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CONTINUOUS FINITE APOLLONIUS SETS IN 
METRIC SPACES 

L. D. LOVELAND 

1. I n t r o d u c t i o n . The set of all points in the Euclidean plane E2, the ratio 
of whose distances from two fixed points is a constant X, is known as the circle 
of Apollonius [7, p. 62]. This ' 'Apollonius" set is a circle except for the degener
ate cases where X = 1 or X = 0. In more general metric spaces the same defini
tion applies to select certain Apollonius sets (or "X-sets" in our terminology), 
bu t of course these sets are not always circles. For example, all X-sets (X > 0) 
relative to a circle in E2 are two-point sets, and all X-sets relative to El are 
either singletons or two-point sets. This paper deals with the topological 
s t ructure of a metric space when certain cardinality conditions have been 
imposed on its X-sets. 

Let X be a positive real number. The \-set, \(a, b), of two points a and b 
in a metric space (X, d) is the set {x\d(a, x) = \d(b, x)}. No generality is lost 

in restricting X to the interval (0, 1] since X(a, b) = - (b, a). In the special 
X 

case where X = 1, the X-set is known in the l i terature as the midset, M (a, b), 
of a and b. A metric space X is said to have the finite \-set property (F\P) if 
there is a number X in (0, 1] such that , for each two points a and b of X, X(a, b) 
is a finite set. The nth order X-set property (\P(n)) implies the existence of a 
X G (0, 1] such tha t each X-set in X consists of n points. The XP(1) and the 
XP(2) have also been called the unique \-set property (U\P) and the double 
\-set property (D\P), respectively, and when X = 1 they are known as the 
unique (UMP) and double (DMP) midset properties. Similarly the F\P be
comes the finite midset property (FMP) when X = 1. 

Theorem 3.1 states t ha t a continuum is an arc if it has the U\P. Although 
the converse is clearly false, a ' ' cont inui ty" restriction on the X-set function, 
defined below, makes it true. Thus an arc is characterized among continua by 
the continuous unique X-set property (Theorem 3.2). However, if an arc has 
a continuous X-set function, then X = 1 and it has the UMP (Theorem 3.6). 
In addition we show tha t arcs and simple closed curves are the only continua 
having the continuous nth order X-set property (CXP(w)); see Theorems 3.1 
and 3.4. The main result of [3] is generalized by showing tha t a continuum 
with the continuous double X-set property (defined below) must be a simple 
closed curve (Theorem 3.4). A continuum is a nondegenerate compact con
nected metric space. 

Let (X, d) be a metric space, and let P(X) be the set of all subsets of X. In 
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the product space X X X, let D be the diagonal {(x, y)\x = y). T h e X-set 
function X : (X X X - D) —> P(X) is denned by lett ing X(x, y) be the X-set 
of x and 3/ in X. Notice t ha t "X" is being used in a dual role; in one sense it 
represents the "Apollonius" constant in the definition of the X-set while it has 
now been given meaning as a function. This should cause no confusion since the 
X-set X(a, b) is also the value of the function X a t the point (a, b). T h e function 
X is continuous if \(x, y) C lim inf^ œ \(xi} yt) whenever {{xuyi)) converges 
to (x, y) in X X X — D. I t follows from the cont inui ty of the metric function 
d t ha t lim s u p ^ ^ X(x*, yt) C X(x, y)\ hence, it can be proved t h a t X is con
tinuous if and only if [\(xu 3^)} converges to X(x, y) whenever {(xu yt)} con
verges to (x, y) in X X X — D. T h e definitions of "l imit superior" and " l imi t 
inferior" can be found in [9, p . 209]. 

In the special case where X = 1, we denote the X-set function by M and 
call it the midset function. The reader might prefer to concentrate on midsets 
ra ther than on the more general X-sets the first t ime through the paper. 

A cont inuum with the UMP clearly has a continuous midset function, and 
thus it has wha t we call the continuous unique midset property (CUMP). More 
generally we use the letter " C " preceding the abbreviat ion for a part icular 
midset or X-set proper ty to indicate t ha t in addit ion to possessing t h a t proper ty 
the space also has a continuous X-set function. For example, a metric space X 
has the CDMP if and only if the midset function M is continuous and X has 
the DMP. Examples of arcs in the plane are easily found where the midset 
function fails to be cont inuous; however, every simple closed curve with the 
DMP can be shown to have the CDMP. Whether or not an arc with the DMP 
can exist is unknown [6, Question 2, p . 1005], bu t if there is such an arc its 
midset function cannot be continuous (see Theorem 3.2). Example 3.8 shows 
tha t a 1-dimensional cont inuum in the plane can have the CFMP and still 
contain a tr iod; however, a triod itself cannot have the CFMP (Theorem 3.7). 

I t is not difficult to show tha t a cont inuum with the U\P is an arc (see 
Theorem 3.1). Berard proved tha t a connected metric space with the UMP 
is homeomorphic to a subset of the real line [1]. I t is also known tha t a com
plete convex metric space with the DMP is isometric to a circle with the "a rc 
length" metric. This result first appeared in [4, Theorem 2] and later in [2]. 
A more recent short proof has been given [5]. Such an isometry need not exist 
when the "convex" hypothesis is replaced with "connec ted" ; the circle with 
its inherited plane topology illustrates this. I t is not known whether a con
t inuum possessing the DMP mus t be a simple closed curve, al though this has 
been conjectured [6]. A perhaps stronger midset property, the continuous 
double midset proper ty , is enough to insure t ha t a cont inuum is a topological 
simple closed curve [3, Theorem 3] ; in fact, a cont inuum with the CD\P mus t 
be a simple closed curve (Corollary 3.5). 

An arc is a space homeomorphic to an interval on the real line. We use 
[a, b] to denote an arc ordered from the endpoint a to the endpoint b. An 
n-frame is homeomorphic to the union of n arcs [v, pi] in the plane which are 
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pairwise disjoint except for the vertex v. A triod is a 3-frame, and the legs of 
a triod are the images of (v, pt]. 

2. Basic facts. A metric space X is separated by a midset M(a, b) into two 
sets, one consisting of all points closer to a than to b and the other consisting of 
those points closer to b than to a. The first lemma generalizes this separation 
to X-sets; the proof is a simple application of the continuity of the metric. 

LEMMA 2.1. (Standard separation). If a and b are two points of a connected 
metric space X and X Ç (0, 1], then X — X(a, b) is the union of disjoint open 
setsL andR whereL = {x\d(a,x) < \d(b,x)}, andR = {x\d(a,x) > \d(b,x)\. 

LEMMA 2.2. If X is a continuum with the FXP, then X is locally connected. 

A proof for Lemma 2.2 for the case X = 1 is outlined in [6, Lemma 2], and 
the same argument works for each X. Lemma 2.3 is Theorem 75 of [8, p. 218], 
but an easy proof is outlined in [6, Lemma 3] assuming it is known that a 
continuum is a simple closed curve if each two-point set separates it [9, Theorem 
28.14, p. 207]. 

LEMMA 2.3. If X is a locally connected continuum that contains no triod, 
then X is either an arc or a simple closed curve. 

LEMMA 2.4. If x and y are two points of an arc A and A has a continuous \-set 
function for some X G (0,1], then \(x,y) lies between x and y. 

Proof. Suppose two points x and y exist in A such that x < y and X(x, y) is 
not between x and y. If a and b are the endpoints of A, we see that X(x, y) 
intersects either [a, x) or (y, b]. We may assume for convenience that X(x, y) C\ 
(y}b] y£ 0, and it follows that y ^ b. Let B = {t Ç [y,b]\\(x,t) Pi (/, b] ^ 0), 
and note that y £ B while b (£ B. 

To show that B is closed, let {pi} be a sequence of points of B converging 
to a point p. Then X(x, pt) C\ (pi} b] 9^ 0, for each i, and the continuity of X 
forces X(x, p) to intersect (p, b]. Thus p £ B. On the other hand B is open since 
if {pi} converges to a point p of B, then the continuityof X implies that pt G B 
for i sufficiently large. But B cannot be open and closed since it is a nonempty 
proper subset of the connected set [y, b]. 

LEMMA 2.5. No metric space with the C\P(n) can contain a triod. 

Proof. Suppose X is a metric space, n is a positive integer, X is a number in 
(0, 1] such that X has the C\P(n), and X contains a triod T with vertex v. 
It is easy to find points a and b in different legs of T such that v £ X(a, b), 
d(t, v) < d(a, v) for every t Ç (a, v), and d(v, t) < d(v, b) for every / £ (b, v). 
Let X(a, b) = {vi, v2, v^} . . . , vn} where V\ = v, and let Oi, O2, . . . , On be pair-
wise disjoint open sets such that vt G 0% for each i. Let X — X(a, b) = LKJ R 
where a £ L and b £ R (see Lemma 2.1), and let [v, p] U [v, g] W [?/, r] be a 
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subtriod V of T lying in Oi. There are two cases depending on the location of 
the legs of T' relative to L and R. 

In the first case we assume at least two of the legs (v, p], (v, q], and (y, r] of 
T\ say (v, p] and (v, q], lie in R. The continuity of X assures the existence of a 
sequence {a;} of points from (a, v) converging to a such that \(aj} b) intersects 
each 0f for every j . We shall exhibit an integer / such that \(aj} b) separates 
{v} from {p, q) if j > J. A contradiction to the C\P(n) ensues because X(a;, b) 
would then contain two points of d , one point from (v, p) and one from (v, q), 
and would intersect every other 0t. To show the existence of J let X — 
A(a;-, b) = Lj \J Rj where a,j G Lj and b G Rj as in Lemma 2.1. 

Now p cannot belong to Lj for infinitely many j because d(aj} p) < \d(b, p) 
would then imply d(a, p) ^ \d(b, p), by the continuity of d} contrary to p G R. 
The same applies to q, so there must be an integer / such that {p, q) C Rj if 
j > J. By the choice of a we have d (a, v) > d{ah v) for all j , and since d(a, v) = 
\d(b, v) it follows that d(aj} v) < \d(b, v); consequently v Ç Lj for every j . 
Thus, for j > J, \(aj, b) separates {v} from {p, q} as desired. 

In the last case we assume at least two, say (v, p] and (v, q], of the three sets 
(v, p], (v, q], and (v, r] lie in L. This time a sequence {bj} of points in (y, b) is 
chosen converging to b such that X(a, bj) intersects each Of for every j . As in 
Lemma 2.1 we let X — X(a, bj) = LjVJ Rj where a G Lj and bj G Rj. The 
existence of an integer / such that {p, q) C Lj whenever j > J follows from 
the continuity of d as above. The point b was chosen such that d(v, bj) < 
d(v, b) for every j . Thus \d(v, bj) < \d(v, b) = d(a, v), and it follows that 
v G Rj for every j . Thus if j > J, A (a, bj) separates {p, q] from {v}. As in the 
first case above, this implies A (a, bj) contains at least n + 1 points, contrary 
to the C\P(n). 

LEMMA 2.6. / / T is a triod with vertex v and endpoints a, b, and c such that T 
has a continuous A-set function for some A £ (0, 1], then A (a, v) lies in the leg 
[a, v) of T. Furthermore, if a' G [a, v), then A(a', v) C W, v]. 

Proof. Let T = [a, b] U [v, c], and let H = {x G [v, b]\\(a, x) H (x, b] = 0}. 
Notice that b £ H. We shall show that H is both open and closed since this 
implies H — [v, b]. It will then follow that A (a, v) C\ [v, b] = 0, and a similar 
argument will show that A (a, v) C\ [v, c] = 0. The conclusion of the first part 
of Lemma 2.6 will then follow. 

To see that H is open consider a sequence {ht\ of points converging to a 
point h G H. Since {A (a, ht)} converges to A (a, h) and A (a, h) f~\ [h, b] = 0, 
it follows that A (a, ht) C\ [hu b] = 0 for sufficiently large i. Thus some neigh
borhood of h must lie entirely in H, and H is open. If {ht} is a sequence of 
points of H converging to a point h, then the continuity of A implies A (a, h) H 
[h, b] = 0. Thus h G H and H is closed. 

We prove the last sentence of Lemma 2.6 by considering the set H = 
{x G [a, v)\\(x, v) C [Xj v]}. Let C be the component of H containing a, and 
let h be the least upper bound of C in [a, v). Suppose h 9^ v, and let {h^} con-
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verge to h where ht £ C for each i. Then \{hu v) C [hi, v] for all i, and by the 
continuity of X we must have \(h, v) C [h, v]. Thus h £ C. Since h 7e v, there 
is a sequence {£*} of points of (h, v) converging to h such that no pt belongs to 
H and each pt separates h from \(h, v). Now it is impossible for {\(pi, v)} to 
converge to \(h, v) as required by the continuity of X. Thus h = v, and the 
proof is complete. 

3. Arcs, simple closed curves, and triods. In this section the previous 
lemmas are used to obtain the main results of the paper. 

THEOREM 3.1. If X is a continuum with the U\P, then X is an arc. 

Proof. If X has the U\P, then X is arcwise connected by Lemma 2.2. By 
Lemma 2.1, X is separated by a singleton set, so X is not a simple closed curve. 
From Lemma 2.3, X either contains a triod or X is an arc. It is easy to see that 
a continuum with the U\P has a continuous X-set function, so Lemma 2.5 
applies to rule out there being a triod in X. 

THEOREM 3.2. Let X be a continuum with a continuous X-set function. Then X 
is an arc if and only if X has the U\P. 

Proof. By Theorem 3.1, X is an arc if it has the U\P. Suppose X is an arc 
and that points a and b of X exist such that X(a, b) contains two points. Let A 
denote the subarc [a, b] of X. By the continuity of the metric we see that 
that X(a, b) is closed. Let pi and pi be the first and last points, respectively, of 
\(a, b). From Lemma 2.4 we have {a} < {pi} < \(pi, pi) < {pi} < {b}, and 
from Lemma 2.1 we obtain open sets L and R whose union is X — \(pi, pi) 
where pi £ L and p2 G R. Since the connected set [a, pi] lies in X — \(pi, p%) 
and intersects L, it must lie in L; and similarly [p2, b] C R- It follows that 
d(pi,a) < \d(a, p2) and d(pu b) > \d(p2, b). Substituting d(a, pi) = \d(b,pi) 
and d(a, p2) = \d(b, p2) in these inequalities, we obtain d(a, p2) < d(pi, b) 
and \d(b, pi) < \d(a, p2). Consequently we have the contradiction that 
d(a, p2) < d(a, p2). 

COROLLARY 3.3. A continuum with a continuous midset function is an arc if it 
has the unique midset property. 

THEOREM 3.4. If a continuum X has the C\P(n) for n > 1, then X is a simple 
closed curve. 

Proof. Theorem 3.4 follows directly from Lemmas 2.2, 2.3, 2.5, and Theorem 
3.2. 

COROLLARY 3.5. If a continuum X has the continuous double \-set property 
(CD\P), then X is a simple closed curve. 

THEOREM 3.6. If A is an arc with a continuous \-set function, then X = 1 and 
A has the UMP. 
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Proof. From Theorem 3.2, A has the U\P. Let A = [a, b], let z G A -
{a, b], and let a = d(z} b). If X 9e 1, then a point x exists between z and fr on 4̂ 
such that d(z, x) = \a. Consequently z G X(x, 6). However X(x, 6) separates x 
from 6 (Lemma 2.1), so X(x, fe) also contains a point of A between x and 6. 
Since this contradicts the U\P, it follows that X = 1 and A has the UMP. 

THEOREM 3.7. No triod has a continuous \-set function. 

Proof. Suppose T is a triod with a continuous X-set function (X G (0, 1]), 
and let A, B, and C be the legs of T. Let z; be the vertex of T and choose a 
positive number a small enough that each leg of T intersects the boundary S 
of the open a-ball N centered at the vertex v of T. Order the leg B from v to 
its other endpoint b', and let b be the first point of B in S. Then (v, b) C N 
and d(u, 6) = a. Now let iVx = {x G r |d(x, u) < Xa}, and let 5X = BdNx. 
In a similar manner we obtain a point a G A P\ Sx such that (w, a) C V̂x and 
d(v, a) = \a, where (y, a] C A = (v, a']. Now choose a point c G C C\ S and 
let r r be the subtriod of T such that 

r = {^} U (v, a] U (w, 6] U (w, c]. 

By Lemma 2.6 we see that X(V, v) C A and furthermore that X(a, w) C 
[a, v\. Let i7 = {x G [fl, è]|X(a, x) P\ C — 0}, let G be the component of H 
containing v, and let h be the least upper bound for G in [a, b]. Let {hf} be a 
sequence of points of G converging to h. Since {X(a, A )̂} converges to X(a, A) 
and no X(a, /̂ z) intersects C, it is clear that \(a, h) C\ C = 0. Thus h (z H. We 
intend to show that h = b; if this is not the case then there is a sequence {pt} of 
points [v, b) — H converging to h. The construction of the leg (v, b] of T' 
insures that X(a, fe) does not contain v(d(a, v) = \a = \d(b, v) > \d(h, v) for 
all h G (Î>, &]). Now since X(a, pt) r\ C ^ 0 for each i, and since {X(a, p^)} 
converges to X(a, /t), we have the contradiction that v belongs to X(a, h). 
Thus h = b. 

The preceding paragraph shows that, for every b* G [v, b], \(a, b*) C\ C = 
0. In much the same way we prove that \(b, a*) C\ C = 0 for every a* G 
[a, z;). Now we obtain a contradiction by showing that there is no place for 
the leg C. 

Let T — X(a, b) — L \J R where a G L and b G R as in Lemma 2.1. Since 
C C\ X(a, b) = 0 and C is connected, we first assume C (Z L. Let g be a point 
of C, and note that d(a, q) < X (̂&, g). Let {bi} be a sequence of points of (v, b) 
converging to b, and for each i let T — \(af bt) = LtKJ Rf w^here a G Lt and 
bt (z Ri (see Lemma 2.1). By the previous two paragraphs we know that 
X(a, bf) r\ C = 0 for each i. The continuity of the metric d insures that 
q G Li for all but finitely many i, since q (z L. Since d(a, v) = \a > \d(bit v) 
for each i, we have v £ Rt. Now the contradiction is apparent since, for suffi
ciently large i, X(a, bt) separates q from v and fails to intersect the connected 
set (v, q]. If C C R we choose a sequence {a*} from (a, v) converging to a and 
the contradiction follows similarly. 
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T h e proof of Theorem 3.7 is easily modified to show tha t no w-frame (n > 2) 
has a continuous X-set function. The interested reader should observe tha t 
Lemma 2.6 is also true for ^-frames (n > 2) . 

At first glance one might expect to generalize the proof of Theorem 3.7 to 
show tha t no continuum with a continuous midset function can contain a 
triod. However a round disk with its inherited plane metric is a counter
example. The continuum in Example 3.8 contains a triod, has only finite 
midsets, and has a continuous midset function. Thus even the CFMP fails 
to eliminate triodic subsets. This same example also shows tha t one cannot 
expect the CFMP to select arcs and simple closed curves from the class of 
cont inua; hence there are limits to generalizing Theorem 3.4. 

Example 3.8. A continuum X with the CFMP t ha t contains a triod. 
The cont inuum X lies in E2 and is the union of a circle C and a line segment 

5 joining two points of C such tha t S does not contain the center of the circle C. 
T h e space X inherits its metric from the Euclidean plane E2. Since no line 
intersects X in more than three points (unless it contains S)} it is easy to see 
t ha t no midset in X contains more than three points. The midset function M 
is continuous, so X has the CFMP. 

T h e hypothesis t ha t X be connected cannot be removed in Theorems 3.1, 
3.2, and 3.4. An easy example showing this is a space consisting of n + 2 distinct 
points where the pairwise distances between distinct points are always equal. 
Such a space is compact and has the CMP{n). Also Theorems 3.1 and 3.2 
become false when l'compact" is removed from their hypotheses; the real line 
illustrates this. We do not know if "compac t" is implied by the other hypo
theses in Theorem 3.4; this is related to questions asked in [2] and [6]. 
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