 + iu−1u−2v i−1

2 v j+1
3 + ju−1v i+1

2 v j−1
3 .

In particular, 1 ∉ Im∆.

Proof _eorem 5.7 gives the BV-algebraH∗+3(LBSO(3);F2), since ∆ is a derivation
with respect to the cup product. In the proof of Example 5.10, the isomorphism of
algebras φ ∶ ∧ (u−1 , u−2)⊗F2[v2 , v3]→ H∗+3(LBSO(3);F2) of_eorem 5.8 is made
explicit on generators. We now transport the operator ∆ using φ.

In degree 1, the ∆ operator is given by ∆(u−1u−2v2
2) = 0 and

∆(u−2v3) = ∆(u−1v2) = 1 + u−2v2 + u−1u−2v3 .

_eorem 5.14 As a BV-algebra,

H∗+14(LBG2;F2) ≅ ∧(u−3 , u−5 , u−6)⊗ F2[v4 , v6 , v7]

where for all i , j, k ≥ 0, ∆(v i
4v

j
6v

k
7 ) = 0,

∆(u−3u−5u−6v i
4v

j
6v

k
7 ) = iu−5u−6v i−1

4 v j
6v

k
7 + ju−3u−6v i

4v
j−1
6 vk

7

+ ku−3u−5v i
4v

j
6v

k−1
7 + ku−3u−5u−6v i

4v
j+1
6 vk−1

7 ,

∆(u−5u−6v i
4v

j
6v

k
7 ) = iu−3u−5v i−1

4 v j
6v

k
7 + iu−3u−5u−6v i−1

4 v j+1
6 vk

7

+ ju−6v i
4v

j−1
6 vk

7 + ku−5v i
4v

j
6v

k−1
7 ,

∆(u−3u−6v i
4v

j
6v

k
7 ) = iu−6v i−1

4 v j
6v

k
7 + ju−5u−6v i

4v
j−1
6 vk+1

7 + ju−3u−5v i+1
4 v j−1

6 vk
7

+ ju−3u−5u−6v i+1
4 v j

6v
k
7 + ku−3v i

4v
j
6v

k−1
7 ,

∆(u−3u−5v i
4v

j
6v

k
7 ) = iu−5v i−1

4 v j
6v

k
7 + iu−5u−6v i−1

4 v j+1
6 vk

7 + ju−3v i
4v

j−1
6 vk

7

+ ( j + 1 + k)u−3u−6v i
4v

j
6v

k
7

∆(u−6v i
4v

j
6v

k
7 ) = iu−3v i−1

4 v j
6v

k
7 + ju−5v i+1

4 v j−1
6 vk

7 + ju−3u−5v i
4v

j−1
6 vk+1

7

+ ( j + k)u−3u−5u−6v i
4v

j
6v

k+1
7 + kv i

4v
j
6v

k−1
7

+ ku−6v i
4v

j+1
6 vk−1

7 + ku−5u−6v i+1
4 v j

6v
k
7 ,

∆(u−3v i
4v

j
6v

k
7 ) = iv i−1

4 v j
6v

k
7 + iu−6v i−1

4 v j+1
6 vk

7 + (i + k)u−5u−6v i
4v

j
6v

k+1
7

+ iu−3u−5u−6v i−1
4 v j

6v
k+2
7 + ju−5v i

4v
j−1
6 vk+1

7

+ ju−3u−6v i+1
4 v j−1

6 vk+1
7 + ( j + k)u−3u−5v i+1

4 v j
6v

k
7

+ ( j + k)u−3u−5u−6v i+1
4 v j+1

6 vk
7 + ku−3v i

4v
j+1
6 vk−1

7 ,
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∆(u−5v i
4v

j
6v

k
7 ) = iu−3u−5v i−1

4 v j+1
6 vk

7 + iu−3u−5u−6v i−1
4 v j+2

6 vk
7 + jv i

4v
j−1
6 vk

7

+ ( j + k)u−6v i
4v

j
6v

k
7 + ju−5u−6v i+1

4 v j−1
6 vk+1

7

+ ju−3u−5u−6v i
4v

j−1
6 vk+2

7 + ku−5v i
4v

j+1
6 vk−1

7 .

In particular, 1 ∉ Im∆.

Proof _eorem 5.1 gives the BV-algebra H∗+14(LBG2;F2), since ∆ is a derivation
with respect to the cup product. In the proof of Example 5.11, the isomorphism of
algebras φ ∶ ∧ (u−3 , u−5 , u−6) ⊗ F2[v4 , v6 , v7] → H∗+14(LG2;F2) of _eorem 5.8 is
made explicit on generators. We now transport the operator ∆ using φ.

In degree 1, the ∆ operator is given by ∆(u−5u−6v2
6) = 0,

∆(u−3u−5u−6v2
4v7) = ∆(u−5u−6v3

4) = u−3u−5v2
4 + u−3u−5u−6v2

4v6 ,

∆(u−3u−6v4v6) = u−6v6 + u−5u−6v4v7 + u−3u−5v2
4 + u−3u−5u−6v2

4v6 ,
∆(u−6v7) = ∆(u−5v6) = ∆(u−3v4) = 1 + u−6v6 + u−5u−6v4v7

+ u−3u−5u−6v2
7 .

Note that φ−1 ○ ∆ ○ φ(y i ⊗ x∨i ) = φ−1(x1 ⋅ ⋅ ⋅ xN) is independent of i.

6 Relation to Hochschild Cohomology

Let K be any ûeld. Let G be a connected compact Lie group of dimension d.

Conjecture 6.1 ( [6, Conjecture 68]) _ere is an isomorphism of Gerstenhaber alge-
bras H∗+d(LBG) ≅→ HH∗(S∗(G), S∗(G)).

Suppose that H∗(BG;K) is a polynomial algebra K[V] = K[y1 , . . . , yN]. It fol-
lows from [40, _eorem 9, p. 572], [31, Proposition 8.21] that BG is K-formal. _en
BG is K-coformal and H∗(G;K) is the exterior algebra ∧(sV)∨. Indeed, since BG
is K-formal, the Cobar construction ΩH∗(BG) is weakly equivalent as algebras to
S∗(G). Let A i denote the exterior algebra Λs−1(y∨i ). _en EZ, the Eilenberg–Zilber
map, and ε, the counit of the adjunction between the Bar and the Cobar construction,
give the quasi-isomorphims of algebras

ΩH∗(BG) = Ω(
N
⊗
i=1
BA i)

EZ←Ð
≃

N
⊗
i=1

ΩBA i
⊗N

i=1 ε iÐÐÐ→
≃

]
N
⊗
i=1
A i = Λs−1V∨ .

Alternatively, since BG isK-formal, we can use the implication (2)⇒ (1) in [2,_e-
orem 2.14]. _erefore, we have the isomorphism of Gerstenhaber algebras

HH∗(S∗(G), S∗(G)) ≅ HH∗(H∗(G;K),H∗(G;K)) ≅ HH∗(∧(sV)∨ ,∧(sV)∨).
By _eorem F.3 (i) and (ii) as graded algebras,

HH∗(∧(sV)∨ ,∧(sV)∨) ≅ ∧(sV)∨ ⊗K[V] ≅ H−∗(G;K)⊗H∗(BG;K).
So in _eorem 5.8, we have checked only Conjecture 6.1 for the algebra structure

when K = F2. When K = F2, we would like also to check Conjecture 6.1 also for the
Gerstenhaber algebra structure.
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_e following theorem shows that the conjecture is true for the Gerstenhaber al-
gebra structure when K is a ûeld of characteristic diòerent from 2.

_eorem 6.2 Under hypothesis (H), the free loop space cohomology of the classifying
space of G, H∗+dim G(LBG;K) is isomorphic as BV-algebra to theHochschild cohomol-
ogy of H∗(G;K), HH∗(H∗(G;K);H∗(G;K)). In particular, the underlying Gersten-
haber algebras are isomorphic.

Proof By hypothesis, H∗(BG) ≅ K[V] = K[y i] as algebras. _en

H∗(G) ≅ Λ(sV)∨ = Λx∨j

as algebras.
Let Ψ ∶ sV → (sV)∨∨ be the canonical isomorphismof the graded vector space sV

into its bidual. By deûnition, Ψ(sv)(φ) = (−1)∣φ∣∣sv∣φ(sv) for any linear form φ on
sV .
By _eorem F.3 (iii), we have the BV-algebra isomorphism

HH∗(H∗(G);H∗(G)) ≅ Λ(sV)∨ ⊗K[s−1(sV)∨∨],

where for any v ∈ V and φ ∈ (sV)∨,

∆((1⊗ s−1Ψ(sv))(φ ⊗ 1)) = (−1)∣v∣{s−1Ψ(sv), φ} = −Ψ(sv)(φ) = −(−1)∣φ∣∣sv∣φ(sv)

and where ∆ is trivial on Λ(sV)∨ and on K[s−1(sV)∨∨].
_e isomorphism of algebras

Id⊗K[s−1Ψ] ∶ Λ(sV)∨ ⊗K[V]Ð→ Λ(sV)∨ ⊗K[s−1(sV)∨∨]

is an isomorphismof BV-algebras if for any v ∈ V and φ ∈ (sV)∨, ∆((1⊗v)(φ⊗ 1)) =
−(−1)∣φ∣∣sv∣φ(sv) and if ∆ is trivial on Λ(sV)∨ and on K[V].

Taking v = y i and φ = σ(y j)∨ = x∨j , we obtained that ∆(y i ⊗ x∨j ) = 1 if i = j and 0
otherwise, as in _eorem 4.3.

_eorem 6.3 For G = SO(3) or G = G2, the free loop spacemodulo 2 cohomology of
the classifying space of G, H∗+dim G(LBG;F2) is not isomorphic as a BV-algebra to the
Hochschild cohomology of H∗(G;F2), HH∗(H∗(G;F2);H∗(G;F2)), although when
G = SO(3), the underlying Gerstenhaber algebras are isomorphic.

_e main result of [34] is that the same phenomenon appears for Chas–Sullivan
string topology even in the simple case of the two-dimensional sphere S2.

Deûnition 6.4 LetAbe an augmented graded algebra. Let F0(A) ∶= Aand Fn(A) ∶=
A ⋅ A ⋅ ⋅ ⋅ A for n ≥ 1 be the augmentation ûltration [36, 7.1]. We say that A is Haus-
dorò [31, Lemma 3.10] if ⋂n∈N Fn(A) = {0}.

Lemma 6.5 Let A and B be a morphism of graded algebras between two Hausdorò
augmented graded algebras such that the only indecomposable elements of A and B,
Q(A) and Q(B), are the zero vectors. Let f ∶ A→ B be amorphism of graded algebras.
_en f preserves the augmentations. Let d ∈ N be a non-negative integer. Suppose
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moreover that B = B≥−d , i.e., B is concentrated in degrees greater than or equal to −d
and B is graded commutative. _en f is surjective if and only if Q( f ) is surjective.

Proof When d = 0, A0 = {0}, and B0 = {0}, this lemma is Proposition 3.8 of [36],
but the proof cannot be easily generalized. _erefore, we provide a proof.
Denote by Q ∶ A↠ Q(A) ∶= A

A⋅A the quotient map. _e sequence

n
⊕
i=1

(A⊗i−1 ⊗ A ⋅ A⊗ A⊗n−i) Ð→ A
⊗n Q⊗n

ÐÐ→→ Q(A)⊗n Ð→ 0

is exact. Alternatively, since over a ûeldK, A = A ⋅ A⊕ Q(A),

0Ð→ +n
i=1(A

⊗i−1 ⊗ A ⋅ A⊗ A⊗n−i) ↪Ð→ A
⊗n Q⊗n

ÐÐ→→ Q(A)⊗n Ð→ 0

is a short exact sequence. _erefore, the iteratedmultiplication of A induces a natural
map Q(A)⊗n ↠ Fn(A)/Fn+1(A) that is obviously surjective.

Let x ∈ A = F 1(A)with x ≠ 0. Since⋂n∈N Fn(A) = {0}, there exists r ≥ 1 such that
x ∈ F r(A) and x ∉ F r+1(A). _erefore x is the product of r elements of A, x1 ⋅ ⋅ ⋅ xr
such that Q(x1)⊗ ⋅ ⋅ ⋅ ⊗Q(xr) ≠ 0. By hypothesis, Q(A)0 = {0}. So x i and f (x i) are
of degrees diòerent from 0. So f (x i) ∈ B. And f (x) = Π i f (x i) ∈ B: we have proved
that f preserves the augmentations.

Let y ∈ Fn(B) with y ≠ 0. Similarly, y is the product of r ≥ n elements of B,
y1 ⋅ ⋅ ⋅ yr such that all the Q(y i) are non-zero. Since Q(B)0 = {0}, the y i are all of
degrees diòerent from 0. Since B is graded commutative, B<−d = {0} and y ≠ 0,
there are at most d elements y i of negative degree in the product y1 ⋅ ⋅ ⋅ yr . So there
is at least r − d elements y i of positive degree. _erefore, the degree of y is at least
d × (−1) + (r − d) × 1; we have proved that the non-zero elements of Fn(B) are all of
degree greater than or equal to n − 2d.
Assume that Q( f ) is surjective. _en Q( f )⊗n ∶ Q(A)⊗n ↠ Q(B)⊗n is also sur-

jective. Since the following square is commutative by naturality,

Q(A)⊗n

Q( f )⊗n

��

// Fn(A)/Fn+1(A)

Grn f
��

Q(B)⊗n // Fn(B)/Fn+1(B),

the map induced by f , Grn f , is also surjective. In a ûxed degree, consider the com-
mutative diagram

0 // Fn+1(A) //

f ∣Fn+1(A)
��

Fn(A) //

f ∣Fn(A)
��

Fn(A)/Fn+1(A)

Grn f
��

// 0

0 // Fn+1(B) // Fn(B) // Fn(B)/Fn+1(B) // 0

with exact rows. Suppose by induction that the restriction of f to Fn+1(A), f ∣Fn+1(A),
is surjective. _en by the ûve Lemma, f ∣Fn(A), is also surjective. Since Fn(B) is
concentrated in degrees greater than or equal to n − 2d, in a ûxed degree, for large n,
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Fn(B) is trivial and we can start the induction. _erefore f = f ∣F0(A) is surjective.

Proof of_eorem 6.3 Since H∗(G) is an exterior algebra, by Example F.2 (ii), 1 ∈
Im∆ in the BV-algebra HH∗(H∗(G);H∗(G)). On the contrary, by _eorems 5.13
and 5.14, the unit 1 does not belong to the image of ∆ in the BV-algebra

H∗+dim G(LBG;F2).

So the BV-algebras HH∗(H∗(G);H∗(G)) and H∗+dim G(LBG;F2) are not isomor-
phic.

_e BV-algebra HH∗(H∗(SO(3)),H∗(SO(3))) was explicitly computed in the
proofof_eorem 6.2 and is isomorphic to the tensorproductof algebrasΛ(x−2 , x−1)⊗
F2[y2 , y3] with ∆(x−2 y3) = 1, ∆(x−2 y2) = 0, ∆(x−1 y2) = 1, ∆(x−1 y3) = 0, and ∆ is
trivial on Λ(x−2 , x−1)⊗1 and on 1⊗F2[y2 , y3]. _e BV-algebraH∗+3(LBSO(3);F2) ≅
Λ(u−2 , u−1)⊗ F2[v2 , v3] is given explicitly by _eorem 5.13.

Let φ ∶ Λ(x−2 , x−1) ⊗ F2[y2 , y3] → Λ(u−2 , u−1) ⊗ F2[v2 , v3] be any morphism of
graded algebras. Since Λ(x−2 , x−1) ⊗ F2[y2 , y3] and Λ(u−2 , u−1) ⊗ F2[v2 , v3] are of
the same ûnite dimension in each degree, φ is an isomorphism if and only if φ is
surjective. By Lemma 6.5, φ is surjective if and only if Q(φ) is surjective. _erefore,
φ is an isomorphism of algebras if and only if

φ(x−2) = u−2 , φ(x−1) = u−1 + εu−1u−2v2 ,

φ(y2) = v2 + au−2v2
2 + bu−1u−2v2v3 + cu−1v3 ,

φ(y3) = v3 + αu−2v2v3 + βu−1u−2v2
3 + γu−1u−2v3

2 + δu−1v2
2 ,

where ε, a, b, c, α, β, γ, δ are eight elements of F2. Since

(u−2)2 = 0 and (u−1 + εu−1u−2v2)2 = 0,

the above four formulas always deûne amorphism φ of algebras.
By the Poisson rule, a morphism of algebras between Gerstenhaber algebras is a

morphism of Gerstenhaber algebras if and only if the brackets are compatible on the
generators.

Note that, modulo 2, in a BV-algebra, for any elements z and t, {z + t, z + t} =
{z, z} + {t, t} and {z, z} = ∆(z2). _erefore it is easy to check that

φ({x−2 , x−2}) = 0 = {φ(x−2), φ(x−2)}, φ({x−1 , x−1}) = 0 = {φ(x−1), φ(x−1)},
φ({y2 , y2}) = 0 = {φ(y2), φ(y2)}, φ({y3 , y3}) = 0 = {φ(y3), φ(y3)}.

Note that ∆φ(x−1) = εu−2, ∆φ(x−2) = 0, ∆φ(y2) = (b + c)(u−2v3 + u−1v2), and
∆φ(y3) = αu−1v3 + αv2 + (α + γ)u−2v2

2 + αu−1u−2v2v3.
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_erefore

φ({x−2 , y2}) = 0,
{φ(x−2), φ(y2)} = (1 + c)u−1 + (b + c)u−1u−2v2 ,

φ({x−1 , y2}) = 1,
{φ(x−1), φ(y2)} = 1 + (1 + ε)u−2v2 + (εc + 1 + b + c)u−1u−2v3 ,

φ({x−2 , x−1}) = 0 = {φ(x−2), φ(x−1)},
φ({x−2 , y3}) = 1,

{φ(x−2), φ(y3)} = 1 + (1 + α)u−2v2 + (1 + α)u−1u−2v3 ,
φ({x−1 , y3}) = 0,

{φ(x−1), φ(y3)} = (1 + α + ε + α)u−1v2 + (ε + 1 + α + ε)u−2v3

+ (εδ + α + γ + εα)u−1u−2v2
2 ,

φ({y2 , y3}) = 0,
{φ(y2), φ(y3)} = ∆φ(y2)φ(y3) + ∆(φ(y2)φ(y3)) + φ(y2)∆φ(y3)

= (b + c)(u−2v2
3 + u−1v2v3 + (α + δ)u−1u−2v2

2v3)
+ ∆((a + α)u−2v2

2v3 + (b + cα + β)u−1u−2v2v2
3 + δu−1v3

2)
+ φ(y2)∆φ(y3)

= (a + α + δ + α)v2
2 + (a + α + δ + α + γ + aα)u−2v3

2

+ ((b + c)(α + δ) + a + α + δ + α + aα + bα + cα + cγ)
× u−1u−2v2

2v3

+ (b + c + α + cα)u−1v2v3 + (b + c + b + cα + β)u−2v2
3 .

_erefore, by symmetry of the Lie brackets, φ is amorphismofGerstenhaber algebras
if and only if ε = b = c = α = 1, β = 0 and a = γ = δ. Conclusion: we have found
only two isomorphisms of Gerstenhaber algebras between H∗+3(LBSO(3);F2) and
HH∗(H∗(SO(3)),H∗(SO(3))).

7 Triviality of the Loop Product When H∗(BG) Is Polynomial

_is section is independent of the rest of the paper. Recall that the dual of the loop
coproduct introduced by Sullivan for manifolds H∗(LM)⊗H∗(LM)→ H∗+d(LM)
is (almost) trivial [44]. In this section, we prove that the loop product for classifying
spaces of Lie groups H∗(LBG) ⊗ H∗(LBG) → H∗+d(LBG) is trivial if the inclusion
of the ûbre in cohomology H∗( j) ∶ H∗(LBG;K) ↠ H∗(G;K) is surjective (_eo-
rem 7.1). We also explain that the condition that H∗( j) ∶ H∗(LBG;K) ↠ H∗(G;K)
is surjective is equivalent to our hypothesis H∗(BG) polynomial (_eorem 7.3).

_eorem 7.1 Let BG be the classifying space of a connected Lie group G. Suppose that
themap induced in cohomologyH∗(LBG;K)↠ H∗(G;K) is surjective. _en the loop
product on H∗(LBG;K) is trivial, while the loop coproduct is injective.
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_is result is a generalization of [12,_eoremD] inwhich it is assumed that the un-
derlying ûeld is of characteristic zero. If CharK ≠ 2, the triviality of the loop product
was ûrst proved by Tamanoi [43,_eorem4.7 (2)]. David Chataur and the second au-
thor conjectured that the loop coproduct onH∗(LBG) always has a counit. Assuming
that the loop coproduct on H∗(LBG) has a counit, obviously the loop coproduct is
injective and it follows from [43,_eorem 4.5 (i)] that the loop product on H∗(LBG)
is trivial.

_e injectivity described in _eorem 7.1 follows from a consideration of the Eilen-
berg–Moore spectral sequences associated with appropriate pullback diagrams. In
fact, the induced maps Comp! and H(q) in the cohomology are epimorphisms; see
Proposition 7.2.

Let ΩX
ι↪ LX ↠ X be the free loop ûbration. _e following proposition is key to

proving _eorem 7.1.

Proposition 7.2 Let X be a simply-connected space. Suppose that

H∗(ι) ∶ H∗(LX)Ð→ H∗(ΩX)
induced by the inclusion is surjective. _en one has the following.
(i) _emap H∗(q) induced by the inclusion q ∶ LX ×X LX → LX ×LX is an epimor-

phism.
(ii) Supposemoreover that X is the classifying space of a connected Lie group G. _en

for themap Comp ∶ LBG×BG LBG→ LBG, Comp! is an epimorphism.

Proof of_eorem 7.1. By Proposition 7.2 (i) and (ii),we see that the dual to the loop
coproduct Dlcop ∶= Comp! ○H∗(q) on H∗(LBG) is surjective. Since q! is

H∗(LBG×LBG)-linear
and decreases the degrees, q! ○H∗(q) = 0. By Proposition 7.2 (i),H∗(q) is an epimor-
phism. _erefore q! is trivial and the dual of the loop productDlp ∶= q! ○H∗(Comp)
on H∗(LBG) is also trivial.

Proof of Proposition 7.2. Consider the twoEilenberg–Moore spectral sequences as-
sociatedwith the free loop ûbrationmentioned above andwith the pull-back diagram

LX ×X LX
q //

ev
��

LX × LX

ev× ev
��

X δ // X × X

SinceH∗(LX) is a freeH∗(X)-module by theLeray–Hirsch theorem, these twoEilen-
berg–Moore spectral sequences are concentrated on the 0-th column. So the two
morphisms of graded algebras

H∗(ι) ⊗
H∗(X)

η ∶ H∗(LX) ⊗
H∗(X)

K ≅Ð→ H∗(ΩX),

H∗(q) ⊗
H∗(X)⊗2

H∗(ev) ∶ (H∗(LX)⊗H∗(LX)) ⊗
H∗(X)⊗2

H∗(X) ≅Ð→ H∗(LX ×X LX)
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are isomorphisms. In particular, H∗(q) is an epimorphism and we have an isomor-
phism of graded vector spaces between H∗(LX ×X LX) and H∗(LX)⊗H∗(ΩX).
Consider the Leray–Serre spectral sequence {Ê∗,∗r , d̂r} of the homotopy ûbration

ΩX→LX ×X LX
CompÐÐÐ→ LX .

Since H∗(LX ×X LX) is isomorphic to H∗(LX) ⊗ H∗(ΩX), by [38, III.Lemma 4.5
(2)], {Ê∗,∗r , d̂r} collapses at the E2-term. _en for X = BG, the integration along the
ûbre Comp! ∶ H∗(LBG×BG LBG)→ H∗−dim G(LBG) is surjective.

Let G be a connected Lie group and K a ûeld of arbitrary characteristic. Let

F ∶ G j→ LBG→ BG be the free loop ûbration.

_eorem 7.3 _e induced map H∗( j) ∶ H∗(LBG;K) → H∗(G;K) is surjective if
and only if H∗(BG;K) is a polynomial algebra.

Proof _e “if ” part follows from the usual Eilenberg–Moore spectral sequence ar-
gument. In fact, suppose that H∗(BG;K) ≅ K[V]. _en the Eilenberg–Moore spec-
tral sequence for the universal bundle F′ ∶ G → EG → BG allows one to deduce that
H∗(G;K) ≅ ∧(sV). By using the Eilenberg–Moore spectral sequence for the ûbre
square ( [26, Proof of_eorem 1.2] or [28, Proof of_eorem 1.6])

LBG //

��

BGI

��
BG

δ
// BG×BG,

we see that H∗(LBG;K) ≅ H∗(BG;K)⊗∧(sV) as an H∗(BG) = K[V]-algebra. _is
implies that the Leray–Serre spectral sequence (LSSS) for F collapses at the E2-term
and hence H∗( j) is surjective. See the beginning of Section 3 for an alternative proof
that uses module derivations.

Suppose that H∗( j) is surjective. We further assume that CharK = 2. By the
argument in [28, Remark 1.4] or [21, Proof of_eorem 2.2], we see that the Hopf al-
gebra A = H∗(G;K) is cocommutative and so primitively generated, i.e., the natural
map P(A) → Q(A) is surjective. By [28, Lemma 4.3], this yields that H∗(G;K) ≅
∧(x1 , . . . , xN), where x i is primitive for any 1 ≤ i ≤ N . _e same argument as in the
proof of [38, Chapter 7,_eorem 2.26(2)] allows us to deduce that each x i is transgres-
sive in the LSSS {Er , dr} for F′. To see this more precisely, we recall that the action of
G on EG gives rise to amorphism of spectral sequence

{µ∗r } ∶ {Er , dr}Ð→ {Er ⊗H∗(G;K), dr ⊗ 1}
for which

µ∗2 = 1⊗ µ∗ ∶ H∗(BG;K)⊗H∗(G;K)Ð→ H∗(BG;K)⊗H∗(G;K)⊗H∗(G;K),
where µ ∶ G ×G → G denotes themultiplication on G [38, Chapter 7, §2].

Suppose that there exists an integer i such that x j is transgressive for j < i, but not
x i . _en we see that for some r < deg x i + 1, dr(x i) ≠ 0 and dp(x i) = 0 if p < r. We
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write dr(x i) = ∑l b l ⊗ x l1 ⋅ ⋅ ⋅ x ls l
, where each b l is a non-zero element of H∗(BG;K)

and 1 ≤ lu ≤ N for any l and u. _e equality µ∗r dr(x i) = (dr ⊗ 1)µ∗r (x i) implies that

∑
l
b l ⊗ x l1 ⋅ ⋅ ⋅ x ls l−1 ⊗ x ls l

= dr ⊗ 1 (1⊗ x i ⊗ 1 + 1⊗ 1⊗ x i)

=∑
l
b l ⊗ x l1 ⋅ ⋅ ⋅ x ls l

⊗ 1,

which is a contradiction. Observe that x i and x lu are primitive. _us it follows that
x i is transgressive for any 1 ≤ i ≤ N .

In the case where CharK = p ≠ 2, since H∗( j) is surjective by assumption, it fol-
lows from the argument in [28, Remark 1.4] that H∗(G;Z) has no p-torsion. Observe
that to obtain the result, the connectedness of the loop space is assumed. By virtue
of [38, Chapter 7,_eorem 2.12],we see that H∗(BG;K) is a polynomial algebra. _is
completes the proof.

_eorem 7.4 gives another characterisation of our hypothesis that H∗(BG) is poly-
nomial.

_eorem 7.4 Let G be a connected Lie group. _en the following three conditions are
equivalent.
(i) H∗(BG;K) is a polynomial algebra on even degree generators.
(ii) BG is K-formal and H∗(BG;K) is strictly commutative.
(iii) _e singular cochain algebra S∗(BG;K) is weakly equivalent, as algebra, to a

strictly commutative diòerential graded algebra A.

Strictly commutativemeans that a2 = 0 if a ∈ Aodd (K can be a ûeld of character-
istic two). We conjecture that over a ûeld of characteristic two, this theorem remains
valid if we omit “on even degree generators” in (i), “and H∗(BG;K) is strictly com-
mutative” in (ii) and “strictly” in (iii).

Proof (i) ⇒ (ii). Suppose that H∗(BG;K) is a polynomial algebra. _en by the
beginning of Section 6, BG is K-formal.

(ii)⇒ (iii). Formality means that we can take A = (H∗(BG;K), 0) in (iii).
(iii)⇒ (i). Let Y be a simply connected space such that S∗(Y ;K) isweakly equiva-

lent as algebras to a strictly commutative diòerential graded algebra A. Let (ΛV , d) be
aminimal Sullivan model of A. Consider the semifree-(ΛV , d) resolution of (K, 0),
(ΛV ⊗ ΓsV ,D) given in [16, Proposition 2.4] or [33, Lemma 7.2]. _en the tensor
product of commutative diòerential graded algebras

(K, 0) ⊗
(ΛV ,d)

(ΛV ⊗ ΓsV ,D) ≅ (ΓsV ,D)

has a trivial diòerentialD = 0 [16, Corollary 2.6]. _ereforewe have the isomorphisms
of graded vector spaces

H∗(ΩY) ≅ TorS
∗(Y ;K)(K,K) ≅ Tor(ΛV ,d)(K,K) ≅ H∗(ΓsV ,D) ≅ ΓsV .

IfH∗(ΩY) is of ûnite dimension, then the suspension ofV , sV must be concentrated
in odd degree and so V must be in even degree and d = 0; thus Y is K-formal and
H∗(Y) is polynomial in even degree.
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A Review of [6] With Sign Corrections

In this appendix, we review the results of Chataur and the second author [6]. And we
correct a sign mistake.

A.1 Integration Along the Fibre in Homology With Corrected Sign

Let F → E
projÐÐ→ B be an oriented ûbration with B path-connected, i.e., the homology

H∗(F;K) is concentrated in degree less than or equal to n, π1(B) acts on Hn(F;K)
trivially, and Hn(F;K) ≅ K. In what follows, we write H∗(X) for H∗(X;K). We
choose a generator ω of Hn(F;K), which is called an orientation class. _en the
integration along the ûbre projω! ∶ H∗(B)→ H∗+n(E) is deûned by the composite

Hs(B)
ηÐ→ Hs(B)⊗Hn(F) = E2

s ,n Ð→→ E∞s ,n = F s/F s−1 = F s ⊂ Hs+n(E),

where η sends the x ∈ Hs(B) to the element (−1)snx⊗ω ∈ Hs(B)⊗Hn(F) and {F l}l≥0
denotes the ûltration of the Leray–Serre spectral sequence {Er

∗,∗ , d
r} of the ûbration

F → E
projÐÐ→ B. _is Koszul sign (−1)sn does not appear in the usual deûnition of

integration along the ûbre recalled in [6, 2.2.1].

A.2 Products

Let F′ → E′
proj′ÐÐ→ B′ be anotherorientedûbrationwithorientation classω′ ∈ Hn′(F′).

We will choose ω ⊗ ω′ ∈ Hn+n′(F × F′) as an orientation class of the ûbration

F × F′ Ð→ E × E′ proj× proj′ÐÐÐÐÐ→ B × B′ .
By [39, _eorem 3, p. 493], the cross product × induces a morphism of spectral se-
quences between the tensor product of the Serre spectral sequences associated with
proj and proj′ and the Serre spectral sequence associated with proj×proj′. _erefore
the interchange on H∗(B) ⊗ Hn(F) ⊗ H∗(B′) ⊗ Hn′(F′) between the orientation
class ω ∈ Hn(F) and elements in H∗(B′) yields the formula given (without proof)
in [6, §2.3]

(proj×proj′)ω×ω′
! (a × b) = (−1)∣ω

′∣∣a∣ projω! (a) × proj′ω
′

! (b).
Note that with the usual deûnition of integration along the ûbre recalled from [6,
2.2.1], the Koszul sign (−1)∣ω′∣∣a∣ must be replaced by the awkward sign (−1)∣ω∣∣b∣.
_erefore there is a sign mistake in [6, §2.3].

A.3 Integration Along the Fibre in Cohomology With Corrected Sign

Let F
incl↪ E

proj↠ B be an oriented ûbration with orientation τ ∶ Hn(F) → K. By
deûnition, proj!τ ∶ Hs+n(E)→ Hs(B) is the composite

Hs+n(E)Ð→→ Es ,n
∞ ⊂ Es ,n

2 = Hs(B)⊗Hn(F) id⊗τÐÐ→ Hs(B),

where (id⊗τ)(b ⊗ f ) = (−1)n∣b∣bτ( f ). _is Koszul sign (−1)n∣b∣ does not appear in
the usual deûnition of integration along the ûbre recalled from [3, p. 268].
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By [3, IV.14.1], proj!τ(H∗(proj)(β)∪ α) = (−1)∣β∣nβ ∪ proj!τ(α) for α ∈ H∗(E) and
β ∈ H∗(B). _is means that the degree −n linear map proj!τ ∶ H∗(E) → H∗−n(B)
is a morphism of le� H∗(B)-modules in the sense that f (xm) = (−1)∣ f ∣∣x ∣x f (m) as
stated in [9, p. 44].

A.4 Example: Trivial Fibrations

Let ω ∈ Hn(F;K) be a generator. Deûne the orientation τ ∶ Hn(F)→ K as the image
ofω by thenatural isomorphismof thehomology into its double dual,ψ ∶ Hn(F;K)→
Hom(Hn(F;K),K). Explicitly, τ( f ) = (−1)n∣ f ∣⟨ f ,ω⟩, where ⟨ ⋅ , ⋅ ⟩ is the Kronecker
bracket.

Let proj1 ∶ B × F ↠ B be the projection on the ûrst factor. _en for any f ∈ H∗(F)
and b ∈ H∗(B), proj!1τ(b × f ) = (−1)∣ f ∣∣b∣bτ( f ). Let proj2 ∶ F × B ↠ B be the pro-
jection on the second factor. Since proj2 is the composite of proj1 and the exchange
homeomorphism, by naturality of integration along the ûbre,

proj!2τ( f × b) = proj!1τ((−1)
∣ f ∣∣b∣b × f ) = bτ( f ) = (−1)n∣ f ∣⟨ f ,ω⟩b.

A.5 Main Dual Theorem With Signs

_emain theorem of [6] states that H∗(LX) is a d-dimensional (non-unital non co-
unital) homological conformal ûeld theory, i.e.,H∗(LX) is an algebra over the tensor
product of graded linear props

⊕
Fp+q

detH1(F , ∂in;Z)⊗d ⊗Z H∗(Bdiò+(F , ∂);K).

See [6, §3 and 11] for the deûnition of this prop: here F (respectively Fp+q) denotes
a non-necessarily connected cobordism (with p incoming circles and q outcoming
circles). _e prop detH1(F , ∂in;Z) manages the degree shi� and the sign of each
operation. In [6], Chataur and the second author did not pay attention to this prop
detH1(F , ∂in;Z) (and neither did [1, p. 120], it seems). _erefore, in order to get the
signs correct, we need to review all the results of [6] by taking this prop into account.
Explicitly, we havemaps

ϑ(Fq+p) ∶ detH1(Fq+p , ∂in;Z)⊗d ⊗Z H∗(Bdiò+(Fq+p , ∂))⊗H∗(LX)⊗q

Ð→ H∗(LX)⊗p

that assign ϑ s⊗a(Fq+p)(v) to s ⊗ a ⊗ v.
_erefore (cf. [6, §6.3]), its dual H∗(LX) is an algebra over the opposite prop

⊕Fp+q detH1(F , ∂in;Z)op⊗d⊗ZH∗(Bdiò+(F , ∂))op,which is isomorphic to the prop
⊕Fp+q detH1(F , ∂out;Z)⊗d ⊗Z H∗(Bdiò+(F , ∂)), since

detH1(Fp+q , ∂out;Z) = detH1(Fq+p , ∂in;Z)
and diò+(Fp+q , ∂) = diò+(Fq+p , ∂). Explicitly, the degree 0 map since

ν(Fp+q) ∶ detH1(Fq+p , ∂in;Z)⊗d ⊗Z H∗(Bdiò+(Fq+p , ∂))⊗H∗(LX)⊗p

Ð→ H∗(LX)⊗q
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sends the element s ⊗ a ⊗ α to

νs⊗a(Fp+q)(α) ∶=t (ϑ s⊗a(Fq+p))(α) = (−1)∣α∣(∣s∣+∣a∣)α ○ ϑ s⊗a(Fq+p).
Note that herewe have deûned the transposition of amap f as t f (α) = (−1)∣α∣∣ f ∣α ○ f .

_is yields the following ûve propositions: A.1, A.3, A.4, A.5.

Proposition A.1 (Cf. [6, Proposition 24]) Let F and F′ be two cobordisms with the
same incoming boundary and the same outgoing boundary. Let ϕ ∶ F → F′ be an ori-
entation preserving diòeomorphism, ûxing the boundary, i.e., an equivalence between
the two cobordisms F and F′. Let cϕ ∶ diò+(F , ∂) → diò+(F′ , ∂) be the isomorphism
of groups,mapping f to ϕ ○ f ○ ϕ−1. _en for

s ⊗ a ∈ detH1(F , ∂out;Z)⊗d ⊗Z H∗(Bdiò+(F , ∂)),

νs⊗a(F) = νdet H1(ϕ ,∂out ;Z)⊗d(s)⊗H∗(Bcϕ)(a)(F′).

Remark A.2. In Proposition A.1, suppose that F = F′. By a variant of [6, Proposi-
tion 19], H1(ϕ, ∂out;Z) is of determinant +1. Since the natural surjection

diò+(F , ∂)) ≃Ð→ π0(diò+(F , ∂))
is a homotopy equivalence [7] and π0(cϕ) is the conjugation by the isotopy class of
ϕ, H∗(Bcϕ) is the identity. So the conclusion of Proposition A.1 is just νs⊗a(F) =
νs⊗a(F).

Using Proposition A.1, it is enough to deûne the operation ν(F) for a set of repre-
sentatives F of oriented classes of cobordisms (therefore, the direct sum over a set⊕F
in the above deûnition of the prop has ameaning). Conversely, if ν(F) is deûned for
a cobordism F, then using Proposition A.1, we can deûne ν(F′) for any equivalent
cobordism F′ using an equivalence of cobordism ϕ ∶ F → F′. Two equivalences of
cobordism ϕ, ϕ′ ∶ F → F′ deûne the same operation ν(F′), since

detH1(ϕ, ∂out) ○ detH1(ϕ′ , ∂out)−1 = detH1(ϕ ○ ϕ′−1 , ∂out) = Id

and H∗(Bcϕ) ○H∗(Bcϕ′)−1 = H∗(Bcϕ○ϕ′−1) = Id by Remark A.2.

Proposition A.3 (Cf. [6,Proposition 30,Monoidal]) Let F and F′ be two cobordisms.
For

s ⊗ a ∈ detH1(F , ∂out;Z)⊗d ⊗Z H∗(Bdiò+(F , ∂)),
and

t ⊗ b ∈ detH1(F′ , ∂out;Z)⊗d ⊗Z H∗(Bdiò+(F′ , ∂)),

we have ν(s⊗t)⊗(a⊗b)(F∐ F′) = (−1)∣t∣∣a∣νs⊗a(F)⊗ νt⊗b(F′).

Proposition A.4 (Cf. [6, Proposition 31,Gluing]) Let Fp+q and Fq+r be two compos-
able cobordisms. Denote by Fq+r ○ Fp+q the cobordism obtained by gluing. For

s1 ⊗m1 ∈ detH1(Fp+q , ∂out;Z)⊗d ⊗Z H∗(Bdiò+(Fp+q , ∂)),
and

s2 ⊗m2 ∈ detH1(Fq+r , ∂out;Z)⊗d ⊗Z H∗(Bdiò+(Fq+r , ∂)),
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we have νs2⊗m2(Fq+r) ○ νs1⊗m1(Fp+q) = (−1)∣m2 ∣∣s1 ∣ν(s2○s1)⊗(m2○m1)(Fq+r ○ Fp+q). Here
○∶ H∗(Bdiò+(Fq+r , ∂))⊗H∗(Bdiò+(Fp+q , ∂))Ð→ H∗(Bdiò+(Fq+r ○ Fp+q , ∂)),
andmapping m2 ⊗m1 to m2 ○m1 is induced by the gluing of Fp+q and Fq+r .

Asnoted in [20],with theirnotion of h-graph cobordism, Chatour andMenichi [6]
never used the smooth structure of the cobordisms. So, in fact, our cobordisms are
topological. _erefore the cobordism Fq+r ○ Fp+q obtained by gluing is canonically
deûned [25, 1.3.2]. Note that by [7, 17] the inclusion diò+(F , ∂) ≈↪ Homeo+(F , ∂) is a
homotopy equivalence since π0(diò+(F , ∂)) ≅ π0(Homeo+(F , ∂)) [8, p. 45].

Proposition A.5 (Cf. [6, Corollary 28 i), Identity]) Let id1 ∈ detH1(F0,1+1 , ∂out;Z)
and id1 ∈ H0(Bdiò+(F0,1+1 , ∂)) be the identity morphisms of the object 1 in the two
props. _en νid⊗d

1 ⊗ id1(F0,1+1) = IdH∗(LX).

Proposition A.6 (Cf. [6, Corollary 28 ii), Symmetry]) Let Cϕ be the twist cobordism
of S1∐ S1. Let τ ∈ detH1(Cϕ , ∂out;Z), τ ∈ H0(Bdiò+(Cϕ , ∂)), and

τ ∈ End(H∗(LX)⊗2)

be the exchange isomorphisms of the three props. _en ντ⊗d⊗τ(Cϕ) = τ.

Let F be a cobordism. Let κF be the generator of H0(Bdiò+(F , ∂)) represented by
the connected component of Bdiò+(F , ∂). Wemaywrite κ instead of κF for simplicity.
If χ(F) = 0, then H1(F , ∂out;Z) = {0} has a unique orientation class. _is class
corresponds to the generator 1 ∈ detH1(F , ∂out;Z) = Λ−χ(F)H1(F , ∂out;Z) = Z.

_e identity morphim id1 and the exchange isomorphism τ of the prop

detH1(F , ∂out;Z)
correspond to these unique orientation classes of

H1(F0,1+1 , ∂out;Z) and H1(Cϕ , ∂out;Z).
_e identity morphism id1 and the exchange isomorphism τ of the prop

H∗(Bdiò+(F , ∂))
are just κF0,1+1 and κCϕ .

B Commutativity and Associativity of the Dual to the Loop
Coproduct

_e connected cobordism of genus g with p incoming circles and q outgoing circles
is denoted Fg ,p+q . In particular, F0,2+1 is the pair of pants.

_eorem B.1 Let d ≥ 0. Let H∗ (upper graded) be an algebra over the (lower graded)
prop detH1(F , ∂out;Z)⊗d ⊗Z H0(Bdiò+(F , ∂)). Let s ∈ detH1(F0,2+1 , ∂out;Z)⊗d be a
chosen orientation. Let Dlcop ∶= νs⊗κ(F0,2+1). Let m be the product deûned by

a ⊙ b = (−1)d(i−d)Dlcop(a ⊗ b)
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for a ⊗ b ∈ H i ⊗ H j . Let H∗ ∶= H∗+d . _en (H∗ ,⊙) is a graded associative and
commutative algebra.

Proof Using Propositions A.3, A.4, and A.5,

Dlcop ○(Dlcop⊗1) = νs○(s⊗id1)⊗κ○(κ⊗id1)(F0,2+1 ○ (F0,2+1∐ F0,1+1)),
Dlcop ○(1⊗Dlcop) = νs○(id1 ⊗s)⊗κ○(id1 ⊗κ)(F0,2+1 ○ (F0,1+1∐ F0,2+1)).

_e cobordisms F0,2+1 ○(F0,2+1∐ F0,1+1) and F0,2+1 ○(F0,1+1∐ F0,2+1) are equivalent.
When we identify them, κ ○ (κ ⊗ id1) = κ ○ (id1 ⊗κ). Also F0,2+1 ○ Cϕ = F0,2+1 and
κ ○ τ = κ.

Let β ∈ detH1(F0,2+1 , ∂out;Z) the generator such that β⊗d = s. _e composi-
tions of the Z-linear prop detH1(F , ∂out;Z) are isomorphisms. _erefore, they send
generators to generators. Moreover, detH1(F , ∂out;Z) ∶= Λ−χ(F)H1(F , ∂out;Z) is
an abelian group on a single generator of lower degree −χ(F). So β ○ (β ⊗ id1) =
εassβ ○ (id1 ⊗β) and β ○ τ = εcomβ for given signs εass and εcom ∈ {−1, 1}. _erefore

s ○ (s ⊗ id1) = β⊗d ○ (β ⊗ id1)⊗d = (−1)
d(d−1)

2 ∣β∣2(β ○ (β ⊗ id1))⊗d = εdasss ○ (id1 ⊗s),
s ○ τ = β⊗d ○ τ⊗d = (β ○ τ)⊗d = (εcomβ)⊗d = εdcomβ⊗d = εdcoms.

_erefore, by Proposition A.1

Dlcop ○(Dlcop⊗1) = εdassDlcop ○(1⊗Dlcop),
Dlcop ○τ = εdcomDlcop .

_is means that for a, b, c ∈ H∗(LX),

(a ⊙ b)⊙ c = εdass(−1)da ⊙ (b ⊙ c),
b ⊙ a = εdcom(−1)(∣a∣−d)(∣b∣−d)+da ⊙ b,

since

(a ⊙ b)⊙ c = (−1)d ∣b∣+d Dlcop ○(Dlcop⊗1)(a ⊗ b ⊗ c),
a ⊙ (b ⊙ c) = (−1)d(∣a∣+∣b∣)Dlcop(a ⊗Dlcop(b ⊗ c))

= (−1)d ∣b∣Dlcop ○(1⊗Dlcop)(a ⊗ b ⊗ c).
Godin [14,ProofofProposition 21] showed geometrically that εass = −1 for theprop

detH1(F , ∂in;Z). To determine the signs εass and εcom for the prop detH1(F , ∂out;Z),
we prefer to use our computations of ⊙.
Consider a particular connected compact Lie group G of a particular dimension

d and a particular ûeldK of characteristic diòerent from 2 such that H∗(BG;K) is a
polynomial, for example G = (S1)d or K = Q. _en H∗(LBG;Q) is an algebra over
our prop and we can apply _eorem 3.1 (ii) or Corollary 4.2. Taking a = x1 ⋅ ⋅ ⋅ xN ,
b = 1, and c = x1 ⋅ ⋅ ⋅ xN , we obtain 1 = εdass(−1)d and 1 = εdcom(−1)d . So if we chose d
odd, εass = εcom = −1 and ⊙ is associative and graded commutative.

Remark B.2. When d is even, the d-th power of the prop detH1(F , ∂in;Z) is isomor-
phic to the d-th power of the trivial prop with a degree shi� −χ(F).
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More precisely, let P be the prop such that P(p, q) ∶=⊕Fp+q s
−χ(Fp+q)Z,

s−χ(F
′)1 ○ s−χ(F)1 = s−χ(F

′○F)1,

and s−χ(F)1⊗ s−χ(F
′)1 = s−χ(F∐ F

′)1. _is prop P is the the trivial prop with a degree
shi� −χ(F).
For any cobordism F, let ΘF ∶ s−χ(F)Z → detH1(F , ∂in;Z) be a chosen isomor-

phism. _en Θ⊗d
F ∶ P⊗d → detH1(F , ∂in;Z)⊗d is an isomorphim of props if d is even.

_is prop P⊗d is the d-th power of the trivial prop with a degree shi� −χ(F) and is
not isomorphic to the trivial prop with a degree shi� −dχ(F).

Proof _e following upper square always commutes, while the lower square com-
mutes if d is even.

(s−χ(F′)Z)⊗d ⊗ (s−χ(F)Z)⊗d
Θ⊗d

F′ ⊗Θ⊗d
F //

τ
��

detH1(F′ , ∂∉;Z)⊗d ⊗ detH1(F , ∂in;Z)⊗d

τ
��

(s−χ(F′)Z⊗ s−χ(F)Z)⊗d
(ΘF′⊗ΘF)⊗d

//

○⊗d

��

(detH1(F′ , ∂in;Z)⊗ detH1(F , ∂in;Z))⊗d

○⊗d

��
(s−χ(F′○F)Z)⊗d

(ΘF′○F)⊗d
// detH1(F′ ○ F , ∂in;Z)⊗d

Replacing ○ by the tensor product ⊗ of props, we have proved that Θ⊗d
F is an iso-

morphism of props if d is even.

Observe that the dual of the loop coproduct Dlcop on H∗(LX) satisûes the same
commutative and associative formulae as those of the Chas–Sullivan loop product on
the loop homology ofM [42, Remark 3.6], [29, Proposition 2.7]. So we wonder if the
prop detH1(F , ∂out;Z) is isomorphic to the prop detH1(F , ∂in;Z).

Corollary B.3 Let X be a simply connected space such that H∗(ΩX;K) is ûnite-
dimensional. _e shi�ed cohomologyH∗(LX) ∶= H∗+d(LX) is a graded commutative,
associative algebra endowed with the product ⊙ deûned by

a ⊙ b = (−1)d(i−d)Dlcop(a ⊗ b),
for a ∈ H i(LX) and b ∈ H j(LX).

C The Batalin–Vilkovisky Identity

For any simple closed curve γ in a cobordism F, let us denote by γ the image of the
Dehn twist Tγ by theHurewicz map Θ

π0(diò+(F , ∂))
∂−1

Ð→
≅

π1(Bdiò+(F , ∂))
ΘÐ→ H1(Bdiò+(F , ∂)).

In this appendix, we prove the following theorem.

_eorem C.1 Let H∗ be an algebra over the prop

detH1(F , ∂out;Z)⊗d ⊗Z H∗(Bdiò+(F , ∂)).
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Consider the graded associative and commutative algebra (H∗ ,⊙) given by_eoremB.1.
Let α be a closed curve in the cylinder F0,1+1 parallel to one of the boundary components.
Let ∆ = νid1 ⊗α(F0,1+1). _en (H∗ ,⊙, ∆) is a BV-algebra.

When d = 0,Wahl [46, Remark 2.2.4] and Kupers [27, 4.1, p. 158] gave an incom-
plete proof that we complete. Moreover, we pay attention to signs.

We conjecture that _eoremC.1 is true ifwe replace the prop detH1(F , ∂out;Z) by
the (isomorphic?) prop detH1(F , ∂in;Z). A d-homological conformal ûeld theory
should have a structure of a BV-algebra. _e dual of a d-homological conformal ûeld
theory should be a d-homological conformal ûeld theory. All this is well known if
we do not take into accounts the signs hidden in the prop detH1(F , ∂in;Z). But the
problem is to do a correct proof with signs.

_e shi�ed cohomology algebra (H∗ ,⊙) equipped with the operator ∆ is a BV-
algebra if and only if ∆ ○ ∆ = 0 and if the Batalin–Vilkovisky identity holds; that is,
for any elements a, b, and c in H∗,

∆(a ⊙ b ⊙ c) = ∆(a ⊙ b)⊙ c + (−1)∥a∥a ⊙ ∆(b ⊙ c) + (−1)∥b∥∥a∥+∥b∥b ⊙ ∆(a ⊙ c)
− ∆(a)⊙ b ⊙ c − (−1)∥a∥a ⊙ ∆(b)⊙ c
− (−1)∥a∥+∥b∥a ⊙ b ⊙ ∆(c),

where ∥α∥ stands for the degree of an element α in H∗, namely ∥α∥ = ∣α∣ − d.
Since Bdiò+(F0,1+1) is BZ, α ○ α ∈ H2(Bdiò+(F0,1+1)) = {0}. _erefore ∆ ○ ∆ =

±νid1 ⊗α○α(F0,1+1) = 0
_e Batalin–Vilkovisky identity will arise up to signs from the lantern relation [46,

Remark 2.2.4], [27, 4.1, p. 158].

Proposition C.2 ( [22], [8, §5.1]) Let a1 , . . . , a4 and x , y, z be the simple closed curves
described in [27, Figure 6.89]. _en one has Ta1Ta2Ta3Ta4 = TxTyTz in the mapping
class group of the spherewith four holes, F0,3+1,where Tγ denotes the Dehn twist around
a simple closed curve γ in the surface.

In order to prove_eorem C.3, we represent each term of the Batalin–Vilkovisky
identity in terms of elements of the propwith a homological conformal ûeld theoreti-
cal way. _is means using the horizontal (coproduct) composition ⊗ and the vertical
composition ○ on the prop. We startwith themost complicated element b⊙∆(a⊙ c).
By Propositions A.3, A.4, A.5, and A.6,

Dlcop ○[Id⊗(∆ ○Dlcop)] ○ (τ ⊗ Id)
= νs⊗κ(F0,2+1) ○ [νid1 ⊗ id1(F0,1+1)⊗ (νid1 ⊗α(F0,1+1) ○ νs⊗κ(F0,2+1))]

○ (ντ⊗τ(Cϕ)⊗ νid1 ⊗ id1(F0,1+1))
= ±νs○[id1 ⊗s]○(τ⊗id1)⊗κ○[id1 ⊗(α○κ)]○(τ⊗id1)(F0,2+1○(F0,1+1∐ F0,2+1)○(Cϕ∐ F0,1+1))

Here ± is the Koszul sign (−1)∣s∣∣α∣ = (−1)d , since only s and α have positive degrees.
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We choose s′ = s ○ (s ⊗ id1). In the proof of_eorem B.1, we have seen that εass =
εcom = −1 and hence s ○ (s ⊗ id1) = (−1)d s ○ (id1 ⊗s) and s ○ τ = (−1)d s. _erefore,

s ○ (id1 ⊗s) ○ (τ ⊗ id1) = (−1)d s ○ (s ⊗ id1) ○ (τ ⊗ id1)
= (−1)d s ○ [(s ○ τ)⊗ (id1 ○ id1)] = s′ .

Since κ○[id1 ⊗(α○κ)]○(τ⊗ id1) coincideswith z by PropositionD.1,we have proved
thatDlcop ○(Id⊗(∆○Dlcop))○(τ⊗ Id) = (−1)dνs′⊗z(F0,3+1). Similar computations
show that

Dlcop ○(Id⊗(∆ ○Dlcop)) =

± νs○[id1 ⊗s]⊗ κ○[id1 ⊗(α○κ)](F0,2+1 ○ (F0,1+1 tsl∐ F0,2+1)) = νs′⊗x(F0,3+1),
Dlcop ○((∆ ○Dlcop)⊗ Id) =

± νs○[s⊗id1]⊗ κ○[(α○κ)⊗id1](F0,2+1 ○ (F0,2+1∐ F0,1+1)) = (−1)dνs′⊗y(F0,3+1),
∆ ○Dlcop ○(Dlcop ○ Id) =

νs○[s⊗id1]⊗ α○κ○(κ⊗id1)(F0,2+1 ○ (F0,2+1∐ F0,1+1)) = νs′⊗a4(F0,3+1),
Dlcop ○(∆⊗Dlcop) =

± νs○[id1 ⊗s]⊗ κ○[α⊗κ](F0,2+1 ○ (F0,1+1∐ F0,2+1)) = νs′⊗a1(F0,3+1),
Dlcop ○(Id⊗Dlcop) ○ (Id⊗∆⊗ Id) =

νs○[id1 ⊗s]⊗ κ○(id1 ⊗κ)○(id1 ⊗α⊗id1)(F0,2+1 ○ (F0,1+1∐ F0,2+1)) = (−1)dνs′⊗a2(F0,3+1)
Dlcop ○(Dlcop⊗∆) =

νs○[s⊗id1]⊗ κ○[κ⊗α](F0,2+1 ○ (F0,1+1∐ F0,2+1)) = νs′⊗a3(F0,3+1).
_erefore, using the deûnition of the product ⊙, straightforward computations show
that

∆((a ⊙ b)⊙ c) = (−1)d ∣b∣+dνs′⊗a4(F0,3+1)(a ⊗ b ⊗ c),

∆(a)⊙ b ⊙ c = (−1)d ∣b∣+dνs′⊗a1(F0,3+1)(a ⊗ b ⊗ c),

(−1)∥a∥a ⊙ ∆(b)⊙ c = (−1)d ∣b∣+dνs′⊗a2(F0,3+1)(a ⊗ b ⊗ c),

(−1)∥a∥+∥b∥a ⊙ b ⊙ ∆(c) = (−1)d ∣b∣+dνs′⊗a3(F0,3+1)(a ⊗ b ⊗ c),

∆(a ⊙ b)⊙ c = (−1)d ∣b∣+dνs′⊗y(F0,3+1)(a ⊗ b ⊗ c),

(−1)∥a∥a ⊙ ∆(b ⊙ c) = (−1)d ∣b∣+dνs′⊗x(F0,3+1)(a ⊗ b ⊗ c),

(−1)∥b∥∥a∥+∥b∥b ⊙ ∆(a ⊙ c) = (−1)d ∣b∣+dνs′⊗z(F0,3+1)(a ⊗ b ⊗ c) .

_e lantern relation gives rise to the equality

νs′⊗a4(F0,3+1) + νs′⊗a1(F0,3+1) + νs′⊗a2(F0,3+1) + νs′⊗a3(F0,3+1)

= νs′⊗x(F0,3+1) + νs′⊗y(F0,3+1) + νs′⊗z(F0,3+1),
since theHurewicz map is amorphism of groups. _us,

∆(a⊙ b⊙ c)+∆(a)⊙ b⊙ c + (−1)∥a∥a⊙∆(b)⊙ c + (−1)∥a∥+∥b∥a⊙ b⊙∆(c)
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= ∆(a ⊙ b)⊙ c + (−1)∥a∥a ⊙ ∆(b ⊙ c) + (−1)∥b∥∥a∥+∥b∥b ⊙ ∆(a ⊙ c).

Corollary C.3 Let G be a connected compact Lie group of dimension d. Consider
the graded associative and commutative algebra (H∗(LBG),⊙) given by Corollary B.3.
Let ∆ be the operator induced by the action of the circle on LBG (see our deûnition
in Appendix E). _en the shi�ed cohomology H∗(LBG) carries the structure of a BV-
algebra.

Proof By Proposition E.1 and by [6, Proposition 60]), ∆ = νid1 ⊗α(F0,1+1).

D Seven Prop Structure Equalities on the Homology of Mapping
Class Groups Proving the Batalin–Vilkovisky Identity

Recall that for any simple closed curve γ in a cobordism F, we write γ for the image
of the Dehn twist Tα by theHurewicz map Θ

π0(diò+(F , ∂))
∂−1

Ð→
≅

π1(Bdiò+(F , ∂))
ΘÐ→ H1(Bdiò+(F , ∂)).

Here ∂ is the connecting homomorphism associated wwith the universal principal
ûbration.

Let α be a closed curve in the cylinder F0,1+1 parallel to one of the boundary com-
ponents. Let a1 , . . . , a4 and x , y, z be the simple closed curves in F0,3+1 described
in [27, Figure 6.89]. In what follows, we denote by ○ the vertical product in the prop

⊕
F

H∗(Bdiò+(F , ∂);K),

which acts (up to signs) on H∗+dim G(LBG;K). _e goal of this appendix is to show
the following equalities needed in the proof of the BV-identity given in Appendix C.

Proposition D.1

z = κ ○ [id1 ⊗(α ○ κ)] ○ [τ ⊗ id1], x = κ ○ [id1 ⊗(α ○ κ)], y = κ ○ [(α ○ κ)⊗ id1],
a4 = α ○ κ ○ (κ ⊗ id1), a1 = κ ○ [α ⊗ κ],
a2 = κ ○ (id1 ⊗κ) ○ (id1 ⊗α ⊗ id1), a3 = κ ○ [κ ⊗ α].

Let F̃ denote the group diò+(F , ∂) (or themapping class group of a surface F with
boundary ∂). Recall that κF or simply κ denotes the generator of H0(BF̃) that is
represented by the connected component of BF̃.

Proposition D.2 Let F and F′ be two cobordisms. In (i) and (ii), suppose that F and
F′ are gluable. Let ○∶ F̃× F̃′ → F̃ ○ F′ be themap induced by gluing on diòeomorphisms.
Let idF ∈ F̃ be the identity map of F. For D in π0(F̃) and D′ in π0(F̃′),
(i) Θ∂−1(idF ○ D′) = κF ○Θ∂−1D′,
(ii) Θ∂−1(D ○ idF′) = Θ∂−1D ○ κF′ ,
(iii) Θ∂−1(idF ⊔ D′) = κF ⊗Θ∂−1D′.
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Proof We consider the diagram
π0(F̃) × π0(F̃′)

φ≅
��

π0(F̃′)

i2
66

π0(i2)
// π0(F̃ × F̃′)

π0(○) // π0(F̃ ○ F′)

π1(B(F̃′))

Θ
��

≅ ∂

OO

π1(B(i2))
//

π1(i2) ((

π1(B(F̃ × F̃′))

Θ

  

≅ ∂

OO

π1(ξ)≅
��

π1(B(○))
// π1(BF̃ ○ F′)

Θ

��

≅ ∂

OO

H1(BF̃′)

k2
�� H1(i2) ((

π1(BF̃ × BF̃′)

Θ
��

H0(BF̃)⊗H1(BF̃′) ×
// H1(BF̃ × BF̃′) H1(B(F̃ × F̃′))H1(ξ)

≅oo
H1(B(○))

// H1(BF̃ ○ F′)

Here φ is the natural isomorphism, × is the cross product,

ξ ∶ B(F̃ × F̃′) ≈Ð→ B(F̃) × B(F̃′)
is the canonical homotopy equivalence, k2 is the isomorphism deûned by k2(x) =
κF ⊗ x, and i2 denotes various inclusions on the second factor. Note that by the deû-
nition of the prop structure, the bottom line coincides with

○∶ H0(BF̃)⊗H1(BF̃′)Ð→ H1(BF̃ ○ F′).
_e commutativity of the diagram shows (i).

Replacing i2 and k2 by inclusions on the ûrst factor,we obtain (ii). Replacing ○∶ F̃×
F̃′ → F̃ ○ F′ by themap F̃ × F̃′ → F̃∐ F′, (D,D′)↦ D ⊔ D′, we obtain (iii).

Proof of PropositionD.1 Let F = (F0,1+1∐ F0,2+1) ○ (Cϕ∐ F0,1+1). We can iden-
tify F0,3+1 with F0,2+1 ○ (F0,1+1∐ F0,1+1) ○ F. Let emb2 ∶ F0,1+1 ↪ F0,3+1 be the second
embedding due to this identiûcation. _e composite of the curve α and of emb2,
S1 αÐ→ F0,1+1↪

emb2ÐÐ→ F0,3+1, coincides with the curve z. Taking the same tubular neigh-
borhood around α and z, the Dehn twists of α and z, Tα and Tz , coincide on this
tubular neighborhood. Outside of this tubular neighborhood, Tα and Tz coincide
with the identity maps of F0,1+1 and of F0,3+1, idF0,1+1 and idF0,3+1 . _erefore

Tz = idF0,2+1 ○(idF0,1+1 ⊔Tα) ○ idF .

By virtue of Proposition D.2 (i)–(iii),we have

z ∶= Θ∂−1Tz = Θ∂−1(idF0,2+1 ○(idF0,1+1 ⊔Tα) ○ idF)
= κF0,2+1 ○Θ∂−1((idF0,1+1 ⊔Tα) ○ idF)
= κF0,2+1 ○Θ∂−1(idF0,1+1 ⊔Tα) ○ κF
= κF0,2+1 ○ (κF0,1+1 ⊗Θ∂−1Tα) ○ κF
= κF0,2+1 ○ [id1 ⊗α] ○ κF .
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_e prop structure on the 0-th homology gives κF = [id1 ⊗κF0,2+1] ○ [τ ⊗ id1]. Finally,
the prop structure on the homology ofmapping class groups gives

z = κF0,2+1 ○ [id1 ⊗α]○ [id1 ⊗κF0,2+1]○ [τ⊗ id1] = κF0,2+1 ○ [id1 ⊗(α ○κF0,2+1)]○ [τ⊗ id1].

In a similar fashion, we have the other six equalities.

E The Cohomological Batalin–Vilkovisky Operator ∆

_e goal of this appendix is to give our deûnition of the Batalin–Vilkovisky operator
∆ in cohomology and to compare it to others’ deûnitions given in the literature.

Let Γ ∶ S1 × LX → LX be the S1-action map. _en in this paper the Batalin-
Vilkovisky operator ∆ ∶ H∗(LX) → H∗−1(LX) is deûned [28, Proposition 3.3] by
∆ ∶= ∫S 1 ○Γ∗, where ∫S 1 ∶ H∗(S1 × LX) → H∗−1(LX) denotes the integration along
the ûbre of the trivial ûbration S1 × LX ↠ LX.
By our example in Appendix A (see also up to the sign [28, Proof of Proposition

3.3]), ∫S 1 f ×b = (−1)∣ f ∣⟨ f , [S1]⟩b. Up to some signs, this is the slantwith [S1] (cf. [24,
Deûnition 1]).

_erefore for any β ∈ H∗(LX), the image of β by ∆, ∆(β), is the unique element
such that (see [42] up to the sign − )

Γ∗(β) = 1 × β − {S1} × ∆(β),

where {S1} is the fundamental class in cohomology deûned by ⟨{S1}, [S1]⟩ = 1.
So ûnally, we have proved that with our deûnition of integration along the ûbre,

since we deûne the BV-operator ∆ using integration along the ûbre as [28, Proposi-
tion 3.3], our ∆ is exactly the opposite of the one deûned by [42], [24, p. 648]. In
particular, observe that ∆ satisûes ∆2 = 0 and is a derivation on the cup product on
H∗(LX) [42, Proposition 4.1].

InAppendix C, we needed another characterisation of our Batalin–Vilkovisky op-
erator ∆.

Proposition E.1 _e BV-operator ∆ ∶= ∫S 1 ○Γ∗ is the dual (=transposition) of the
composite

H∗(LX) [S 1]×−ÐÐÐ→ H∗+1(S1 × LX) Γ∗Ð→ H∗+1(LX).

Proof For any space X, let µX ∶ H∗(X;K) → H∗(X;K)∨ be the map sending α to
the form on H∗(X;K), ⟨α, ⋅ ⟩. Here ⟨ ⋅ , ⋅ ⟩ is the Kronecker bracket. By the universal
coeõcient theorem for cohomology, µX is an isomorphism. Consider the two squares

H∗(LX) Γ∗ //

µLX

��

H∗(S1 × LX) ∫S1 //

µS1×LX
��

H∗−1(LX)

µLX

��
H∗(LX)∨

(Γ∗)∨
// H∗(S1 × LX)∨

([S 1]×−)∨
// H∗−1(LX)∨ .
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_e le� square commutes by naturality of µX . For any α ∈ H∗(S1), β ∈ H∗(LX), and
y ∈ H∗(LX),

( µLX ○ ∫
S 1
)(α × β)(y) = µLX((−1)∣α∣∣[S

1]∣⟨α, [S1]⟩β)(y)

= (−1)∣α∣∣[S
1]∣⟨α, [S1]⟩⟨β, y⟩

and

([S1] × −)∨(µS 1×LX(α × β))(y) = (−1)∣α×β∣∣[S
1]∣µS 1×LX(α × β) ○ ([S1] × −)(y)

= (−1)∣α∣∣[S
1]∣+∣β∣∣[S 1]∣⟨α × β, [S1] × y⟩.

Since ⟨α×β, [S1]×y⟩ = (−1)∣β∣∣[S 1]∣⟨α, [S1]⟩⟨β, y⟩, the right square commutes also.

F Hochschild Cohomology Computations

Proposition F.1 Let A be a graded (or ungraded) algebra equipped with an isomor-
phism of A-bimodules Θ ∶ A ≅→ A∨ between A and its dual of any degree ∣Θ∣. Denote by
tr ∶= Θ(1) the induced graded trace on A. Let a ∈ Z(A) be an element of the center of
A. Let d ∶ A → A be a derivation of A. Obviously a ∈ C0(A,A) = Hom(K,A) deûned
by a(1) = a and d ○ s−1 ∈ C1(A,A) = Hom(sA,A) are two Hochschild cocycles. _en
in the BV-algebra HH∗(A,A) ≅ HH∗+∣Θ∣(A,A∨),

(i) ∆([a]) = 0,
(ii) ∆([d ○ s−1]) is equal to [a], the cohomology class of a, if and only if for any

a0 ∈ A, (−1)1+∣d ∣ tr ○d(a0) = tr(aa0).
(iii) In particular, the unit belongs to the image of ∆ if and only if there exists a

derivation d ∶ A→ A of degree 0 commuting with the trace: tr ○d(a0) = tr(a0) for any
element a0 in A.

Proof By deûnition of ∆, the following diagram commutes up to the sign (−1)∣Θ∣ for
any p ≥ 0.

Cp(A,A)
Cp(A,Θ) //

∆
��

Cp(A,A∨) Ad // Cp(A,A)∨

B∨

��
Cp−1(A,A)

Cp−1(A,Θ)
// Cp−1(A,A∨)

Ad
// Cp−1(A,A)∨ .

Taking p = 0, we obtain (i).
_e image of the cocycle d ○ s−1 ∈ C1(A;A) by Ad ○C∗(A; Θ) is the form Θ̂(d) on

C1(A;A) = A⊗ sA deûned by

Θ̂(d)(a0[sa1]) = (−1)∣sa1 ∣∣a0 ∣(Θ ○ d)(a1)(a0) = (−1)∣sa1 ∣∣a0 ∣tr(d(a1)a0),
(cf. [34, Proof of Proposition 20]). For any a0 ∈ A,

(−1)∣Θ∣+1+∣d ∣B∨(Θ̂(d))(a0) = (Θ̂(d) ○ B)(a0[ ⋅ ]) = Θ̂(d)(1[sa0]) = tr ○ d(a0).
_e image of the cocycle a ∈ C0(A;A) by Ad ○C∗(A; Θ) is the formon A,mapping a0
to (Θ ○ a)([ ⋅ ])(a0) = Θ(a)(a0) = tr(aa0). _erefore, ∆(d ○ s−1) = a if and only if
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for any a0 ∈ A, (−1)∣Θ∣+1+∣d ∣ tr ○d(a0) = (−1)∣Θ∣tr(aa0). Since there is no coboundary
in C0(A,A), this proves (ii).

Example F.2 (a) Let A = Λx−d be the exterior algebra on a generator of lower
degree −d ∈ Z. If d ≥ 0, then A = H∗(Sd ;K). Denote by 1∨ and x∨ the dual basis
of A∨. _e trace on A is x∨. Let d ∶ A → A be the linear map such that d(1) = 0 and
d(x) = x. Since d(x ∧ x) = 0 and dx ∧ x + x ∧ dx = 2x ∧ x = 2 × 0 = 0, even
over a ûeld of characteristic diòerent from 2, d is a derivation commuting with the
trace. _erefore by _eorem F.1, 1 ∈ Im∆ in HH∗(A;A). When K = F2, compare
with [34, Proposition 20].

(b) Let V be a graded vector space. Let A ∶= Λ(V) be the graded exterior algebra
on V . If V is in non-positive degrees, then A is just the cohomology algebra of a
product of spheres. Let x1 , . . . , xN be a basis of V . _e trace of A is (x1 ⋅ ⋅ ⋅ xN)∨. Let
d1 be the derivation on Λx1 considered in the previous example. _en d ∶= d1⊗ id is a
derivation on Λx1 ⊗ Λ(x2 , . . . , xN) ≅ ΛV . Obviously d commutes with the trace. So
1 ∈ Im∆.

(c) Let A = K[x]/xn+1, n ≥ 1 be the truncated polynomial algebra on a generator
x of even degree diòerent from 0. If x is of upper degree 2, then A = H∗(CPn ;K). _e
trace of A is (xn)∨. Let d ∶ A → A be the unique derivation of A such that d(x) = x
(the case n = 1 was considered in Example F.2 (a)). _en d(x i) = ix i . For degree
reason, d is a basis of the derivations of degree 0 of A. _en λd commutes with the
trace if and only if λn = 1 in K. _erefore 1 ∈ Im∆ in HH∗(A;A) if and only n is
invertible in K (cf. [47]modulo 2 and with [48] otherwise).

_eorem F.3 Let V be a graded vector space (non-negatively lower graded or concen-
trated in upper degree ≥ 1) such that in each degree, V is of ûnite dimension.

(i) Let A = (S(V), 0) be the free strictly commutative graded algebra on V , i.e.,
A = ΛV odd ⊗ K[V even] is the graded tensor product on the exterior algebra on V odd

(the odd degree elements) and on V even (the even degree elements) [9, p. 46]. _en the
Hochschild cohomology of A, HH∗(A,A), is isomorphic as Gerstenhaber algebras to
A⊗ S(s−1V∨). For φ, a linear form on V and v ∈ V , {1⊗ s−1φ, v ⊗ 1} = (−1)∣φ∣φ(v).
_e Lie bracket is trivial on (A⊗ 1)⊗(A⊗ 1) and on (1⊗S(s−1V∨))⊗(1⊗S(s−1V∨)).

(ii) Suppose that K is a ûeld of characteristic 2. _en we can extend (i) in the fol-
lowing way: let U and W be two graded vector spaces such that U ⊕ W = V , i.e.,
we no longer assume that U = V odd and W = V even. Let A = ΛU ⊗ K[W]. _en
HH∗(A,A) is isomorphic as Gerstenhaber algebra to A⊗K[s−1U∨]⊗Λ(s−1W∨), and
the Lie bracket is the same as in (i).

(iii) Suppose that V is concentrated in odd degres or that K is a ûeld of character-
istic 2. Let A = ΛV be the exterior algebra on V . _en the BV-algebra extending the
Gerstenhaber algebra HH∗(A,A) ≅ A⊗K[s−1V∨] has the trivial BV-operator ∆ on A
and on K[s−1V∨].

Proof (i)Recall that the Bar resolution B(A,A,A) = A⊗TsA⊗A ≃Ð→→ A is a resolution
of A as A⊗ Aop-modules. When A = (S(V), 0), there is another smaller resolution
(A⊗ Γ(sV) ⊗ A,D) ≃↠ A. Here Γ(sV) is the free divided power graded algebra on
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sV and D is the unique derivation such that D(γk(sv)) = v ⊗ γk−1(sv) ⊗ 1 − 1 ⊗
γk−1(sv)⊗v [32]. Since Γ(sV) consists of the invariants of T(sV) under the action of
the permutation groups, there is a canonical inclusion of graded algebras [16, p. 278]

i ∶ Γ(sV)↪ T(sV)↪ T(sA).
_ismap i maps γk(sv) to [sv ∣ ⋅ ⋅ ⋅ ∣ sv]. Since both (A⊗Γ(sV)⊗A,D) and B(A,A,A)
are A⊗ A-free resolutions of A, the inclusion of diòerential graded algebras

A⊗ i ⊗ A ∶ (A⊗ Γ(sV)⊗ A,D) ≃↪ B(A,A,A)
is a quasi-isomorphism. So by applying the functor HomA⊗A(−,A),

Hom(i ,A) ∶ C∗(A,A) ≃↠ (Hom(Γ(sV),A), 0)
is a quasi-isomorphism of complexes. _e diòerential on

HomA⊗A((A⊗ Γ(sV)⊗ A,D), (A, 0))
is zero since f ○ D(γk1(sv1) ⋅ ⋅ ⋅ γkr(svr)) = 0. _e inclusion i ∶ Γ(sV) ↪ T(sA) is a
morphism of graded coalgebras with respect to the diagonal [16, p. 279]

∆[sa1∣ ⋅ ⋅ ⋅ ∣sar] =
r

∑
p=0

[sa1∣ ⋅ ⋅ ⋅ ∣sap]⊗ [sap+1∣ ⋅ ⋅ ⋅ ∣sar].

_erefore the quasi-isomorphism of complexes

Hom(i ,A) ∶ C∗(A,A) ≃↠ (Hom(Γ(sV),A), 0)
is also a morphism of graded algebras with respect to the cup product on the Hoch-
schild cochain complex C∗(A,A) and the convolution product on Hom(Γ(sV),A).

_emorphismof commutative graded algebras j ∶ A⊗Γ(sV)∨ → Hom(Γ(sV),A)
mapping a⊗ ϕ to the linear map j(a⊗ ϕ) from Γ(sV) to A deûned by j(a⊗ ϕ)(γ) =
ϕ(γ)a is an isomorphim. By [16, (A.7)], the canonical map (sV)∨ → Γ(sV)∨ ex-
tends to an isomorphism of graded algebras k ∶ S(sV)∨ ≅→ Γ(sV)∨. _e composite

Θ ∶ (sV)∨ s∨→ V∨ s−1

→ s−1(V∨), mapping x to Θ(x) = (−1)∣x ∣s−1(x ○ s), is a chosen
isomorphism between (sV)∨ and s−1(V∨). Note that Θ−1 is the opposite of the com-
posite (s−1)∨ ○ s. Finally, the composite

A⊗ S(s−1(V∨)) A⊗S(Θ)ÐÐÐÐ→ A⊗ S((sV)∨) A⊗kÐÐ→ A⊗ (Γ(sV))∨ jÐ→ Hom(Γ(sV),A)
is an isomorphism of graded algebras. So we have obtained an explicit isomorphism
of graded algebras l ∶ HH∗(A,A) ≅→ A⊗ S(s−1(V∨)). To compute the bracket, it is
suõcient to compute it on the generators on A ⊗ S(s−1(V∨)). For m ∈ A, let m ∈
C0(A,A) = Hom((sA)⊗0 ,A) deûned by m([ ⋅ ]) = m. Obviously, l−1(m ⊗ 1) is the
cohomology class of the cocycle m. For any linear form φ on V , let φ ∈ C1(A,A) =
Hom(sA,A) be themap deûned by

φ([sv1v2 ⋅ ⋅ ⋅ vn]) =
n

∑
i=1

(−1)∣φ∣∣sv1v2 ⋅⋅⋅v i−1 ∣φ(v i)v1 ⋅ ⋅ ⋅ v̂ i ⋅ ⋅ ⋅ vn .

Since the composite φ ○ s is a derivation of A, φ is a cocycle. Since

φ([sv1]) = (−1)∣φ∣φ(v1)1,
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the composite φ ○ i is the image of 1⊗ s−1φ by the composite

j ○ (A⊗ k)⊗ (A⊗ S(Θ)) ∶ A⊗ S(s−1(V∨))Ð→ Hom(Γ(sV),A).

_erefore l−1(1 ⊗ s−1φ) is the cohomology class of the cocycle φ. By [10, p. 48–49],
we have

(a) the Lie bracket is null on C0(A,A)⊗ C0(A,A);
(b) the Lie bracket restricted to { ⋅ , ⋅} ∶ C1(A,A) ⊗ C0(A,A) → C0(A,A) is given

by {g , a} = g(sa) for any g ∶ sA→ A and a ∈ A;
(c) the Lie bracket restricted to { ⋅ , ⋅} ∶ C1(A,A)⊗C1(A,A)→ C1(A,A) is given by

{ f , g , }([sa]) = f ○ s ○ g ○ s(a) − (−1)(∣ f ∣+1)(∣g∣+1)g ○ s ○ f ○ s(a).

By (a), the Lie bracket is trivial on (A⊗ 1)⊗ (A⊗ 1). By (b), for φ ∈ V∨ and v ∈ V ,

{1⊗ s−1φ, v ⊗ 1} = (−1)∣φ∣φ(v)1⊗ 1.

Let φ and φ′ be two linear forms on V . _en

φ○ s ○φ′ ○ s([v1 ⋅ ⋅ ⋅ vn]) = ∑
1≤ j<i≤n

((−1)∣φ∣∣φ
′∣ε i j(φ, φ′)+ ε i j(φ′ , φ))v1 ⋅ ⋅ ⋅ v̂ j ⋅ ⋅ ⋅ v̂ i ⋅ ⋅ ⋅ vn ,

where ε i j(φ, φ′) = (−1)∣φ∣∣sv1 ⋅⋅⋅v i−1 ∣+∣φ′∣∣sv1 ⋅⋅⋅v j−1 ∣φ(v i)φ′(v j). _erefore,

φ ○ s ○ φ′ ○ s − (−1)∣φ∣∣φ
′∣φ′ ○ s ○ φ ○ s = 0.

So by (c), the Lie bracket {1⊗ s−1φ, 1⊗ s−1φ′} = 0.
(iii) By Proposition F.1 (i), ∆([m]) = 0 and so ∆ is trivial on all m ⊗ 1 ∈ A⊗ 1. Let

x1 , . . . , xN be a basis of V . _e trace of A is (x1 ⋅ ⋅ ⋅ xN)∨. _erefore the trace vanishes
on elements of wordlength strictly less than N . For any φ ∈ V∨, the derivation φ ○ s
decreases wordlength by 1. So tr ○φ ○ s = 0. By Proposition F.1 (ii), ∆(1 ⊗ s−1φ) = 0.
Since the Lie bracket is trivial on (1 ⊗ K[s−1V∨]) ⊗ (1 ⊗ K[s−1V∨]), ∆ is trivial on
1⊗K[s−1V∨].

(ii)_e proof is the same as in (i). For example, Γ(sV) is the graded tensor product
of the free divided power algebra on sU and of the exterior algebra on sW .

Remark F.4. Suppose that V is concentrated in degree 0. We have obtained a quasi-
isomorphism of diòerential graded algebras

C∗(S(V), S(V)) ≃Ð→→ (S(V)⊗ Λ(s−1V∨), 0).

In particular, the diòerential graded algebra C∗(S(V), S(V)) is formal.
It is easy to see that if V is of dimension 1, then the inclusion

(S(V)⊗ Λ(s−1V∨), 0)↪ C∗(S(V), S(V))

is a quasi-isomorphism of diòerential graded Lie algebras. In particular, the diòer-
ential graded Lie algebra C∗(S(V), S(V)) is formal. _e Kontsevich formality theo-
rem says that over a ûeld K of characteristic zero, the diòerential graded Lie algebra
C∗(S(V), S(V)) is formal even if V is not of dimension 1 [23,_eorem 2.4.2].
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