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Abstract

Let � be an elliptic curve defined over Q, all of whose 2-division points are rational, and
let �b be its quadratic twist by b. Subject to a mild additional condition on �, we find the
limit of the probability distribution of the dimension of the 2-Selmer group of �b as the
number of prime factors of b increases; and we show that this distribution depends only on
whether the 2-Selmer group of � has odd or even dimension.

1. Introduction

Let

� : y2 = (x − c1)(x − c2)(x − c3)

be an elliptic curve defined over Q all of whose 2-division points are rational, where without
loss of generality we can assume that all the ci are integers. Denote by S the set of places
of Q consisting of 2, ∞ and the odd primes for which � has bad reduction. If b ∈ Z is
square-free and a unit at all places of S, we denote by �b the elliptic curve

�b : y2 = (x − bc1)(x − bc2)(x − bc3)

which is the quadratic twist of � by b. We denote by B the union of S and the primes dividing
b. In this paper we investigate the distribution of db, the dimension of the 2-Selmer group of
�b considered as an F2 vector space, as b varies. It will become clear that db mod 2 depends
only on the images of b in the Q∗

v/Q∗2
v , where v runs through the places of S. This is a special

case of a result due to Kramer [3].
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For the special elliptic curve y2 = x3 − x a similar problem was solved by Heath–Brown
[2], though he varies b over a different set to ours. He considers all square-free odd b satis-
fying 0 < b < X and lets X tend to infinity. (In his case S = {2, ∞}, so that requiring b to
be odd is the same as requiring b to be a unit at each prime in S; and db is even if b ≡ 1 or 3
mod 8 and odd if b ≡ 5 or 7 mod 8.) We on the other hand consider, for fixed N , the b which
are the product of N randomly chosen primes, subject to the condition that the images of b
in Q∗

p/Q∗2
p for each p is S have pre-assigned values. Since db only depends on the quadratic

characters of these N primes with respect to one another and on the images of these primes
in the Q∗

p/Q∗2
p for p in S, we are really only letting b vary over a finite set. We then let N

tend to infinity and study the limit of the probability distribution of db. It appears that there
is no easy way to transfer results from Heath–Brown’s set-up to ours, or vice versa. But it
would be extraordinary if the distribution of db were not the same in the two cases – and in
this sense Heath–Brown’s result for his special elliptic curve is compatible with ours.

In what follows we write

αk = 2kβ/
∏k

j=1
(2 j − 1) (k = 0, 1, . . .) (1)

where β = ∏∞
n=0(1 − 2−2n−1). It was already proved in [2] that

α0 + α2 + α4 + · · · = 1, α1 + α3 + α5 + · · · = 1,

so that both the αν for even ν and the αν for odd ν do give a probability distribution. The
object of this paper is to prove the following theorem

THEOREM 1. Suppose that none of the (ci − c j )(ci − ck) are in Q∗2. Fix the images of b
in Q∗

p/Q∗2
p for all p in S and let d � 2 be an integer such that d ≡ db mod 2. Let π

(N )

d be

the probability that db = d for that value of N; then π
(N )

d → αd−2 as N → ∞.

The condition in the first sentence holds if and only if none of the primitive 4-division
points of � is rational. If it fails, the methods of this paper will still show that each π

(N )

d

tends to a limit as N → ∞; but it appears that this limit will depend on � and describing it
probably requires a substantial subdivision of cases.

Being essentially combinatorial, the methods of this paper still work if we replace Q by
an algebraic number field K . But for the analogue of Theorem 1 to hold requires the further
condition that the equation U 2 + V 2 = −1 is not soluble in K . Thus for example it suffices
to take K real.

2. Two vector-space lemmas

Suppose that ψ is a bilinear form on an F2 vector space. We shall say that ψ is symmetric
(which in this situation is the same as anti-symmetric) if ψ(x, y) = ψ(y, x) for all x, y; and
we shall say that ψ is alternating if also ψ(x, x) = 0. In this section we prove two lemmas
which yield our description of 2-descent as a special case; they are stated and proved in a
more general form only to simplify the notation. They have already appeared in [5] and [6];
we give a different (and simpler) proof here because we shall later need to appeal to some
of the details of it.

LEMMA 1. Let V be an F2 vector space and ψ a non-degenerate alternating bilinear
form on V with values in F2, and let W be maximal isotropic in V with respect to ψ . Then
V can be decomposed as a direct sum V = ⊕Vi where the Vi are mutually orthogonal, each
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Vi has dimension 2, each Vi � W has dimension 1, and the restriction of ψ to any Vi is
non-degenerate.

Proof. It follows from the existence of ψ that dim(V ) = 2n and dim(W ) = n for some
n. Fix a base w1, . . . , wn for W . The map V → Fn

2 given by

v 	−→ {. . . , ψ(wi , v), . . .}
has kernel W , so its image has order 2n; in other words, it is onto. Hence we can choose
v1, . . . , vn so that ψ(w j , vi) is 1 if i = j and 0 otherwise. Moreover if v = ∑

λivi is in W
for some λi in F2 then

0 = ψ(w j , v) =
∑

λiψ(w j , vi) = λ j .

Hence the wi and v j are linearly independent and therefore form a base for V . Adding
elements of W to each vi does not alter these properties, and

v′
j = v j +

∑ j−1

i=1
λiwi implies ψ(v′

j , vi) = ψ(v j , vi) + λi for i < j.

Hence having chosen v1, . . . , v j−1 we can choose v j so that also ψ(v j , vi) = 0 for i < j . If
Vi is the vector space generated by vi and wi then V is the direct sum of the Vi and they are
mutually orthogonal. The remaining assertions about the Vi are obvious.

LEMMA 2. Let the Vi be n vector spaces over F2, each equipped with a non-degenerate
alternating bilinear form ψi with values in F2, and for each i let Wi be maximal isotropic in
Vi . Denote by ψ the sum of the ψi , which is a non-degenerate alternating bilinear form on
V = ⊕Vi , and let U be maximal isotropic in V with respect to ψ . Then there exist maximal
isotropic subspaces Ki ⊂ Vi such that V = U ⊕ K and

W = (U � W ) ⊕ (K � W ) (2)

where W = ⊕Wi and K = ⊕Ki .
Suppose also that on each Vi there is a function φi with values in F2 which satisfies

φi(ξ + η) = φi(ξ) + φi(η) + ψi (ξ, η) (3)

for any ξ, η in Vi , and let φ on V be the sum of the φi . Assume that φ is trivial on U and φi

is trivial on Wi . Then we can further ensure that φi is trivial on Ki and therefore φ is trivial
on K .

Proof. If any Vi has dimension greater than 2, by Lemma 1 we can decompose it as a
direct sum of mutually orthogonal subspaces of dimension 2, on each of which the restriction
of the bilinear form ψi is non-degenerate and each of which meets Wi in a subspace of
dimension 1. This only reduces our freedom to choose the Ki , and the triviality of φi on the
old Ki will follow from its triviality on the new and smaller Ki by (3). Thus we can assume
that every Vi has dimension 2 and every Wi has dimension 1.

If N is any subset of {1, . . . , n} write WN = ⊕i∈NWi and similarly for KN. Choose M
maximal among the subsets N for which WN � U is trivial; such subsets N do exist because
the empty set is one of them. Let R be the complement of M. If r is in M let αr be the
nontrivial element of Wr , so that φr (αr ) = 0 by hypothesis, and choose Kr = Wr . Thus
KM = WM. If r is not in M, by the maximality of M we can find a nontrivial element γr

of WM�{r} � U . Let βr be the projection of γr on Vr ; then βr must be the nontrivial element
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of Wr , which incidentally implies that γr is unique. Let α′
r and α′′

r = α′
r + βr be the other

nontrivial elements of Vr . By (3) we have

φr (α
′′
r ) − φr (α

′
r ) = φr (βr ) + ψ(α′

r , βr ) = 1.

Choose αr to be that one of α′
r and α′′

r which satisfies φr (αr ) = 0, and let Kr be the vector
space generated by αr . (If we drop the second paragraph in the statement of the Lemma, we
can choose αr to be either α′

r or α′′
r .) The αr for r in M and the γr for r not in M are linearly

independent elements of W , so they span W ; it follows that the γr span U �W and the αr for
r in M span K �W . This proves (2). We have arranged that each φr (αr ) = 0, and φr (0) = 0
because 0 is in U ; so φ = 0 on each Kr .

We shall need the following remarks in §4. A necessary and sufficient condition for x to
be in U is that it is orthogonal to every element of U . Choose a base u1, . . . , un for U ; then
WN � U is trivial if and only if the equations∑

i∈N
λiψ(u j , wi ) = 0 ( j = 1, . . . , n)

with λi in F2 have no nontrivial solution. To test this, and therefore to find the candidates for
M, it is only necessary to know the ψ(u j , wi). Again, suppose that r is not in M and let wr

be the nontrivial element of Wr . By the maximality of M, there must exist λir in F2 for all i
in M such that wr + ∑

M λirwi is in U ; and these λir are unique. They can be obtained by
solving the equations

ψ(u j , wr ) +
∑

i∈M
λirψ(u j , wi) = 0 ( j = 1, . . . , n);

hence to determine the λir it is again sufficient to know the ψ(u j , wr ) and the ψ(u j , wi) for
i in M.

3. An algorithm for 2-descent

In this section we recapitulate the most recent version of 2-descent on curves of the form
�b; this was first described in [1], where full proofs can be found. To make the account
intelligible appears to require a historical survey of how the process has developed. The
basic version of 2-descent, which goes back to Fermat, is as follows. To any rational point
(x, y) on �b there correspond rational m1, m2, m3 with m1m2m3 = m2 � 0 such that the
three equations

mi y2
i = x − bci for i = 1, 2, 3 (4)

are simultaneously soluble. We can multiply the mi by non-zero squares, so that for example
we can require them to be square-free integers; indeed one should really think of them as
elements of Q∗/Q∗2, with a suitable interpretation of the equations which involve them. De-
note by C(m) the curve given by the three equations (4), where m = (m1, m2, m3). Looking
for solutions of �b is the same as looking for quadruples x, y1, y2, y3 which satisfy (4) for
some m. For this purpose we need only consider the finitely many m for which the mi are
units at all primes outside B; for if any mi is divisible to an odd power by some prime p not
in B then �b is already insoluble in Qp.

Provided one treats the mi as elements of Q∗/Q∗2, the triples m form an abelian group
under componentwise multiplication:

m′ × m′′ 	−→ m′m′′ = (m ′
1m ′′

1, m ′
2m ′′

2, m ′
3m ′′

3).
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The m for which C(m) is everywhere locally soluble form a finite subgroup, called the
2-Selmer group. This is computable, and it contains the group of those m for which C(m)

is actually soluble in Q. This smaller group is �b(Q)/2�b(Q), where �b(Q), the group of
rational points on �b, is the Mordell-Weil group of �b. The quotient of the 2-Selmer group
by this smaller group is 2X, the group of those elements of the Tate-Safarevic group which
are killed by 2. The process of going from the curve �b to the set of curves C(m), or the
finite subset which is the 2-Selmer group, is a 2-descent, and the curves C(m) themselves
are called 2-coverings.

We now put this process into more modern language. In what follows, italic capitals will
always denote vector spaces over F2 and p will be either a finite prime or ∞. Write

Yp = Q∗
p/Q∗2

p , YB = ⊕p∈BYp.

Let Vp denote the vector space of all triples (μ1, μ2, μ3) with each μi in Yp and μ1μ2μ3 = 1;
and write VB = ⊕p∈BVp. This is the best way to introduce these spaces, because it preserves
symmetry; but the reader should note that the prevailing custom in the literature is to define
Vp as Yp × Yp, which is isomorphic to the Vp defined above but not in a canonical way.
Next, write XB = ∗

B/
∗2
B where ∗

B is the group of nonzero rationals which are units outside
B; and let UB be the image in VB of the group of triples (m1, m2, m3) such that the mi

are in XB and m1m2m3 = 1. It is known that the map XB → YB is an embedding and
dim UB = 1/2 dim VB; both these depend on the requirement that B contains 2 and ∞.
Finally, if (x, y) is a point of �b defined over Qp other than a 2-division point then the
image of the map (x, y) 	→ (x − bc1, x − bc2, x − bc3) is in Vp. This map is the Kummer
map �b(Qp) → Vp, which is a homomorphism. We denote its image by Wp; clearly Wp is
the set of those triples m for which (4) is soluble in Qp. We can supply the images of the
2-division points by continuity; for example the image of (bc1, 0) is

((c1 − c2)(c1 − c3), b(c1 − c2), b(c1 − c3)), (5)

and the image of the point at infinity is the trivial triple (1, 1, 1), which is also the product
of the three triples like (5). The 2-Selmer group of �b can now be identified with UB � WB
where WB = ⊕p∈BWp; for as was noted above, (4) is soluble at every prime outside B if and
only if the elements of m are in XB.

The next major step was taken by Tate. He introduced the bilinear form ep on Vp × Vp,
defined for m′ = (m ′

1, m ′
2, m ′

3) and m′′ = (m ′′
1, m ′′

2, m ′′
3) by

ep(m′, m′′) = (m ′
1, m ′′

1)p + (m ′
2, m ′′

2)p + (m ′
3, m ′′

3)p.

Here (u, v)p is the additive Hilbert symbol with values in F2, defined by

(u, v)p =
{

0 if ux2 + vy2 = 1 is soluble in Qp,

1 otherwise.

The Hilbert symbol is symmetric and additive in each argument:

(u, v)p = (v, u)p and (u1u2, v)p = (u1, v)p + (u2, v)p.

Effectively it is a replacement for the quadratic residue symbol, with the advantage that it
treats the places 2 and ∞ in just the same way as any other prime. Its key property is the
Hilbert product formula ∑

p

(u, v)p = 0,
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where the sum is taken over all p including ∞; the left hand side is meaningful because
(u, v)p = 0 whenever p is an odd prime at which u and v are units. If p is an odd prime and
u is prime to p, we shall write

χp(u) = (u, p)p

for the quadratic residue symbol with values in F2.
The bilinear form ep is non-degenerate and alternating on Vp × Vp; thus eB = ∑

p∈B ep is
a non-degenerate alternating bilinear form on VB × VB. It is known from class field theory
that UB is a maximal isotropic subspace of VB. Tate showed that Wp is a maximal isotropic
subspace of Vp, and therefore WB is a maximal isotropic subspace of VB. Thus

dim WB = dim UB = 1
2 dim VB; (6)

and hence the 2-Selmer group of �b can be identified with both the left and the right kernel
of the restriction of eB to UB × WB.

For both aesthetic and practical reasons, one would like to show that this restriction is
skew-symmetric – and preferably even that it is alternating. But to make such a statement
meaningful we need an isomorphism between UB and WB; and though they have the same
structure as vector spaces it is not obvious that there is a natural isomorphism between them.
The way round this obstacle was first shown in [1]. It requires the construction inside each
Vp of a maximal isotropic subspace K p such that VB = UB ⊕ KB where KB = ⊕p∈BK p.
Assuming that such spaces K p can be constructed, we let tB : VB → UB be the projection
along KB and define

U ′
B = UB � (WB + KB), W ′

B = WB/(WB � KB) =
⊕
p∈B

W ′
p

where W ′
p = Wp/(Wp � K p). The map tB induces an isomorphism

τB : W ′
B −→ U ′

B,

and the bilinear function eB induces a bilinear function

e′
B : U ′

B × W ′
B −→ F2.

The bilinear functions θ
�

B : U ′
B × U ′

B → F2 and θ
�

B : W ′
B × W ′

B → F2 defined respectively by

θ
�

B : u′
1 × u′

2 	−→ e′
B(u

′
1, τ

−1
B (u′

2)) and θ
�

B : w′
1 × w′

2 	−→ e′
B(τBw′

1, w′
2) (7)

are symmetric. Here the images of w′
1 ×w′

2 under the second map and of τBw′
1 × τBw′

2 under
the first map are the same. The 2-Selmer group of �b is isomorphic to both the left and the
right kernel of e′

B, and hence also to the kernels of the two maps (7).
It is advantageous to choose the K p so as to make U ′ and W ′ small, and to make θ� and

θ� alternating. Since U ′
B ⊃ UB � WB, the best we can hope for is U ′

B = UB � WB; we obtain
this by satisfying the stronger requirement

WB = (UB � WB) ⊕ (KB � WB). (8)

For suppose that (8) holds; then WB+ KB = (UB�WB)+ KB and it follows immediately that

U ′
B = UB � (WB + KB) = UB � WB. (9)

The motivation for (8) is that we want to make WB � KB as large as possible – that is, to
choose KB so that as much of it as possible is contained in WB. But because KB must be
complementary to UB, only the part of WB which is complementary to WB � UB is available
for this purpose.
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Since the 2-Selmer group UB � WB is identified with the left and right kernels of each of
the functions (7), if (9) holds then these functions are trivial and therefore alternating. The
formal statement of all this is as follows.

LEMMA 3. We can choose maximal isotropic subspaces K p ⊂ Vp for each p in B so that
VB = UB ⊕ KB. We can further ensure that

WB = (UB � WB) ⊕ (KB � WB),

which implies U ′
B = UB � WB. If so, the functions θ

�

B and θ
�

B defined in (7) are trivial.

This is just Lemma 2 in a different notation, together with the fact that (8) implies (9). The
K p constructed in the proof of Lemma 3 (which are not unique) are explicitly described in
the proof of Lemma 2. But the other properties of the K p chosen in this way are not at all
obvious. Hence it is advantageous to consider other recipes for choosing the K p, for which
(8) does not hold but we can still prove that the functions (7) are alternating.

For this purpose we write B as the disjoint union of B′ and B′′, where we shall always
suppose that 2 and ∞ are both in B′. For any odd prime p we denote by Tp the subset of
Vp consisting of those triples (μ1, μ2, μ3) with μ1μ2μ3 = 1 for which each μi is in ∗

p/
∗2
p

– that is, each μi is the image of a p-adic unit. The main point of the following theorem is
that for p in B′′ it enables us to replace the definition of K p used in the proof of Lemma 3
by the simpler choice K p = Tp. How one chooses B′′ depends on the particular application
which one has in mind.

THEOREM 2. Let B be the disjoint union of B′ ⊃ {2, ∞} and B′′. We can construct max-
imal isotropic subspaces K p ⊂ Vp such that VB = UB ⊕ KB,

WB′ = (UB′ � WB′) ⊕ (KB′ � WB′) (10)

and K p = Tp for all p in B′′; and (10) implies that U ′
B′ = UB′ � WB′ . Moreover

U ′
B = j∗U ′

B′ ⊕ τBW ′
B′′ = j∗U ′

B′ ⊕
⎛
⎝⊕

p∈B
τB W ′

p

⎞
⎠ , (11)

and the restriction of θ
�

B to j∗U ′
B′ × j∗U ′

B′ is trivial.

If B′ also contains all the odd primes p such that the vp(ci − c j ) are not all congruent
mod 2, then we can choose the K p for p in B′ so that also θ

�

B is alternating on U ′
B.

The appearance of j∗U ′
B′ in and just after (11) calls for some explanation. Let u be any

element of UB′ ; then u is in UB. Moreover, for p in B′′ the image of u in Vp is in Tp = K p

and therefore in K p + Wp; hence u is in U ′
B. In this way we define a map U ′

B′ → U ′
B which

is clearly an injection and which we denote by j∗. Moreover j∗τB′ = τB on W ′
B′ ⊂ W ′

B. To
prove Theorem 2 we construct the K p for p in B′ according to the recipe given in the proof
of Lemma 2, which involves the functions φi . For m in Vp we take φp(m) to be any one of
the expressions

(mi(ci − c j )(ci − ck), m j(c j − ci)(c j − ck))p,

whose values are easily shown to be equal. That the φp have the requisite properties is proved
in [5].
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4. Some preliminary lemmas

From now on we shall assume that � is fixed, as are the classes of b in Q∗
p/Q∗2

p for
each prime p in S. We usually also suppose that we have fixed N , the number of primes
p1, . . . , pN which divide b; but we temporarily regard the pi themselves as unknowns. De-
note by G the multiplicative commutative group generated by ∗

S and the pi . The components
of a triplet u will always be elements of G/G2; if u j is such a component we shall say that
pi divides u j if and only if some (and therefore each) representative of u j in G is divisible
by an odd power of pi . For p in S the class of b in Q∗

p/Q∗2
p determines Wp; so we can fix the

decomposition of Vp in accordance with Lemma 1. We shall denote it by Vp = ⊕Vpi ; but
we shall not need to be more specific about the Vpi . If however p divides b it will be useful
to make the decomposition explicit. In this case Wp consists of (1, 1, 1) and the three triples
like (5), for these all lie in Wp and are distinct and we know from (6) that Wp has order 4.
Following the construction in the proof of Lemma 1, where now ψ = ep, we can take

wp2 = (b(c2 − c1), (c2 − c1)(c2 − c3), b(c2 − c3)), vp2 = (ν, ν, 1),

wp3 = (b(c3 − c1), b(c3 − c2), (c3 − c1)(c3 − c2)), vp3 = (ν, 1, ν),
(12)

where ν is a quadratic non-residue of p. Thus Vp = Vp2 ⊕ Vp3 where Vpi is the vector space
generated by vpi and wpi and Wpi = Vpi � Wp is generated by wpi . Note that if pi is not in
M in the notation of the proof of Lemma 2 then αpi is vpi .

In this way we decompose W as a direct sum of 1-dimensional subspaces; we temporarily
write the nontrivial elements of these subspaces as w1, . . . , wn . Choose a base u1, . . . , un

for UB. Once we fix the values of all the Hilbert symbols (α, β)p where p is in B and each
of α, β runs through −1 and all the primes in B, we shall know all the ep(ui , w j ). By the
remarks in the last paragraph of §2, these determine the possible M; and once M is chosen,
it determines the K p and therefore the map tB and finally the 2-Selmer group. The values of
the Hilbert symbols (α, β)p described above only depend on:

(i) the classes of −1 and the pi in the Q∗
p/Q∗2

p for primes p in S, where the product of the
classes of the pi must be the class of b;

(ii) the χpi (p j ) and the χpi (−1) for i � j , subject to the law of quadratic reciprocity or
equivalently to the Hilbert product formula.

We call these values the structure constants associated with �b; we can choose (1/2)N (N −
1) + (N − 1)(#S) of them independently. To each of the allowable choices of the structure
constants we assign the same probability. Thus if �, N and the images of b in the Q∗

p/Q∗2
p

for p in S are given, it makes sense to talk about the probability distribution of db; this gives
a precise meaning to the statement that the pi are randomly chosen primes. For this purpose
we regard N as fixed. However, I have not been able to determine the probability distribution
of the db for fixed N . In this paper I only address the easier problem of finding the limit of
this distribution as N → ∞.

Suppose that B is the disjoint union of B′ and B′′. Henceforth we shall assume that B′

contains S, so that in particular 2 and ∞ are in B′. Write M for the number of primes in
B′ which divide b; in this section we shall assume that M is fixed. The left kernel of eB′

restricted to UB′ × WB′ is UB′ � WB′ , which consists of those elements of UB′ for which the
corresponding 2-covering is locally soluble at each place in B′. We shall denote it by ZB′ ; it
is independent of the choice of the K p, and its dimension, which we shall denote by d(B′),
only depends on the choice of the Hilbert symbols (α, β)p as above. Indeed ZB′ only depends
on the choice of those Hilbert symbols which do not depend on any pi in B′′. Provided B′′ is
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not empty, (1/2)M(M − 1) + M(#S) of them can be chosen independently. Thus for fixed
M the probability distribution of d(B′) is well defined. In the notation of Theorem 2 ZB′ is
also the kernel of the restriction of θ� to j∗U ′

B′ . In particular ZB can be identified with the
2-Selmer group of �b.

The reason for the next four lemmas is as follows. In Section 7 we study the effect on ZB′

of moving a prime q ′ from B′′ to B′. Provided that q ′ is not the last prime in B′′, ZB′ does not
depend on q ′. Thus we can regard q ′ as a random prime, and the probability distribution of
d(B′ � {q ′}) will only depend on ZB′ . In the general case, which in the notation of Section 7
is when the elements of T are independent, the probability distribution of d(B′ � {q ′}) will
only depend on that of d(B′) and can be described explicitly. To complete the proof of the
main theorem, we need to show that when M is large the probability of not being in the
general case is small. When we use the “O” notation, the implied constant will depend only
on #S. It will turn out that if ZB′ is not in the general case it must contain at least one triple
of the kind described in one of these four lemmas.

Let u = (u1, u2, u3) be in UB and let p be a prime dividing b. If the ui are all units at p,
the condition that the 2-covering associated with u should be locally soluble at p is

χp(u1) = χp(u2) = 0. (13)

If the ui are not all units at p, suppose for example that u1 is a unit at p and u2, u3 are not.
Now the condition that the 2-covering associated with u should be locally soluble at p is

χp(u1) = χp((c1 − c2)(c1 − c3)), χp(bu2/p2) = χp(c1 − c2). (14)

Note that the second condition here involves the image of b in Q∗
p/Q∗2

p .

LEMMA 4. The probability that ZB′ contains an element of US other than (1, 1, 1) is
O(2−M).

Proof. Let u = (u1, u2, u3) be an element of US other than (1, 1, 1). Without loss of
generality we can suppose that u1 � 1. For u to be in ZB′ it is necessary that χp(u1) = 0
for each p in B′ \ S. But the only possible dependence relation among the χp(u1) is that
coming when B′ = B from the fact that the product of the pi is b. Hence the probability that
χp(u1) = 0 for all such p is at most 21−M , and so the probability that u is in ZB′ is at most
21−M . There are 22#S − 1 elements of US other than (1, 1, 1); so the probability that at least
one of them is in ZB′ is less than 22#S+1−M .

LEMMA 5. Suppose that M < N and that (c1 − c2)(c1 − c3) is not in Q∗2. Then the
probability that there is an element of the form u = (1, u0, u0) in ZB′ other than (1, 1, 1) is
O(( 3

4 )
M).

Proof. For any fixed u0 in XB′ other than 1, let B� be the set of primes in B′ \ S which
divide u0, and let B� be the complement of B� in B′ \ S. The conditions (13) now take the
form χp(u0) = 0 for p in B�. Write n = #B�. The M − n conditions obtained from (13)
and the 2n conditions (14) are independent, because for p in B� the condition χp(u0) = 0 is
the only one which involves p, for p in B� the second condition (14) is the only one which
involves χp(q) for any q in B′′, and the various first conditions (14) are independent. So the
probability of a particular u being in ZB′ is at most 2−M−n . For a given value of n there are
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2#SM !/n!(M − n)! possible u; so the probability that some such u is in ZB′ is at most

M∑
n=0

M !
n!(M − n)!2

#S−M−n = 2#S−M

(
3

2

)M

.

LEMMA 6. Suppose that M < N; then the probability that there is an element u =
(u1, u2, u3) in ZB′ with some ui in XS but not equal to 1 is O((3/4)M).

Proof. Choose u in UB′ where to fix ideas we shall suppose that u1 is in XS and not equal
to 1. Let B� be the set of primes in B′ \S which divide u2 and let B� be the complement of B�

in B′ \ S. Write n = #B�. If n = 0 the probability that u is in ZB′ is O(2−M) by Lemma 4. If
n > 0 we have 2(M −n) conditions coming from (13) with p in B� and n conditions coming
from the second condition (14) with p in B�. All these are independent, because for p in B�

the corresponding condition (14) is the only one which involves χp(q) for any q in B′′ and
for p in B� the two conditions derived from (13) are the only ones which involve p, and they
are clearly independent. For a given value of n and a given u1 there are 2#SM !/n!(M − n)!
possible u; so the probability that at least one such u is in ZB′ is at most

O(2−M) +
M∑

n=1

M !
n!(M − n)!2

#S−2M+n = O(2−M) + 2#S−2M(3M − 1).

Since there are 2#S − 1 possible u1, this completes the proof.

LEMMA 7. Suppose that M < N; then the probability that there are distinct elements
u′ = (u′

1, u′
2, u′

3) and u′′ = (u′′
1, u′′

2, u′′
3) in ZB′ with u′

1 = u′′
2 and no component equal to 1 is

O((15/16)M).

Proof. Choose u′, u′′ in UB′ with u′
1 = u′′

2 and with no component equal to 1. By Lemma
6 we can assume that none of these components is in XS. In general there are eight possible
types of prime p which are in B′ \S: if p divides u0 where u0 = u′

1 = u′′
2 then p divides one

of u′
2 and u′

3 and also one of u′′
3 and u′′

1, while if p does not divide u0 then it divides both or
neither of u′

2 and u′
3 and also both or neither of u′′

1 and u′′
3. For each such prime p there are

four conditions for local solubility at p derived from (13) and (14); but in general these will
not all be independent. To express them without going into too much detail, we adopt the
convention that A will denote a well-determined product of some of the ci − c j , which need
not be the same from one appearance to the next.

If p|u0 let i, j be such that u′
i and u′′

j are units at p; then we can write the conditions in
the form

χp(u
′
i) = χp(A), χp(u

′′
j ) = χp(A), χp(bu0/p2) = χp(A). (15)

In the third equation there are two distinct formulae for A, but it is possible for the quotient
of their values to be a square; otherwise we obtain a further condition. This certainly happens
when i = 2, j = 1; now the two formulae for A are c1 − c2 and c2 − c1, so that we obtain
the additional condition χp(−1) = 0. If p divides all of u′

2, u′
3, u′′

1 and u′′
3 then we can write

the conditions in the form

χp(u0) = χp(A), χp(bu′
3/p2) = χp(A), χp(u

′
3u′′

3/p2) = χp(A). (16)

If for example p divides u′
2 and u′

3 but not u′′
1 or u′′

3 then we can write the conditions in the
form

χp(u0) = 0, χp(u
′′
1) = 0, χp(bu′

2/p2) = χp(A). (17)
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If p divides none of u′
2, u′

3, u′′
1, u′′

3 then we can write the conditions in the form

χp(u0) = 0, χp(u
′
3) = 0, χp(u

′′
3) = 0. (18)

We begin with two special cases. The first is when u′
3/u′′

1 = u′′
3/u′

2 is in XS; now only four
of the types of prime p listed above can occur. Let

B1 be the set of primes in B′ \ S which divide u0, u′
2 and u′′

3,

B2 be the set of primes in B′ \ S which divide u0, u′
3 and u′′

1,

B3 be the set of primes in B′ \ S which divide u′
2, u′

3, u′′
1 and u′′

3,

B4 be the set of primes in B′ \ S which divide none of u′
2, u′

3, u′′
1 and u′′

3.

Write ni = #Bi . We have M = n1 + n2 + n3 + n4 because B′ \ S is the disjoint union of the
Bi . For any p in B′ at least two of the three conditions associated with p in the appropriate
one of (15), (16) or (18) are independent; and the only way in which all three can fail to be
independent is if the derived condition for χp(u′

3/u′′
1) is trivial. But going back to the exact

form of (14), we see that the first condition (15) implies

χp(u′
3/u′′

1) = χp((c1 − c2)(c2 − c3)) for p in B1,

χp(u′
3/u′′

1) = χp(u′′
3/u′

2) = χp((c1 − c2)(c3 − c1)) for p in B2;
and the conditions (18) imply χp(u′

3/u′′
1) = 0 for p in B4. Since

(c1 − c2)(c2 − c3) + (c1 − c2)(c3 − c1) = −(c1 − c2)
2

the two terms on the left cannot both be in Q∗2. Hence for at least one of B1, B2 and B4 the
three conditions associated with each p in that Bi are indeed independent.

Thus we have retained at least 2M +min(n1, n2, n4) conditions. I claim that all but at most
six of these are independent. To prove this, we choose a prime p∗

1 in B′ \ S which divides
one but not the other of u0 and u′

3; this is possible since u0/u′
3 is not in XS. If for example p∗

1

divides u0 choose a further prime p∗
2 in B′ \S which divides u′

3. If p∗
2 |u0 replace the condition

χp(u0) = 0 for p in B4 by χp(u0u′
3) = 0 and note that p∗

1 divides u0u′
3 but p∗

2 does not. Once
we drop the conditions for which p is p∗

1 or p∗
2 the first and third conditions (15) for p in

B1 � B2, the first and second conditions (16) for p in B3, and the first and second conditions
(18) for p in B4, together with the set of nontrivial conditions on χp(u′

3/u′′
1) just obtained,

are independent. For if q is in B′′ each of the third conditions (15) and the second conditions
(16) involves a χp(q) which appears in no other condition; so they cannot be involved in any
dependency conditions. Each of the remaining conditions, other than those in the final set,
involves a χp(p∗

i ) which appears in no other condition, and none of the χp∗
i
(p) appear at all.

Hence they too are not involved in any dependency conditions. The remaining conditions
are clearly independent. Hence we have at least μ = 2M − 6 + min(n1, n2, n4) independent
conditions. For given n1, . . . , n4 there are 23#SM !/ ∏

(ni !) possible pairs u′, u′′ of the kind
we are currently considering; so the probability that some such pair is in ZB′ is at most

∑ M !∏
(ni !)23#S−μ <

∑ M !∏
(ni !)23#S−2M+6(2−n1 + 2−n2 + 2−n4)

where each sum is taken over all acceptable n1, . . . , n4. Each of the three sums on the right
is equal to 3.23#S+6(7/8)M .
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The second special case is when u′
2/u′′

1 = u′′
3/u′

3 is in XS. Again only four of the eight
types of prime p listed above can occur. Let

B1 be the set of primes in B′ \ S which divide u0, u′
3 and u′′

3,

B2 be the set of primes in B′ \ S which divide u0, u′
2 and u′′

1,

B3 be the set of primes in B′ \ S which divide u′
2, u′

3, u′′
1 and u′′

3,

B4 be the set of primes in B′ \ S which divide none of u′
2, u′

3, u′′
1 and u′′

3.

Write ni = #Bi . This time the additional nontrivial conditions are the conditions χp(−1) = 0
for p in B1, which were derived just after (15). The remainder of the argument is essentially
as before, except that we now have at least 2M − 6 + n1 independent conditions, and the
probability that some pair u′, u′′ of this kind is in ZB′ is again O((7/8)M).

Now suppose that we are not in either of these special cases, so that each of the eight
types of prime p listed above can potentially occur. For each such prime p we have three
conditions, listed in the relevent one of (15) to (18), and as in the second special case we
also have the condition χp(−1) = 0 when p divides u0, u′

2 and u′′
3. Using arguments similar

to those described in detail in the proof for the first special case, we find that if we delete the
conditions associated with any of a certain bounded number of primes then the remaining
conditions are independent. We now use the identity

∑ M !∏
(ni !)2−n1 =

(
15

2

)M

where the sum is taken over all non-negative n1, . . . , n8 with
∑

ni = M ; thus the probability
that there is some such pair u′, u′′ in ZB′ is O((15/16)M).

5. Proof of the main theorem

Now suppose temporarily that the primes p in B′ \ S and the images of b in the corres-
ponding Q∗

p/Q∗2
p are known. Suppose further that B′′ is not empty. We next study how Z is

changed when B′ is replaced by B = B′ � {q ′}, where q ′ is in B′′. An immediate observation
is that ZB � UB′ ⊂ ZB′ . Choose the K p as in Theorem 2; then U ′

B = U ′
B′ ⊕ τBWq ′ and

U ′
B′ = ZB′ . With the obvious base for U ′

B, the restriction of θ� to j∗U ′
B × j∗U ′

B is given by
a matrix of the form (

0 A
t A C

)
(19)

where the shape of A is d(B′) × 2 and C is alternating. Being alternating, the matrix (19)
must have even rank; and it is easy to see that its rank is 4 if A has rank 2, 0 if A = 0 and
C = 0, and 2 otherwise. Thus d(B) − d(B′) is −2 in the first case, 2 in the second case and
0 in the third case. Note that if ZB necessarily has two generators which involve q ′ we must
be in the second case.

Suppose first that M < N −1, so that B′′ contains at least two primes; then we can choose
the q in the proofs of the previous three lemmas to be different to the q ′ of the last paragraph.
If a particular row of the matrix (19), other than one of the last two, corresponds to u =
(u1, u2, u3), then it follows from (12) that the corresponding row of A is (χq ′(u2), χq ′(u3)).
Assume that none of the (ci − c j )(ci − ck) is in Q∗2. Write θ = 15/16 and denote by T the
set of 2d(B′) + 1 elements consisting of the entries in A and one of the non-diagonal entries
in C . It follows from the construction in the proof of Lemma 2 that for example τBwq ′2
in the notation of (12) has the form (q ′u1, u2, q ′u3) where the ui are in XB′ . Hence each
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non-diagonal entry of C has the form χq ′(bu/q ′) for some u in XB′ . Since all the entries in A
have the form χq ′(u′) for some u′ in XB′ , no dependency relation among the elements of T can
involve the non-diagonal element of C . If the elements of T are independent when considered
as functions of q ′, then the probability distribution of d(B) is given by π(d(B′), d(B)) where

π(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

2−2i−1 if j = i + 2,

3.2−i − 5.2−2i−1 if j = i,
1 − 3.2−i + 21−2i if j = i − 2,

0 otherwise.

(20)

If we revert to the situation where the members of B′ \ S are random primes, and denote by
P(d, M) the probability that d(B′) = d for some pre-assigned integer d, then

∞∑
d=0

∣∣∣∣∣P(d, M + 1) −
∑

r

π(r, d)P(r, M)

∣∣∣∣∣ (21)

is bounded by twice the probability that the elements of T are not independent. But if the
elements of T are not independent, then ZB′ must come under one of the cases considered in
Lemmas 4 to 7. The probability of this happening is therefore O(θ M).

If instead M = N − 1 then ZB contains the three elements like (5) which correspond to
the three 2-division points. Hence the final sentence of the last paragraph but one applies,
and we have

db − d(B′) = d(B) − d(B′) = 2.

If we exclude this last step, what we have here is an approximation, increasingly good as
M increases, to one of two Markov processes. The states in each Markov process correspond
to the values of d(B′), so the values are the even non-negative integers for one chain and the
odd positive integers for the other. The transition probabilities are given by (20). Note that
if αi is given by (1) then

α j = π( j − 2, j)α j−2 + π( j, j)α j + π( j + 2, j)α j+2,

so that the α j provide an invariant distribution in the sense of Markov chain theory. Provided
M < N − 1, the process of replacing B′ by B is a stochastic process whose limit can by
abuse of language be described as one of the two Markov processes above. Because the
P(d, M) do not depend on N provided M < N − 1, and because we are only interested
in behaviour as N → ∞, we can now forget about N and the condition M < N − 1 and
simply study the behaviour of P(d, M) as M → ∞. Under this simplification, Theorem 1
is equivalent to P(d, M) → αd .

To make this argument precise, denote by Q(r, M, n) the probability that the process is in
state r after n steps if for each d the probability that it starts in state d is P(d, M). Because
(21) is O(θ M) we have for each r � 0

∞∑
d=0

|P(d, M + r + 1) − Q(d, M, r + 1)|

�
∞∑

d=0

∞∑
e=0

|π(e, d){P(e, M + r) − Q(e, M, r)}| + O(θ M+r ).
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By reversing the order of summation we see that the double sum is equal to
∞∑

e=0

|P(e, M + r) − Q(e, M, r)|.

Since by definition Q(d, M, 0) = P(d, M), it follows that as r → ∞

limsup
∞∑

d=0

|P(d, M + r) − Q(d, M, r)| �
∞∑

r=0

O(θ M+r ) = O(θ M). (22)

In the standard terminology of Markov chain theory, each of the two Markov chains given by
(20) is irreducible and aperiodic and has an invariant distribution given by the relevent αd ;
so the fundamental theorem of Markov chain theory (see for example [4, theorem 1·8·3.])
shows that

Q(d, M, r) −→ αd as r −→ ∞.

Thus it follows from (22) that as r → ∞
limsup|P(d, M + r) − αd | = O(θ M).

This is enough to show that P(d, M) → αd as M → ∞.
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[1] J.-L. COLLIOT–THÉLÈNE, A. N. SKOROBOGATOV and SIR P. SWINNERTON–DYER. Hasse principle
for pencils of curves of genus one whose Jacobians have rational 2-division points. Invent. Math. 134
(1998), 579–650.

[2] R. HEATH–BROWN. The size of Selmer groups for the congruent number problem, II. Invent. Math.
118 (1994), 331–370.

[3] K. KRAMER. Arithmetic of elliptic curves upon quadratic extension. Trans. Amer. Math. Soc. 264
(1981), 121–135.

[4] J. R. NORRIS. Markov Chains (Cambridge, 1997).
[5] A. N. SKOROBOGATOV and SIR P. SWINNERTON–DYER. 2-descent on elliptic curves and rational

points on certain Kummer surfaces. Adv. Math. 198 (2005), 448–483.
[6] SIR P. SWINNERTON–DYER. 2-descent through the ages. in Ranks of Elliptic Curves and Random

Matrix Theory (ed. J. B. Conrey et al.), London Math. Soc. Lecture Note Ser. 341 (Cambridge
University Press, 2007), 345–356.

https://doi.org/10.1017/S0305004108001588 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004108001588

