ALL NON-ARCHIMEDEAN NORMS ON $K\left[X_{1}, \ldots, X_{r}\right]$

GHIOCEL GROZA
Department of Mathematics, Technical University of Civil Engineering, Lacul Tei 124, Sec.2, RO-020396 Bucharest, Romania
e-mail: grozag@mail.utcb.ro
NICOLAE POPESCU*
Romanian Academy, Institute of Mathematics, P.O. Box 1-764, RO-70700
Bucharest, Romania
e-mail: Nicolae.Popescu@imar.ro

and ALEXANDRU ZAHARESCU
Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, IL 61801, USA
e-mail: zaharesc@math.uiuc.edu

(Received 10 June 2008; revised 24 December 2008; accepted 24 March 2009)

Abstract

If K is a field with a non-trivial non-Archimedean absolute value (multiplicative norm) $|\mid$, we describe all non-Archimedean K-algebra norms on the polynomial algebra $K\left[X_{1}, \ldots, X_{r}\right]$ which extend ||.

2000 Mathematics Subject Classification. 11S75, 11C08.

1. Introduction. Let K be a field with a non-trivial non-Archimedean absolute value (multiplicative norm) ||. In this paper, we study K-algebra non-Archimedean norms on $K\left[X_{1}, \ldots, X_{r}\right]$ which extend ||. Some problems connected with the norms on p-adic vector spaces were solved by I. S. Cohen [5] and A. F. Monna [8], and then O. Goldmann and N. Iwahori were concerned in [6] with the intrinsic structure that is carried by the set of all norms on a given finite dimensional vector space over a locally compact field. When $r=1$, the case of K-algebra non-Archimedean norms on $K[X]$ which are multiplicative and extend || has been treated in [1-3]. In Section 2 below we consider generalizations of the Gauss valuation. We investigate the case when a K-vector space norm is a K-algebra norm and we also address the question of when two norms are equivalent. In Section 3 we then discuss possible types of norms on $K\left[X_{1}, \ldots, X_{r}\right]$ which extend a given non-trivial non-Archimedean absolute value on K. The completion of $K\left[X_{1}, \ldots, X_{r}\right]$ with respect to a non-Archimedean Gauss norm is given in Section 4.

There are many applications of non-Archimedean multiplicative norms on $K\left[X_{1}, \ldots, X_{r}\right]$ in algebraic geometry where a basic tool is to describe all the absolute values on $K\left(X_{1}, \ldots, X_{r}\right)$ which extend ||. In [7] F.-V. Kuhlmann determined which value groups and which residue fields can possibly occur in this case. In the case $r=1$ the r.t. extensions $\left|\left.\right|_{L}\right.$ of $| \mid$ to $L=K(X)$ have been considered by M. Nagata [9], who

[^0]conjectured that $L_{| |_{L}}$ is a simple transcendental extension of a finite algebraic extension of $K_{| |}$. This problem has been affirmatively solved (see for example [1]). Some results on the corresponding problem for $K\left(X_{1}, \ldots, X_{r}\right)$ are given in Section 5.
2. Gauss norms on $K\left[X_{1}, \ldots, X_{r}\right]$. Let K be a field with a non-trivial nonArchimedean absolute value (multiplicative norm) \||, i.e. $\|: K \rightarrow[0, \infty)$ such that for all $\alpha, \beta \in K$

A1. $\quad|\alpha|=0 \Leftrightarrow \alpha=0$;
A2. $\quad|\alpha \beta|=|\alpha||\beta|$;
A3. $\quad|\alpha+\beta| \leq \max \{|\alpha|,|\beta|\}$;
A4. there exists $\gamma \in K$ different from zero such that $|\gamma| \neq 1$.
Then $(K,| |)$ is called a valued field.
In what follows we work with the polynomial algebra $K\left[X_{1}, \ldots, X_{r}\right]$, and study the K-algebra norms \|\| \| $K\left[X_{1}, \ldots, X_{r}\right] \rightarrow[0, \infty)$ which extend \| |, i.e. \||| satisfies, for all $P, Q \in K\left[X_{1}, \ldots, X_{r}\right]$, the conditions A1, A3 and for all $\alpha \in K$ and $P, Q \in K\left[X_{1}\right.$, \ldots, X_{r}]

N1. $\quad\|\alpha P\|=|\alpha|\|P\| ;$
N2. $\quad\|P Q\| \leq\|P\|\|Q\|$;
N3. $\quad\|\alpha\|=|\alpha|$.
If $\mathbf{n}=\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}^{r}$, we put $N(\mathbf{n})=n_{1}+\cdots+n_{r}$. We order the elements of \mathbb{N}^{r} in the following manner: $\mathbf{i}<\mathbf{j}$ if either $N(\mathbf{i})<N(\mathbf{j})$ or $N(\mathbf{i})=N(\mathbf{j})$ and \mathbf{i} is less than \mathbf{j} with respect to the lexicographical order. Hence it follows that for each \mathbf{j} there are only a finite number of \mathbf{i} such that $\mathbf{i} \leq \mathbf{j}$. For simplicity, for any $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{N}^{r}$, we denote $\mathbf{X}^{\mathbf{m}}=X_{1}^{m_{1}} \cdots X_{r}^{m_{r}}$ and $a_{\mathbf{m}}=a_{m_{1}, \ldots, m_{r}}$. We also denote $\mathbf{X}=\left(X_{1}, \ldots, X_{r}\right)$.

If

$$
\begin{equation*}
P=\sum_{\mathbf{j} \leq \mathbf{n}} a_{\mathbf{j}} \mathbf{X}^{\mathbf{j}} \in K[\mathbf{X}], \tag{1}
\end{equation*}
$$

denote

$$
E(P)=\left\{\mathbf{j} \in \mathbb{N}^{r}: \mathbf{j} \leq \mathbf{n}, a_{\mathbf{j}} \neq 0\right\}
$$

and $\mathbf{d}(P)=\mathbf{n}$ is the greatest element of $E(P)$ with respect to the lexicographical order. If $a_{\mathbf{d}(P)}=1$ the polynomial P is called monic.

Let $(K,| |)$ be a valued field as above and \|\| a K-algebra norm on $K[\mathbf{X}]$ which extends ||. In what follows we define a non-Archimedean norm on the polynomial algebra $K[\mathbf{X}]$ which is a generalization of the Gauss valuation.

We start with the following simple lemma.
Lemma 1. Suppose that K is a field and $\mathcal{F}=\left\{P_{\mathrm{j}}\right\}_{\mathrm{j} \in \mathbb{N}^{*}}$ a sequence of polynomials from $K[\mathbf{X}]$ such that, for every $\mathbf{j}, \mathbf{d}\left(P_{\mathbf{j}}\right)=\mathbf{j}$ and ordered with respect to the order defined on \mathbb{N}^{r}. Then every $Q \in K[\mathbf{X}]$ can be represented uniquely in the form

$$
\begin{equation*}
Q=\sum_{\mathbf{j} \leq \mathbf{d}(Q)} b_{\mathbf{j}} P_{\mathbf{j}}, \tag{2}
\end{equation*}
$$

where $b_{\mathbf{j}} \in K$.

Proof. If $Q=\sum_{\mathbf{j} \in E(Q)} c_{\mathbf{j}} \mathbf{X}^{\mathbf{j}}, P_{\mathbf{d}(Q)}=\sum_{\mathbf{j} \in E\left(P_{\mathbf{d}(Q)}\right)} a_{\mathbf{j}} \mathbf{X}^{\mathbf{j}}$, then $Q=c_{\mathbf{d}(Q)} a_{\mathbf{d}(Q)}^{-1} P_{\mathbf{d}(Q)}+Q_{\mathbf{i}}$, where $\mathbf{i}=\mathbf{d}\left(Q_{\mathbf{i}}\right)$ and $\mathbf{i}<\mathbf{d}(Q)$. By putting $b_{\mathbf{d}(Q)}=c_{\mathbf{d}(Q)} a_{\mathbf{d}(Q)}^{-1}$ the statement follows easily by induction with respect to $\mathbf{d}(Q)$.

We denote

$$
E_{\mathcal{F}}(Q)=\left\{\mathbf{j} \in \mathbb{N}^{r}: b_{\mathbf{j}} \neq 0, \text { in (2) }\right\} .
$$

Suppose that $(K,| |)$ is a valued field, $\mathcal{F}=\left\{P_{\mathrm{j}}\right\}_{\mathrm{j} \in \mathbb{N}^{r}}$ a sequence of polynomials from $K[\mathbf{X}]$ such that, for every $\mathbf{j}, \mathbf{d}\left(P_{\mathbf{j}}\right)=\mathbf{j}$, ordered with respect to the order defined on \mathbb{N}^{r} and $\mathcal{N}=\left\{\delta_{\mathrm{j}}\right\}_{\mathrm{j}_{\in \mathbb{N}}}$ a sequence of positive real numbers such that $\delta_{(0,0, \ldots 0)}=1$. We call \mathcal{F} and \mathcal{N} admissible sequences of polynomials and positive numbers, respectively.

For every $Q \in K[\mathbf{X}]$ written in the form (2) we define

$$
\begin{equation*}
\|Q\|_{\mathcal{F}, \mathcal{N}}=\max _{\mathbf{j} \leq \mathbf{d}(Q)}\left\{\left|b_{\mathbf{j}}\right| \delta_{\mathbf{j}}\right\} \tag{3}
\end{equation*}
$$

with $\mathbf{j} \in E_{\mathcal{F}}(Q)$. If $P_{\mathbf{s}}, P_{\mathbf{t}} \in \mathcal{F}$, then by Lemma 1

$$
\begin{equation*}
P_{\mathbf{s}} P_{\mathbf{t}}=\sum_{\mathbf{j} \leq \mathbf{s}+\mathbf{t}} \gamma_{\mathbf{j}}(\mathbf{s}, \mathbf{t}) P_{\mathbf{j}}, \quad \gamma_{\mathbf{j}}(\mathbf{s}, \mathbf{t}) \in K, \tag{4}
\end{equation*}
$$

where $\gamma_{\mathbf{j}}(\mathbf{s}, \mathbf{t})=\gamma_{\mathbf{j}}(\mathbf{t}, \mathbf{s})$, for every \mathbf{j}. Then we set

$$
\begin{equation*}
\rho_{\mathbf{s}, \mathbf{t}}=\max _{\mathbf{j} \leq \mathbf{s}+\mathbf{t}}\left\{\gamma_{\mathbf{j}}(\mathbf{s}, \mathbf{t}) \mid \delta_{\mathbf{j}}\right\} . \tag{5}
\end{equation*}
$$

Proposition 1. Suppose that $(K,| |)$ is a valued field, \mathcal{F} and \mathcal{N} admissible sequence of polynomials and real numbers, respectively. Then $\left\|\|_{\mathcal{F}, \mathcal{N}}\right.$, defined by (3) is a K-vector space non-Archimedean norm on $K[\mathbf{X}]$ which extends $\left|\mid\right.$. Moreover $\left\|\|_{\mathcal{F}, \mathcal{N}}\right.$, is a K-algebra norm on $K[\mathbf{X}]$ if and only if

$$
\begin{equation*}
\rho_{\mathrm{s}, \mathrm{t}} \leq \delta_{\mathrm{s}} \delta_{\mathrm{t}}, \tag{6}
\end{equation*}
$$

for every \mathbf{s}, \mathbf{t}.
Proof. The first statement is easily verified. For the second part we consider $P, Q \in$ $K[\mathbf{X}]$, where $P=\sum_{\mathbf{i} \leq \mathbf{d}(P)} a_{\mathbf{i}} P_{\mathrm{i}}$ and Q is given by (2). Then, by (4),

$$
\begin{aligned}
P Q & =\sum_{\mathbf{u} \leq \mathbf{d}(P Q)}\left(\sum_{\mathbf{v}+\mathbf{w}=\mathbf{u}} a_{\mathbf{v}} b_{\mathbf{w}} P_{\mathbf{v}} P_{\mathbf{w}}\right)=\sum_{\mathbf{u} \leq \mathbf{d}(P Q)}\left(\sum_{\mathbf{v}+\mathbf{w}=\mathbf{u}} a_{\mathbf{v}} b_{\mathbf{w}}\left(\sum_{\mathbf{i} \leq \mathbf{u}} \gamma_{\mathbf{j}}(\mathbf{v}, \mathbf{w}) P_{\mathbf{j}}\right)\right) \\
& =\sum_{\mathbf{u} \leq \mathbf{d}(P Q)}\left(\sum_{\mathbf{i} \leq \mathbf{u}}\left(\sum_{\mathbf{v}+\mathbf{w}=\mathbf{u}} a_{\mathbf{v}} b_{\mathbf{w}} \gamma_{\mathbf{j}}(\mathbf{v}, \mathbf{w})\right) P_{\mathbf{j}}\right)=\sum_{\mathbf{j} \leq \mathbf{d}(P Q)} c_{\mathbf{j}} P_{\mathbf{j}},
\end{aligned}
$$

where

$$
\begin{equation*}
c_{\mathbf{j}}=\sum_{\mathbf{j} \leq \mathbf{u} \leq \mathbf{d}(P Q)}\left(\sum_{\mathbf{v}+\mathbf{w}=\mathbf{u}} a_{\mathbf{v}} b_{\mathbf{w}} \gamma_{\mathbf{j}}(\mathbf{v}, \mathbf{w})\right) \tag{7}
\end{equation*}
$$

4 GHIOCEL GROZA, NICOLAE POPESCU AND ALEXANDRU ZAHARESCU

and since only a finite number of $a_{\mathbf{v}}, b_{\mathbf{w}}$ are different from zero, all the sums are finite. Then, if (6) holds,

$$
\begin{aligned}
\|P Q\|_{\mathcal{F}, \mathcal{N}} & \leq \max _{\mathbf{j} \leq \mathbf{d}(P Q)}\left\{\max _{\mathbf{j} \leq \mathbf{u} \leq \mathbf{d}(P Q)}\left\{\left|\sum_{\mathbf{v}+\mathbf{w}=\mathbf{u}} a_{\mathbf{v}} b_{\mathbf{w}} \gamma_{\mathbf{j}}(\mathbf{v}, \mathbf{w})\right|\right\} \delta_{\mathbf{j}}\right\} \\
& \leq \max _{\mathbf{j} \leq \mathbf{d}(P Q)}\left\{\max _{\mathbf{j} \leq \mathbf{u} \leq \mathbf{d}(P Q)}\left\{\max _{\mathbf{v}+\mathbf{w}=\mathbf{u}}\left\{\left|a_{\mathbf{v}} b_{\mathbf{w}} \gamma_{\mathbf{j}}(\mathbf{v}, \mathbf{w})\right|\right\}\right\} \delta_{\mathbf{j}}\right\} \\
& \leq \max _{\mathbf{u} \leq \mathbf{d}(P Q)}\left\{\max _{\mathbf{v}+\mathbf{w}=\mathbf{u}}\left\{\left|a_{\mathbf{v}} b_{\mathbf{w}}\right| \rho_{\mathbf{v}, \mathbf{w}}\right\}\right\} \leq \max _{\mathbf{u} \leq \mathbf{d}(P Q)}\left\{\max _{\mathbf{v}+\mathbf{w}=\mathbf{u}}\left\{\left|a_{\mathbf{v}} b_{\mathbf{w}}\right| \delta_{\mathbf{v}} \delta_{\mathbf{w}}\right\}\right\} \\
& \leq \max _{\mathbf{i} \leq \mathbf{d}(P)}\left\{\left|a_{\mathbf{i}}\right| \delta_{\mathbf{i}}\right\} \max _{\mathbf{j} \leq \mathbf{d}(Q)}\left\{\left|b_{\mathbf{j}}\right| \delta_{\mathbf{j}}\right\}=\|P\|_{\mathcal{F}, \mathcal{N}}\|Q\|_{\mathcal{F}, \mathcal{N}} .
\end{aligned}
$$

This completes the proof of the proposition.
We call the norm given by (3) the Gauss norm on $K[\mathbf{X}]$ defined by \mathcal{F} and \mathcal{N}. If $\left\|\|_{\mathcal{F}, \mathcal{N}}\right.$ is a K-algebra norm on $K[\mathbf{X}]$, then by (5) and (6) it follows that

$$
\begin{equation*}
\delta_{\mathbf{n}} \leq \min _{\mathbf{i}+\mathbf{j}=\mathbf{n}}\left\{\frac{\delta_{\mathbf{i}} \delta_{\mathbf{j}}}{\left|\gamma_{\mathbf{n}}(\mathbf{i}, \mathbf{j})\right|}\right\} . \tag{8}
\end{equation*}
$$

If

$$
\begin{equation*}
P_{\mathrm{j}}=\sum_{\mathrm{i} \leq \mathrm{j}} a_{\mathrm{i}, \mathrm{j}} \mathbf{x}^{\mathbf{i}}, \tag{9}
\end{equation*}
$$

then

$$
P_{\mathbf{s}} P_{\mathbf{t}}=\sum_{\mathbf{j} \leq \mathbf{s}+\mathbf{t}} c_{\mathbf{j}} \mathbf{X}^{\mathbf{j}}
$$

where

$$
c_{\mathbf{j}}=\sum_{\mathbf{u}+\mathbf{v}=\mathbf{j}} a_{\mathbf{u}, \mathbf{s}} a_{\mathbf{v}, \mathbf{t}},
$$

and all the sums are finite. We consider \mathbf{i}_{1} the greatest element of $E\left(P_{\mathbf{s}} P_{\mathbf{t}}-\right.$ $\left.\gamma_{\mathbf{s}+\mathbf{t}}(\mathbf{s}, \mathbf{t}) P_{\mathbf{s}+\mathbf{t}}\right)$. Thus, by (4),

$$
\begin{equation*}
\gamma_{\mathbf{i}_{1}}(\mathbf{s}, \mathbf{t})=c_{\mathbf{i}_{1}}-a_{\mathbf{i}_{1}, \mathbf{s}+\mathbf{t}} . \tag{10}
\end{equation*}
$$

By induction with respect to the defined order it follows that

$$
\begin{equation*}
\gamma_{\mathbf{j}}(\mathbf{s}, \mathbf{t})=T_{\mathbf{j}}-a_{\mathbf{j}, \mathbf{s}+\mathbf{t}}, \mathbf{j}=\mathbf{i}_{2}, \mathbf{i}_{3}, \ldots, \tag{11}
\end{equation*}
$$

where $\mathbf{i}_{0}=\mathbf{s}+\mathbf{t}>\mathbf{i}_{1}>\mathbf{i}_{2}>\ldots, \quad \mathbf{i}_{k}$ is the greatest element of $E\left(P_{\mathbf{s}} P_{\mathbf{t}}-\right.$ $\left.\sum_{\mathbf{i}_{z}>\mathbf{i}_{k-1}} \gamma_{\mathbf{i}_{z}}(\mathbf{s}, \mathbf{t}) P_{\mathbf{i}_{z}}\right), T_{\mathbf{j}}$ is a polynomial with integral coefficients in $a_{\mathbf{v}, \mathbf{w}}$ with either $\mathbf{w}<\mathbf{s}+\mathbf{t}$ or $\mathbf{w}=\mathbf{s}+\mathbf{t}$ and $\mathbf{v}>\mathbf{j}$.

Now for $k \in\{1,2, \ldots, r\}$ we consider $\mathbf{e}_{k}=(0, \ldots, 1, \ldots, 0) \in \mathbb{N}^{r}$. If $\mathbf{n} \in \mathbb{N}^{r}$, $N(\mathbf{n})>1$ we denote $\mathbf{n}_{-} \in \mathbb{N}^{r}$, the greatest element such that $\mathbf{n}=\mathbf{n}_{-}+\mathbf{e}_{k}$, for some $k \in\{1,2, \ldots, r\}$. In this case we denote $\mathbf{e}_{k}=\mathbf{e}(\mathbf{n})$.

The following result shows that for every admissible $\mathcal{N}=\left\{\delta_{j}\right\}_{j \in \mathbb{N}^{r}}$ such that

$$
\begin{equation*}
C=\inf _{\mathbf{j}, k}\left\{\frac{\delta_{\mathbf{j}+\mathbf{e}_{k}}}{\delta_{\mathbf{j}}}\right\}>0, \tag{12}
\end{equation*}
$$

and satisfying (8) one can construct Gauss norms on $K[X]$ of the form $\left\|\|_{\mathcal{F}, \mathcal{N}}\right.$. A trivial case is when we take $P_{\mathbf{j}}(\mathbf{X})=\mathbf{X}^{\mathbf{j}}$, but also we can find Gauss norms such that $P_{\mathrm{s}+\mathbf{t}} \neq P_{\mathrm{s}} P_{\mathrm{t}}$.

We put $\mu_{(0,0, \ldots, 0)}=1$ and for any \mathbf{n} with $N(\mathbf{n})>1$,

$$
\begin{equation*}
\mu_{\mathbf{n}}=\min _{\mathbf{i}+\mathbf{j}=\mathbf{n}}\left\{\delta_{\mathbf{i}} \delta_{\mathbf{j}}\right\}, \quad \tau_{\mathbf{n}}=\min _{N(\mathbf{m})=N(\mathbf{n})-1}\left\{\mu_{\mathbf{n}}, C \mu_{\mathbf{m}}\right\} . \tag{13}
\end{equation*}
$$

Proposition 2. Suppose that $(K,| |)$ is a valued field and $\mathcal{N}=\left\{\delta_{j}\right\}_{j \in \mathbb{N}}$ an admissible sequence of real numbers verifying (8) and (12). Then there exist infinitely many sequences of admissible polynomials $\mathcal{F}=\left\{P_{\mathbf{j}}\right\}_{\mathfrak{j} \in \mathbb{N}^{r}}$ such that $\left\|\|_{\mathcal{F}, \mathcal{N}}\right.$ defined by (3) is a Gauss norm of K-algebra on $K[\mathbf{X}]$.

Proof. We construct sequences of monic polynomials $\mathcal{F}=\left\{P_{\mathbf{j}}\right\}_{\mathbf{j} \in \mathbb{N}^{r}}$ such that $\left\|\|_{\mathcal{F}, \mathcal{N}}\right.$ defined by (3) is a Gauss norm of K-algebra on $K[\mathbf{X}]$. We put $P_{(0, \ldots, 0)}=1$ and if $\mathbf{j}=\mathbf{e}_{r}=$ $(0, \ldots, 0,1) \in \mathbb{N}^{r}, P_{\mathbf{j}}=a_{\mathbf{j}}+\mathbf{X}^{\mathbf{j}}$, with an arbitrary $a_{\mathbf{j}} \in K$. Generally, if $N(\mathbf{j})=1$, we take an arbitrary monic polynomial $P_{\mathbf{j}}=\sum_{\mathbf{i} \leq \mathbf{j}} a_{\mathbf{i}, \mathbf{j}} \mathbf{X}^{\mathbf{i}}$, where $a_{\mathbf{i}, \mathbf{j}} \in K$. If $\mathbf{j}=(0, \ldots, 0,2)$ we take the monic polynomial $P_{\mathbf{j}}=\sum_{\mathbf{i} \leq \mathbf{j}} a_{\mathbf{i}, \mathbf{j}} \mathbf{X}^{\mathbf{i}}$, with $E\left(P_{\mathbf{j}}\right) \backslash\{\mathbf{j}\}$ a subset of the union of all $E\left(P_{\mathbf{i}}\right)$ with $\mathbf{i}<\mathbf{j}$. Then by (4), we can write $P_{\mathbf{e}_{r}}^{2}=P_{\mathbf{j}}+\sum_{\mathbf{v}<\mathbf{j}} \gamma_{\mathbf{v}}\left(\mathbf{e}_{r}, \mathbf{e}_{r}\right) P_{\mathbf{v}}$ and by (11) we can find the coefficients $a_{\mathrm{i}, \mathrm{j}}$, such that

$$
\left|\gamma_{\mathbf{i}}\left(\mathbf{e}_{r}, \mathbf{e}_{r}\right)\right| \delta_{\mathbf{i}}<\tau_{\mathbf{j}}, \mathbf{i}<\mathbf{j} .
$$

By choosing arbitrary the coefficients $a_{\mathbf{i}, \mathbf{j}}$ when \mathbf{i} is not in $E_{\mathcal{F}_{\mathbf{j}}}\left(P_{\mathbf{e}_{r}}^{2}\right.$, where $\mathcal{F}_{\mathbf{j}}=\left\{P_{\mathbf{i}}\right\}_{\mathrm{i}}$, , we find $E\left(P_{\mathbf{j}}\right)$. In the same manner we can construct all the polynomials $P_{\mathbf{j}}=\sum_{\mathbf{i} \leq \mathbf{j}} a_{\mathbf{i}, \mathbf{j}} \mathbf{X}^{\mathbf{i}}$, with $N(\mathbf{j})=2$. Then by induction, we consider $\mathbf{n} \in \mathbb{N}^{r}$, and suppose that for all \mathbf{s} with $N(\mathbf{s}) \leq N(\mathbf{n})-1$ and $\mathbf{t} \in E_{\mathcal{F}_{\mathbf{s}}}\left(P_{\mathbf{s}}\right)$ we have

$$
\begin{equation*}
\left|\gamma_{\mathbf{t}}\left(\mathbf{e}_{k}, \mathbf{s}_{-}\right)\right| \delta_{\mathbf{t}} \leq \tau_{\mathbf{s}_{-}+\mathbf{e}_{k}},\left|\gamma_{\mathbf{t}}(\mathbf{i}, \mathbf{j})\right| \delta_{\mathbf{t}} \leq \delta_{\mathbf{i}} \delta_{\mathbf{j}}, \quad \mathbf{i}+\mathbf{j}=\mathbf{s}, k \in\{1,2, \ldots, r\} . \tag{14}
\end{equation*}
$$

By (11) we can choose the coefficients of $P_{\mathbf{n}}$ such that the first condition of (14) holds for $\mathbf{s}=\mathbf{n}$. To verify the second condition we consider $\mathbf{i}+\mathbf{j}=\mathbf{n}$, with $N(\mathbf{i})$ and $N(\mathbf{j})$ less than $N(\mathbf{n})$. Then, without loss of generality, we may suppose that $\mathbf{e}(\mathbf{j})=\mathbf{e}(\mathbf{n})$ and we obtain

$$
\begin{aligned}
P_{\mathbf{e}(\mathbf{n})} P_{\mathbf{n}_{-}} & =P_{\mathbf{e}(\mathbf{n})}\left(P_{\mathbf{i}} P_{\mathbf{j}_{-}}-\sum_{\mathbf{t}<\mathbf{n}_{-}} \gamma_{\mathbf{t}}\left(\mathbf{i}, \mathbf{j}_{-}\right) P_{\mathbf{t}}\right) \\
& =P_{\mathbf{i}} \sum_{\mathbf{t} \leq \mathbf{j}} \gamma_{\mathbf{t}}\left(\mathbf{e}(\mathbf{n}), \mathbf{j}_{-}\right) P_{\mathbf{t}}-\sum_{\mathbf{t}<\mathbf{n}-} \gamma_{\mathbf{t}}\left(\mathbf{i}, \mathbf{j}_{-}\right) P_{\mathbf{e}(\mathbf{n})} P_{\mathbf{t}} \\
& =P_{\mathbf{i}} P_{\mathbf{j}}+\sum_{\mathbf{t}<\mathbf{j}} \gamma_{\mathbf{t}}\left(\mathbf{e}(\mathbf{n}), \mathbf{j}_{-}\right) \sum_{\mathbf{u} \leq \mathbf{i}+\mathbf{t}} \gamma_{\mathbf{u}}(\mathbf{i}, \mathbf{t}) P_{\mathbf{u}}-\sum_{\mathbf{t}<\mathbf{n}_{-}} \gamma_{\mathbf{t}}\left(\mathbf{i}, \mathbf{j}_{-}\right) \sum_{\mathbf{u} \leq \mathbf{e}(\mathbf{n})+\mathbf{t}} \gamma_{\mathbf{u}}(\mathbf{e}(\mathbf{n}), \mathbf{t}) P_{\mathbf{u}} \\
& =P_{\mathbf{i}} P_{\mathbf{j}}+\sum_{\mathbf{t}<\mathbf{j}} \sum_{\mathbf{u} \leq \mathbf{i}+\mathbf{t}} \gamma_{\mathbf{t}}\left(\mathbf{e}(\mathbf{n}), \mathbf{j}_{-}\right) \gamma_{\mathbf{u}}(\mathbf{i}, \mathbf{t}) P_{\mathbf{u}}-\sum_{\mathbf{t}<\mathbf{n}_{-}} \sum_{\mathbf{u} \leq \mathbf{e}(\mathbf{n})+\mathbf{t}} \gamma_{\mathbf{t}}\left(\mathbf{i}, \mathbf{j}_{-}\right) \gamma_{\mathbf{u}}(\mathbf{e}(\mathbf{n}), \mathbf{t}) P_{\mathbf{u}} .
\end{aligned}
$$

Hence, for a fixed \mathbf{u},

$$
\begin{align*}
\gamma_{\mathbf{u}}\left(\mathbf{e}(\mathbf{n}), \mathbf{n}_{-}\right)= & \gamma_{\mathbf{u}}(\mathbf{i}, \mathbf{j})+\sum_{\substack{\mathbf{t}<\mathbf{j} \\
\mathbf{u} \leq \mathbf{i}+\mathbf{t}}} \gamma_{\mathbf{t}}\left(\mathbf{e}(\mathbf{n}), \mathbf{j}_{-}\right) \gamma_{\mathbf{u}}(\mathbf{i}, \mathbf{t}) \\
& -\sum_{\substack{\mathbf{t}<\mathbf{n}_{-} \\
\mathbf{u} \leq \mathbf{e}(\mathbf{n})+\mathbf{t}}} \gamma_{\mathbf{t}}\left(\mathbf{i}, \mathbf{j}_{-}\right) \gamma_{\mathbf{u}}(\mathbf{e}(\mathbf{n}), \mathbf{t}) . \tag{15}
\end{align*}
$$

Now by (14) it follows that

$$
\begin{aligned}
\left|\gamma_{\mathbf{t}}\left(\mathbf{e}(\mathbf{n}), \mathbf{j}_{-}\right) \gamma_{\mathbf{u}}(\mathbf{i}, \mathbf{t})\right| & \leq \frac{\tau_{\mathbf{j}}}{\delta_{\mathbf{t}}} \frac{\delta_{\mathbf{i}} \delta_{\mathbf{t}}}{\delta_{\mathbf{u}}} \leq \frac{\delta_{i} \delta_{\mathbf{j}}}{\delta_{\mathbf{u}}},\left|\gamma_{\mathbf{t}}\left(\mathbf{i}, \mathbf{j}_{-}\right) \gamma_{\mathbf{u}}(\mathbf{e}(\mathbf{n}), \mathbf{t})\right| \\
& \leq \frac{\delta_{\mathbf{i}} \delta_{\mathbf{j}_{\mathbf{j}}}}{\delta_{\mathbf{t}}} \frac{\tau_{\mathbf{t}+\mathbf{e}(\mathbf{n})}}{\delta_{\mathbf{u}}} \leq \frac{\delta_{\mathbf{i}} \delta_{\mathbf{j}_{-}}}{\delta_{\mathbf{t}}} \frac{C \mu_{\mathbf{t}}}{\delta_{\mathbf{u}}} \leq \frac{\delta_{i} \delta_{\mathbf{j}}}{\delta_{\mathbf{u}}}
\end{aligned}
$$

Hence one has (14) for $\mathbf{s}=\mathbf{n}$ and by Proposition 1, it follows that we can find infinitely many sequences of monic polynomials $\mathcal{F}=\left\{P_{\mathrm{j}}\right\}_{\mathrm{j} \in \mathbb{N}^{r}}$ such that $\left\|\|_{\mathcal{F}, \mathcal{N}}\right.$ defined by (3) is a Gauss norm of K-algebra on $K[\mathbf{X}]$.

Next, we study when two Gauss norms are equivalent.
Proposition 3. Suppose that $(K,| |)$ is a valued field and $\left\|\|_{\mathcal{F}_{\alpha}, \mathcal{N}_{\alpha}}, \alpha=1,2\right.$, where $\mathcal{F}_{\alpha}=\left\{P_{\mathbf{j}, \alpha}\right\}_{\mathbf{j} \in \mathbb{N}^{r}}, \mathcal{N}_{\alpha}=\left\{\delta_{\mathbf{j}, \alpha}\right\}_{\mathbf{j} \in \mathbb{N}^{r}}$, are two Gauss norms on $K[\mathbf{X}]$. If by (2)

$$
\begin{equation*}
P_{\mathbf{j}, \alpha}=\sum_{\mathbf{i} \leq \mathbf{j}} c_{\mathbf{i}, \mathbf{j}}^{(\alpha)} P_{\mathbf{i}, 3-\alpha}, \alpha=1,2 \tag{16}
\end{equation*}
$$

then the norms are equivalent if and only if there exist positive constants C_{1}, C_{2} such that

$$
\begin{equation*}
\delta_{\mathbf{j}, 1} \geq C_{1}\left|c_{\mathbf{i}, \mathbf{j}}^{(1)}\right| \delta_{\mathbf{i}, 2}, \quad C_{2} \delta_{\mathbf{j}, 2} \geq\left|c_{\mathbf{i}, \mathbf{j}}^{(2)}\right| \delta_{\mathbf{i}, 1}, \text { for any } \mathbf{i}, \mathbf{j}, \text { with } \mathbf{i} \leq \mathbf{j} . \tag{17}
\end{equation*}
$$

Proof. If the norms are equivalent, then there exist positive constants C_{1}, C_{2} such that for every $Q \in K[\mathbf{X}]$

$$
C_{1}\|Q\|_{\mathcal{F}_{2}, \mathcal{N}_{2}} \leq\|Q\|_{\mathcal{F}_{1}, \mathcal{N}_{1}} \leq C_{2}\|Q\|_{\mathcal{F}_{2}, \mathcal{N}_{2}} .
$$

Consequently, we obtain

$$
\delta_{\mathbf{j}, 1}=\left\|P_{\mathbf{j}, 1}\right\|_{\mathcal{F}_{1}, \mathcal{N}_{1}} \geq C_{1}\left\|\sum_{\mathbf{i} \leq \mathbf{j}} c_{\mathbf{i}, \mathbf{j}}^{(1)} P_{\mathbf{i}, 2}\right\|_{\mathcal{F}_{2}, \mathcal{N}_{2}}=C_{1} \max _{\mathbf{i} \leq \mathbf{j}}\left\{\left|c_{\mathbf{i}, \mathbf{j}}^{(1)}\right| \delta_{\mathbf{i}, 2}\right\} .
$$

Conversely, suppose that (17) holds. If $Q \in K[\mathbf{X}]$, then

$$
Q=\sum_{\mathbf{j} \leq \mathbf{d}(Q)} b_{\mathbf{j}} P_{\mathbf{j}, 2}=\sum_{\mathbf{j} \leq \mathbf{d}(Q)} b_{\mathbf{j}}\left(\sum_{\mathbf{i} \leq \mathbf{j}} c_{\mathbf{j}, \mathbf{i}}^{(2)} P_{\mathbf{i}, 1}\right)=\sum_{\mathbf{i} \leq \mathbf{d}(Q)}\left(\sum_{\mathbf{i} \geq \mathbf{j}} c_{\mathbf{j}, \mathbf{i}}^{(2)} b_{\mathbf{i}}\right) P_{\mathbf{j}, 1} .
$$

Hence it follows that

$$
\begin{aligned}
\|Q\|_{\mathcal{F}_{1}, \mathcal{N}_{1}} & =\max _{\mathbf{j} \leq \mathbf{d}(Q)}\left\{\left|\sum_{\mathbf{i} \geq \mathbf{j}} c_{\mathbf{j}, \mathbf{i}}^{(2)} b_{\mathbf{i}}\right| \delta_{\mathbf{j}, 1}\right\} \leq \max _{\mathbf{j} \leq \mathbf{d}(Q)}\left\{\max _{\mathbf{i} \geq \mathbf{j}}\left\{\left|c_{\mathbf{j}, \mathbf{i}}^{(2)} b_{\mathbf{i}}\right|\right\} \delta_{\mathbf{j}, 1}\right\} \\
& \leq C_{2} \max _{\mathbf{i} \leq \mathbf{d}(Q)}\left\{\left|b_{\mathbf{i}}\right| \delta_{\mathbf{i}, 2}\right\}=C_{2}\|Q\|_{\mathcal{F}_{2}, \mathcal{N}_{2}} .
\end{aligned}
$$

Remark 1. Consider $\left\|\|_{\mathcal{F}, \mathcal{N}}\right.$, a Gauss K-algebra norm on $K[\mathbf{X}]$ defined by $\mathcal{F}=$ $\left\{P_{\mathrm{j}}\right\}_{\mathbf{j} \in \mathbb{N}^{r}}, \mathcal{N}=\left\{\delta_{\mathbf{j}}\right\}_{\mathbf{j} \in \mathbb{N}^{r}}$. If for every $\mathbf{j} \in \mathbb{N}^{r}, c_{\mathbf{j}}$ is an element different from zero from K and $P_{\mathbf{j}}^{*}=c_{\mathbf{j}} P_{\mathbf{j}}, \delta_{\mathbf{j}}^{*}=\left|c_{\mathbf{j}}\right| \delta_{\mathbf{j}}$, then by Proposition 3 it follows easily that the Gauss norm defined by $\mathcal{F}^{*}=\left\{P_{\mathbf{j}}^{*}\right\}_{\mathbf{j} \in \mathbb{N}^{r}}, \mathcal{N}^{*}=\left\{\delta_{\mathbf{j}}^{*}\right\}_{\mathbf{j} \in \mathbb{N}^{r}}$ is a K-algebra norm on $K[\mathbf{X}]$ and the norms $\left\|\left\|_{\mathcal{F}^{*}, \mathcal{N}^{*}},\right\|\right\|_{\mathcal{F}, \mathcal{N}}$ are equivalent. Hence it follows that up to an equivalence we can consider a Gauss norm defined by a family of monic polynomials.

Example 1. Suppose $(K,| |)$ is a valued field and $\mathbf{S}=\left\{\left(\beta_{k, 1}, \ldots\right.\right.$, $\left.\left.\beta_{k, r}\right)\right\}_{k \geq 1}$ is a fixed sequence of elements of $\stackrel{\circ}{K}$, where $\stackrel{\circ}{K}=\bar{B}_{K}(0,1)=\{x \in K ;|x| \leq 1\}$. We take $\mathcal{F}_{1}=\left\{\mathbf{X}^{\mathbf{j}}\right\}_{\mathbf{j} \in \mathbb{N}^{r}}, \mathcal{F}_{2}=\left\{P_{\mathbf{j}, 2}\right\}_{\mathbf{j} \in \mathbb{N}^{r}}$, where

$$
P_{\mathbf{j}, 2}=\prod_{0<k \leq j_{1}}\left(X_{1}-\beta_{k, 1}\right) \prod_{0<k \leq 2}\left(X_{2}-\beta_{k, 2}\right) \ldots \prod_{0<k \leq r}\left(X_{r}-\beta_{k, r}\right) .
$$

Then it follows easily that all $c_{\mathrm{i}, \mathrm{j}}^{(\alpha)}, \alpha=1,2$, defined by (16) belong to $\stackrel{\circ}{K}$.
We put $\mathcal{N}_{1}=\mathcal{N}_{2}=\left\{\delta_{\mathbf{j}}\right\}_{\mathbf{j} \in \mathbb{N} \mathbf{r}}$ where, for every $\mathbf{j}, \mathbf{s}, \mathbf{t} \in \mathbb{N}^{\mathbf{r}}$ with $\mathbf{j} \leq \mathbf{s}+\mathbf{t}$,

$$
\delta_{\mathbf{j}} \leq \delta_{\mathbf{s}} \delta_{\mathbf{t}} .
$$

For example we may take either $\delta_{\mathbf{j}}=a^{N(\mathbf{j})}$ with $a>1$, for all \mathbf{j}, or $\delta_{\mathbf{j}}=(N(\mathbf{j})+1)^{p}$ with p a fixed positive integer, for all \mathbf{j}. Since all $\gamma_{\mathbf{j}, \alpha}, \alpha=1,2$, defined by (4) belong to K, by Proposition 1 it easily follows that $\left\|\|_{\mathcal{F}_{1}, \mathcal{N}_{1}}\right.$ and $\| \|_{\mathcal{F}_{2}, \mathcal{N}_{2}}$ are K-algebra norms on $K[\mathbf{X}]$ and (17) holds with $C_{1}=C_{2}=1$. Hence the norms are equivalent.

Let $(K,| |)$ be a valued field and || \| a non-Archimedean norm on $K[\mathbf{X}]$ which extends $\left|\mid\right.$. If $\mathbf{j} \in \mathbb{N}^{r}$, put

$$
\begin{equation*}
M^{(\mathrm{j})}=\{Q \in K[\mathbf{X}] \text { monic, } \mathbf{d}(Q)=\mathbf{j}\}, M_{\| \|}^{(\mathrm{j})}=\left\{\|Q\| ; Q \in M^{(\mathrm{j})}\right\} . \tag{18}
\end{equation*}
$$

On $K[\mathbf{X}]$ there are non-Archimedean norms which are not Gauss norms (see Remark 3). The following result gives a criterion for a non-Archimedean norm on $K[\mathbf{X}]$ to be a Gauss norm.

Proposition 4. Let $(K,| |)$ be a valued field and let || || be a K-algebra nonArchimedean norm on $K[\mathbf{X}]$ which extends ||. Then $\|\|$ is a Gauss norm defined by a family of monic polynomials if and only if for every $\mathbf{j} \in \mathbb{N}^{r}$, there exists $P_{\mathbf{j}} \in M^{(\mathbf{j})}$ such that $\left\|P_{\mathbf{j}}\right\|=\inf M_{\| \|}^{(\mathbf{j})}$. In this case $\left\|\|\right.$ is defined by $\mathcal{F}=\left\{P_{\mathbf{j}}\right\}_{\mathbf{j} \in \mathbb{N}^{r}}, \mathcal{N}=\left\{\left\|P_{\mathbf{j}}\right\|\right\}_{\mathbf{j} \in \mathbb{N}^{r}}$.

Proof. If $\|\|$ is a Gauss norm defined by a family of monic polynomials $\mathcal{F}=$ $\left\{P_{\mathbf{j}}\right\}_{\mathbf{j} \in \mathbb{N}^{r}}$, then by (3) it follows that for every $\mathbf{j} \in \mathbb{N}^{r}$, and $Q \in M^{(\mathbf{j})},\|Q\| \geq \delta_{\mathbf{j}}$. Since $\left\|P_{\mathrm{j}}\right\|=\delta_{\mathrm{j}}$, it follows that $\left\|P_{\mathrm{j}}\right\|=\inf M_{\| \|}^{(\mathrm{j})}$.

Conversely, if for every $\mathbf{j} \in \mathbb{N}^{r}$ there exists $P_{\mathbf{j}} \in M^{(\mathbf{j})}$ such that $\left\|P_{\mathbf{j}}\right\|=\inf M_{\| \|}^{(\mathrm{j})}$, then we can take $\mathcal{F}=\left\{P_{\mathbf{j}}\right\}_{\mathbf{j} \in \mathbb{N}^{r}}, \mathcal{N}=\left\{\left\|P_{\mathbf{j}}\right\|\right\}_{\mathbf{j} \in \mathbb{N}^{r}}$. Since $\left\|P_{\mathbf{s}+\mathbf{t}}\right\| \leq\left\|P_{\mathbf{s}} P_{\mathbf{t}}\right\| \leq\left\|P_{\mathbf{s}}\right\|\left\|P_{\mathbf{t}}\right\|$ and $\left\|P_{\mathbf{i}_{1}}\right\| \leq \frac{\left\|P_{\mathbf{s}+t}-P_{\mathbf{s}} P_{t}\right\|}{\mid \gamma_{i_{1}}(\mathbf{s}, \mathbf{t}| |}$, where \mathbf{i}_{1} is the greatest element of $E\left(P_{\mathbf{s}} P_{\mathbf{t}}-P_{\mathbf{s}+\mathbf{t}}\right)$, by induction with respect to the given order it follows that \mathcal{F} and \mathcal{N} verify the conditions of Proposition 1. We take $Q \in K[\mathbf{X}]$ and prove by induction on $\mathbf{q}=\mathbf{d}(Q)$, with respect to the given order that $\|Q\|=\|Q\|_{\mathcal{F}, \mathcal{N}}$. It is enough to consider the case when Q is a monic polynomial. If $\mathbf{q}=(0, \ldots, 0,1)$ we can write $P_{\mathbf{q}}=\mathbf{X}^{\mathbf{q}}-a$ and $Q=\mathbf{X}^{\mathbf{q}}-b, a, b \in K$. Since

$$
\begin{equation*}
Q=P_{\mathbf{q}}+a-b, \tag{19}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\|Q\| \leq \max \left\{\left\|P_{\mathbf{q}}\right\|,|a-b|\right\}=\|Q\|_{\mathcal{F}, \mathcal{N}} . \tag{20}
\end{equation*}
$$

If $\left\|P_{\mathbf{q}}\right\| \neq|a-b|$, by (19) it follows that $\|Q\|=\|Q\|_{\mathcal{F}, \mathcal{N}}$. Otherwise, by the definition of $P_{\mathbf{q}}$ and by (20) we obtain $\left\|P_{\mathbf{q}}\right\| \leq\|Q\| \leq\|Q\|_{\mathcal{F}, \mathcal{N}}=\left\|P_{\mathbf{q}}\right\|$ and $\|Q\|=\|Q\|_{\mathcal{F}, \mathcal{N}}$, for $\mathbf{q}=(0, \ldots, 0,1)$.

Now suppose that $\|P\|=\|P\|_{\mathcal{F}, \mathcal{N}}$, for all the polynomials with $\mathbf{d}(P)<\mathbf{q}$ and let $Q \in K[\mathbf{X}]$ such that $\mathbf{d}(Q)=\mathbf{q}$. Then

$$
\begin{equation*}
Q=b_{\mathbf{q}} P_{\mathbf{q}}+Q_{\mathbf{i}} \tag{21}
\end{equation*}
$$

where $b_{\mathbf{q}} \in K$ and $\mathbf{d}\left(Q_{\mathbf{i}}\right)=\mathbf{i}<\mathbf{q}$. Hence

$$
\begin{equation*}
\left\|P_{\mathbf{q}}\right\| \leq \frac{1}{\left|b_{\mathbf{q}}\right|}\|Q\| \leq \max \left\{\left\|P_{\mathbf{q}}\right\|, \frac{1}{\left|b_{\mathbf{q}}\right|}\left\|Q_{\mathbf{i}}\right\|\right\} . \tag{22}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left|b_{\mathbf{q}}\right|\left\|P_{\mathbf{q}}\right\| \leq\|Q\| \leq \max \left\{\left\|b_{\mathbf{q}} P_{q}\right\|,\left\|Q_{\mathbf{i}}\right\|_{\mathcal{F}, \mathcal{N}}\right\}=\|Q\|_{\mathcal{F}, \mathcal{N}} \tag{23}
\end{equation*}
$$

If $\left\|Q_{\mathbf{i}}\right\|_{\mathcal{F}, \mathcal{N}}=\left\|b_{\mathbf{q}} P_{\mathbf{q}}\right\|$, by (23) it follows that $\|Q\|=\|Q\|_{\mathcal{F}, \mathcal{N}}$. Otherwise by by (21) we obtain $\|Q\|=\|Q\|_{\mathcal{F}, \mathcal{N}}$ and the proposition is proved.

Now we prove that in the case of p-adic fields all non-Archimedean norms on $K[\mathbf{X}]$ which extend || are Gauss norms.

Corollary 1. Suppose K is a locally compact field and $\|\|$ is a K-algebra nonArchimedean norm on $K[\mathbf{X}]$ which extends ||. Then \|| || is a Gauss norm.

Proof. By Proposition 4 it follows that it is enough to show that for $\mathbf{j} \in \mathbb{N}^{r}$, there exists $P_{\mathbf{j}} \in M^{(\mathbf{j})}$ such that $\left\|P_{\mathbf{j}}\right\|=\inf M_{\| \|}^{(\mathrm{j})}$. Thus for a fixed $\mathbf{j} \in \mathbb{N}^{r}$ we choose a sequence $\left\{P_{\mathbf{j}, i}\right\}_{i \in \mathbb{N}}$ of elements from $M^{(\mathbf{j})}$ such that for every $i,\left\|P_{\mathbf{j}, i}\right\| \geq\left\|P_{\mathbf{j}, i+1}\right\|$, and $\lim _{i \rightarrow \infty}\left\|P_{\mathbf{j}, i}\right\|=\inf M_{\| \|}^{(\mathbf{j})}$. If $P_{\mathbf{j}, i}=\sum_{\mathbf{t} \leq \mathrm{j}} a_{\mathrm{j}, i, \mathbf{t}} \mathbf{X}^{\mathbf{t}}$, we distinguish two cases:
(i)The set of coefficients of all polynomials $P_{\mathbf{j}, i}$ is bounded in K. Then, since K is locally compact, for every \mathbf{t} there exists a subsequence $\left\{a_{\mathbf{j}, i_{m}, \mathbf{t}}\right\}_{m \in \mathbb{N}}$ of $\left\{a_{\mathbf{j}, i, \mathbf{t}}\right\}_{i \in \mathbb{N}}$ which converges to an element $a_{\mathbf{j}, \mathbf{t}} \in K$. If we put $P_{\mathbf{j}}=\sum_{\mathbf{t} \leq \mathbf{j}} a_{\mathrm{j}, \mathrm{t}} \mathbf{X}^{\mathbf{t}}$, it follows easily that $P_{\mathrm{j}} \in M^{(\mathrm{j})}$ and $\left\|P_{\mathrm{j}}\right\|=\inf M_{\| \|}^{(\mathrm{j})}$.
(ii) The above set of coefficients is unbounded. If $\bar{B}_{K}(0,1)=\{x \in K ;|x| \leq 1\}$ then its maximal ideal $B_{K}(0,1)=\{x \in K ;|x|<1\}$ is a principal ideal generated by an element π. We take b_{i}, the smallest positive integer such that $f_{i}=\pi^{b_{i}} P_{\mathbf{j}, i} \in \bar{B}_{K}(0,1)[\mathbf{X}]$.

Choosing, if it is necessary, a subsequence we may assume that $\lim _{i \rightarrow \infty} b_{i}=\infty$. Since $\bar{B}_{K}(0,1)$ is a compact set, there exists a subsequence $\left\{f_{i_{s}}\right\}_{s \in \mathbb{N}}$ which converges to a polynomial $f \in \bar{B}_{K}(0,1)[\mathbf{X}]$. From our choice of b_{i} it follows that f_{i} is primitive for any i. Hence it follows that f is primitive, in particular $f \neq 0$. Since $\left\|P_{\mathrm{j}, i}\right\| \leq\left\|P_{\mathrm{j}, 1}\right\|$ for each i, we obtain that $f=\lim _{i \rightarrow \infty}\left\|f_{i}\right\|=0$, a contradiction which implies the corollary.
3. Types of non-Archimedean norms on $K[\mathbf{X}]$. In order to describe all the nonArchimedean norms on $K[\mathbf{X}]$ which extend | | we first establish the following lemma.

Lemma 2. Suppose that $(K,| |)$ is a valued field and $\left\{\left\|\|_{i}\right\}_{i \in I}\right.$ is a family of nonArchimedean norms on $K[\mathbf{X}]$ which extend \mid such that for any $Q_{1}, Q_{2}, Q_{3} \in K[\mathbf{X}]$ there exists an $i_{0} \in I$ verifying

$$
\inf _{i \in I}\left\{\left\|Q_{j}\right\|_{i}\right\}=\left\|Q_{j}\right\|_{i_{0}}, j=1,2,3
$$

Then, if for all $R \in K[\mathbf{X}]$ we define

$$
\begin{equation*}
\|R\|=\inf _{i \in I}\left\{\|R\|_{i}\right\} \tag{24}
\end{equation*}
$$

we obtain a non-Archimedean norm on $K[\mathbf{X}]$ which extends ||. Furthermore, if for every $i \in I,\| \|_{i}$ is a K-algebra norm, then also the norm given by (24) is a K-algebra norm.

Proof. If $Q, R \in K[\mathbf{X}]$, we consider for example $Q_{1}=Q+R, Q_{2}=Q, Q_{3}=R$. Then there is an $i_{0} \in I$ such that

$$
\|Q+R\|=\|Q+R\|_{i_{0}} \leq \max \left\{\|Q\|_{i_{0}},\|R\|_{i_{0}}\right\}=\max \{\|Q\|,\|R\|\}
$$

The other required properties are similarly proved.
Let $\left\|\|\right.$ be a non-Archimedean norm on $K[\mathbf{X}]$ which extends ||. For every $\mathbf{j} \in \mathbb{N}^{r}$ we construct a sequence of polynomials $\Pi_{\mathbf{j}}=\left\{P_{\mathbf{j}, i}\right\}_{i \in \mathbb{N}}$, with $P_{\mathbf{j}, i} \in M^{(\mathbf{j})}$ in the following way. If there exists $Q_{\mathbf{j}} \in M^{(\mathrm{j})}$ such that $\left\|Q_{\mathrm{j}}\right\|=\inf M_{\| \|}(\mathrm{j})$, we fix this polynomial and for every $i \in \mathbb{N}$ we put $P_{\mathbf{j}, i}=Q_{\mathbf{j}}$, otherwise we take $\left\{P_{\mathbf{j}, i}\right\}_{i \in \mathbb{N}}$ such that $\left\|P_{\mathbf{j}, i+1}\right\|<\left\|P_{\mathbf{j}, i}\right\|$, for any i, and $\lim _{i \rightarrow \infty}\left\|P_{\mathrm{j}, i}\right\|=\inf M_{\| \|}^{(\mathrm{j})}$. We consider

$$
\begin{equation*}
\Sigma=\left\{\sigma=\left\{s_{\mathbf{i}}\right\}_{i \in \mathbb{N}^{r}}, s_{\mathbf{i}} \in \mathbb{N}\right\} \tag{25}
\end{equation*}
$$

and for every $\sigma=\left\{s_{\mathrm{j}}\right\}_{\mathrm{j} \in \mathbb{N}^{r}}$,

$$
\begin{equation*}
\mathcal{F}_{\sigma}=\left\{P_{\mathbf{j}, s_{\mathbf{j}}}\right\}_{\mathbf{j} \in \mathbb{N}^{r}}, \mathcal{N}_{\sigma}=\left\{\left\|P_{\mathbf{j}, s_{\mathbf{j}}}\right\|\right\}_{\mathbf{j} \in \mathbb{N} r}, P_{\mathbf{j}, s_{\mathbf{j}}} \in \Pi_{\mathbf{j}} \tag{26}
\end{equation*}
$$

Remark 2. If $\inf M_{\| \| \|}^{(\mathrm{j})}$ is not attained, for each \mathbf{j}, then for each $P \in M^{(\mathrm{j})}$ there exists $Q \in M^{(\mathrm{j})}$ such that $\|Q\|<\|P\|$. Then $\|P\|=|a|\|(P-Q) / a\|$, where $a \in K$ and $(P-Q) / a \in M^{(\mathbf{i})}$ with $\mathbf{i}<\mathbf{j}$. Hence, by induction it follows that the values of the norm coincide with the valuation group $\left|K^{*}\right|$.

We are ready to prove the following result.
Theorem 1. Let $(K,| |)$ be a valued field and let $\|\|$ be a non-Archimedean norm on $K[\mathbf{X}]$ which extends $\|$. If, for every $\mathbf{j} \in \mathbb{N}^{r}$, there exists $P_{\mathbf{j}} \in M^{(\mathbf{j})}$ such that $\left\|P_{\mathrm{j}}\right\|=$
$\inf M_{\| \|}^{(\mathrm{j})}$, then $\left\|\|\right.$ is a Gauss norm defined by $\mathcal{F}=\left\{P_{\mathbf{j}}\right\}_{\mathbf{j} \in \mathbb{N}^{r}}, \mathcal{N}=\left\{\left\|P_{\mathbf{j}}\right\|\right\}_{\mathbf{j} \in \mathbb{N}^{r}}$, where $P_{\mathbf{j}}$ can be chosen in $\Pi_{\mathfrak{j}}$. Otherwise, the set of K-vector space norms $\left\{\left\|\|_{\mathcal{F}_{\sigma}, \mathcal{N}_{\sigma}}\right\}_{\sigma \in \Sigma}\right.$ verifies the conditions from Lemma 2 and $\|\|$ is equal to the norm defined by (24).

Proof. The first case follows by Proposition 4, where $P_{\mathbf{j}}$ can be chosen in $\Pi_{\mathbf{j}}$.
In the second case, we prove that $\left\{\left\|\|_{\mathcal{F}_{\sigma}, \mathcal{N}_{\sigma}}\right\}_{\sigma \in \Sigma}\right.$ verifies the conditions from Lemma 2. We take the monic polynomials $Q_{j} \in K[\mathbf{X}]$ with $\mathbf{q}_{j}=\mathbf{d}\left(Q_{j}\right), j=1,2,3$ and put

$$
\theta_{j}=\inf _{\sigma \in \Sigma}\left\{\left\|Q_{j}\right\|_{\mathcal{F}_{\sigma}, \mathcal{N}_{\sigma}}\right\}, j=1,2,3 .
$$

If $\left\|Q_{j}\right\|=\inf M_{\| \|}^{\left(\mathbf{q}_{j}\right)}$, we choose $P_{\mathbf{q}_{j}, s_{q_{j}}}$ with $s_{\mathbf{q}_{j}}=0$, otherwise we can take $P_{\mathbf{q}_{j}, s_{\mathbf{q}_{j}}} \in \Pi_{\mathbf{q}_{j}}$ such that $\left\|Q_{j}\right\|>\left\|P_{q_{j}, s_{j j}}\right\|$. Then $Q_{j}=P_{\mathbf{q}_{i}, s_{j}}+a_{\mathbf{q}_{j}^{(1)}, j} Q_{\mathbf{q}_{j}^{(1)}, j}$, where $Q_{\mathbf{q}_{j}^{(1)}, j}$ is monic, $\mathbf{d}\left(Q_{\mathbf{q}_{j}^{(1)}, j}\right)=\mathbf{q}_{j}^{(1)}<\mathbf{q}_{j}$ and

$$
\begin{equation*}
\left\|Q_{j}\right\|=\max \left\{\left\|P_{\mathbf{q}_{j}, s_{\mathbf{q}}}\right\|,\left\|a_{\mathbf{q}_{j}^{(1)}, j} Q_{\mathbf{q}_{j}^{(1)}, j}\right\|\right\} . \tag{27}
\end{equation*}
$$

Now we choose polynomials $P_{\mathbf{q}_{j}^{(1)}, s_{\mathbf{q}_{j}}}$ such that either $S_{\mathbf{q}_{j}^{(1)}}=0$, if $\left\|Q_{\mathbf{q}_{j}^{(1)}, j}\right\|=\inf M_{\| \|}^{\left(\mathbf{q}_{j}^{(1)}\right)}$ or $\left\|Q_{\mathbf{q}_{j}^{(1)}, j}\right\|>\left\|P_{\mathbf{q}_{j}^{(1)}, s_{\mathbf{q}_{j}^{(1)}}}\right\|$, otherwise. Hence $Q_{\mathbf{q}_{j}^{(1)}, j}=P_{\mathbf{q}_{j}^{(1)}, s_{\mathbf{q}_{j}}^{(1)}}+\tilde{a}_{\mathbf{q}_{j}^{(2)}} Q_{\mathbf{q}_{j}^{(2)}, j}$, where $Q_{\mathbf{q}_{j}^{(2)}, j}$ is monic and $\mathbf{d}\left(Q_{\mathbf{q}_{j}^{(2)}, j}\right)=\mathbf{q}_{j}^{(2)}<\mathbf{q}_{j}^{(1)}$. Thus

$$
\begin{equation*}
\left\|Q_{\mathbf{q}_{j}^{(1)}, j}\right\|=\max \left\{\left\|P_{\mathbf{q}_{j}^{(1)}, s_{\mathbf{q}_{j}^{(1)}}}\right\|,\left\|\tilde{\mathbf{q}}_{j}^{(2)} Q_{\mathbf{q}_{j}^{(2)}, j}\right\|\right\} \tag{28}
\end{equation*}
$$

and

$$
Q_{j}=P_{\mathbf{q}_{j}, s_{\mathbf{q}}}+a_{\mathbf{q}_{j}^{(1)}, j} P_{\mathbf{q}_{j}^{(1)}, s_{\mathbf{q}_{j}(1)}}+a_{\mathbf{q}_{j}^{(2)}} Q_{\mathbf{q}_{j}^{(2)}, j},
$$

where $a_{\mathbf{q}_{j}^{(2)}}=a_{\mathbf{q}_{j}^{(1)}} \tilde{a}_{\mathbf{q}_{j}^{(2)}}$. In this way after a finite number of steps we obtain

Hence

$$
\begin{equation*}
\left\|Q_{j}\right\| \leq \max \left\{\left\|P_{\mathbf{q}_{j}, s_{\mathbf{q}}}\right\|,\left\|a_{\mathbf{q}_{j}^{(1)}, j} P_{\mathbf{q}_{j}^{(1)}, \mathbf{q}_{j}^{(1)}}\right\|,\left\|a_{\mathbf{q}_{j}^{(2)}, j} P_{\mathbf{q}_{j}^{(2)},,_{\mathbf{q}_{j}^{(2)}}}\right\|, \ldots,\left|a_{(0, \ldots, 0), j}\right|\right\} . \tag{29}
\end{equation*}
$$

By using (27) and (28), it follows that one has equality in (29). Moreover, one can choose the same polynomials $P_{\mathrm{i}, s_{\mathrm{i}}}$ for all the polynomials $Q_{j}, j=1,2,3$. Now we choose $\sigma=\left\{t_{\mathbf{i}}\right\}_{\mathbf{i} \in \mathbb{N}^{r}} \in \Sigma$ such that, if $\mathbf{q}=\max _{1 \leq j \leq 3}\left\{\mathbf{q}_{j}\right\}$, then for $\mathbf{i} \leq \mathbf{q}$ and $\mathbf{i}=\mathbf{q}_{j}^{(r)}, t_{\mathbf{i}}=$ $s_{\mathbf{q}_{j}^{(r)}}$. It follows that $\left\|Q_{j}\right\|=\left\|Q_{j}\right\|_{\mathcal{F}_{\sigma}, \mathcal{N}_{\sigma}}=\theta_{j}$ and $\left\{\left\|\|_{\mathcal{F}_{\sigma}, \mathcal{N}_{\sigma}}\right\}_{\sigma \in \Sigma}\right.$ verifies the conditions of Lemma 2.

Lastly, take $R \in K[\mathbf{X}]$. Since $\|R\| \leq\|R\|_{\mathcal{F}_{\sigma}, \mathcal{N}_{\sigma}}$, it can be proved in the same manner that the norm is equal to the norm defined by (24).

Remark 3. On $K[\mathbf{X}]$ there exist non-Archimedean norms which are not Gauss norms and extend $|\mid$. Even in the case of multiplicative norms and $r=1$ such examples
can be found. For instance, one may take $K=\mathbb{Q}, p$ a prime number and $x \in \mathbb{Q}_{p}$ a transcendental element over \mathbb{Q}. Then we consider on $\mathbb{Q}[x]$ the absolute value induced by the p-adic absolute value $\left|\left.\right|_{p}\right.$ defined on \mathbb{Q}_{p}. If $\left\{a_{n}\right\}_{n \geq 1}$ is a sequence of rational numbers which tends to x in \mathbb{Q}_{p}, the polynomials $P_{n}(X)=X-a_{n} \in \mathbb{Q}[X]$ define a sequence such that $\left|P_{n}(x)\right|_{p}$ tends to zero. Hence, by Proposition 4, it follows that one obtains a norm as in the second case of Theorem 1.
4. Completions of $K[\mathbf{X}]$ with respect to non-Archimedean norms. We now proceed to study the completion of $K[\mathbf{X}]$ with respect to a Gauss norm $\left\|\|_{\mathcal{F}, \mathcal{N}}\right.$. We denote by \tilde{K} the completion of K with respect to \| \|, and consider the set of formal sums

$$
\begin{equation*}
\widetilde{K[\mathbf{X}]}=\left\{f=\sum_{\mathbf{i} \in \mathbb{N}^{r}} a_{\mathbf{i}} P_{\mathbf{i}} ; a_{\mathbf{i}} \in \tilde{K}, \lim _{N(\mathbf{i}) \rightarrow \infty}\left|a_{\mathbf{i}}\right| \delta_{\mathbf{i}}=0\right\} . \tag{30}
\end{equation*}
$$

If $f \in \widetilde{K[\mathbf{X}]}$, define

$$
\begin{equation*}
\|f\|_{\mathcal{F}, \mathcal{N}}=\sup _{\mathbf{i} \in \mathbb{N}^{r}}\left\{\left|a_{\mathbf{i}}\right| \delta_{\mathbf{i}}\right\} \tag{31}
\end{equation*}
$$

Theorem 2. Suppose that $(K,| |)$ is a valued field and $\left\|\|_{\mathcal{F}, \mathcal{N}}\right.$ is a Gauss norm of K-algebra on $K[\mathbf{X}]$. Then $\widetilde{K[\mathbf{X}]}$ is a K-algebra which contains $K[\mathbf{X}]$. Furthermore the map given by (31) is a K-algebra norm and $\widetilde{K[\mathbf{X}]}$ is the completion of $K[\mathbf{X}]$ with respect to the Gauss norm.

Proof. If $f, g=\sum_{\mathbf{j} \in \mathbb{N}^{r}} b_{\mathbf{j}} P_{\mathbf{j}} \in \widetilde{K[\mathbf{X}]}$, then

$$
f g=\sum_{\mathbf{u} \in \mathbb{N}^{r}} c_{\mathbf{u}} P_{\mathbf{u}}
$$

with

$$
\begin{equation*}
c_{\mathbf{u}}=\sum_{\mathbf{u} \leq \mathbf{v}} \tau_{\mathbf{v}}^{(\mathbf{u})}, \tau_{\mathbf{v}}^{(\mathbf{u})}=\sum_{\mathbf{w} \leq \mathbf{v}} a_{\mathbf{w}} b_{\mathbf{v}-\mathbf{w}} \gamma_{\mathbf{u}}(\mathbf{w}, \mathbf{v}-\mathbf{w}) . \tag{32}
\end{equation*}
$$

Since, for $\mathbf{v} \geq \mathbf{u}$,

$$
\begin{equation*}
\left|\tau_{\mathbf{v}}^{(\mathbf{u})}\right| \leq \max _{\mathbf{w} \leq \mathbf{v}}\left\{\left|a_{\mathbf{w}} b_{\mathbf{v}-\mathbf{w}} \gamma_{\mathbf{u}}(\mathbf{w}, \mathbf{v}-\mathbf{w})\right|\right\} \leq \max _{\mathbf{w} \leq \mathbf{v}}\left\{\left|a_{\mathbf{w}}\right|\left|b_{\mathbf{v}-\mathbf{w}}\right| \frac{\delta_{\mathbf{w}} \delta_{\mathbf{v}-\mathbf{w}}}{\delta_{\mathbf{u}}}\right\}, \tag{33}
\end{equation*}
$$

it follows that $\lim _{N(\mathbf{v}) \rightarrow \infty} \tau_{\mathbf{v}}^{(\mathbf{u})}=0$ and $c_{\mathbf{u}} \in \tilde{K}$. Moreover, $\lim _{N(\mathbf{u}) \rightarrow \infty}\left|c_{\mathbf{u}}\right| \delta_{\mathbf{u}}=0$ and $f g \in$ $\widetilde{K[\mathbf{X}]}$. Then it follows easily that $\widetilde{K[\mathbf{X}]}$ is a K-algebra which contains $K[\mathbf{X}]$. Since

$$
\|f g\|_{\mathcal{F}, \mathcal{N}}=\sup _{\mathbf{u} \in \mathbb{N}^{r}}\left\{\left|c_{\mathbf{u}}\right| \delta_{\mathbf{u}}\right\}
$$

by (32) and (33) we obtain that the map given by (31) is a K-algebra norm on $\widetilde{K[\mathbf{X}]}$.
We need to show that $\left(\widetilde{K[\mathbf{X}]},\| \|_{\mathcal{F}, \mathcal{N}}\right)$ is complete. Let $f^{[t]}=\sum_{i \in \mathbb{N}^{r}} a_{\mathbf{i}, t} P_{\mathbf{i}} \in \widetilde{K[\mathbf{X}]}$, $t \geq 1$ a Cauchy sequence. Since, for a fixed \mathbf{i},

$$
\begin{equation*}
\left|a_{\mathbf{i}, t+1}-a_{\mathbf{i}, t}\right| \leq \frac{\left\|f^{[t+1]}-f^{[t]}\right\|_{\mathcal{F}, \mathcal{N}}}{\delta_{\mathbf{i}}} \tag{34}
\end{equation*}
$$

it follows that each sequence $a_{\mathbf{i}, t}, t=1,2, \ldots$ is a Cauchy sequence in \tilde{K}. For $\mathbf{i} \in \mathbb{N}^{r}$, let $a_{\mathbf{i}} \in \tilde{K}$ be the limit of this sequence and $f=\sum_{\mathbf{i} \in \mathbb{N}^{r}} a_{\mathbf{i}} P_{\mathbf{i}}$. We have to prove that $f \in \widetilde{K[\mathbf{X}]}$ and $\lim _{t \rightarrow \infty}\left\|f-f^{[t]}\right\|_{\mathcal{F}, \mathcal{N}}=0$. By restricting to a subsequence we may assume that

$$
\begin{equation*}
\left\|f^{[s]}-f^{[t]}\right\|_{\mathcal{F}, \mathcal{N}} \leq \frac{1}{t} \tag{35}
\end{equation*}
$$

for all $s \geq t, t=1,2, \ldots$. By (34) and (35) we obtain $\left|a_{\mathbf{i}, s}-a_{\mathbf{i}, t}\right| \leq \frac{1}{t \delta_{\mathbf{i}}}, s=t, t+$ $1, \ldots$ and hence $\left|a_{\mathbf{i}}-a_{\mathbf{i}, t}\right| \leq \frac{1}{t \delta_{\mathrm{i}}}$, for any $\mathbf{i} \in \mathbb{N}^{r}, t \geq 1$. Since $f^{[t]} \in \widetilde{K[\mathbf{X}]}$, we obtain $\lim _{N(\mathbf{i}) \rightarrow \infty}\left|a_{\mathbf{i}, t}\right| \delta_{\mathbf{i}}=0$. But, for every t, $\left|a_{\mathbf{i}}\right| \delta_{\mathbf{i}} \leq \max \left\{\left|a_{\mathbf{i}, t}\right| \delta_{\mathbf{i}}, \frac{1}{t}\right\}$. Hence $\lim _{N(\mathbf{i}) \rightarrow \infty}\left|a_{\mathbf{i}}\right| \delta_{\mathbf{i}}=0$ and $f \in \widetilde{K[\mathbf{X}]}$. Then $\left\|f-f^{[t]}\right\|_{\mathcal{F}, \mathcal{N}}=\sup _{\mathbf{i} \in \mathbb{N}^{r}}\left\{\left|a_{\mathbf{i}}-a_{\mathbf{i}, t}\right| \delta_{\mathbf{i}}\right\} \leq \frac{1}{t}$ and $\lim _{t \rightarrow \infty}\left\|f-f^{[t]}\right\|_{\mathcal{F}, \mathcal{N}}=0$. This proves the theorem.
5. Non-Archimedean absolute values on $K(\mathbf{X})$. In the following we deal with nonArchimedean absolute values (multiplicative norms) on $K[\mathbf{X}]$ which extend an absolute value of K.

Let $(K,| |)$ be a valued field and $\left|\left.\right|_{L}\right.$ an absolute value on $L=K(\mathbf{X})$ which extend $\|$. We call $\|_{L}$ a residual transcendental (r.t.) extension of $\|$ if the residue field $L_{| |_{L}}$ is a transcendental extension of $K_{| |}$of transcendence degree r. We call $\left.\right|_{L}$ a Gauss absolute value if its restriction to $K[\mathbf{X}]$ is a non-Archimedean Gauss norm. If a Gauss absolute value $\left|\left.\right|_{L}\right.$ is defined by $\mathcal{F}=\left\{P_{\mathbf{j}}\right\}_{\mathbf{j} \in \mathbb{N}^{r}}$ and $\mathcal{N}=\left\{\left|P_{\mathbf{j}}\right|_{L}\right\}_{\mathbf{j} \in \mathbb{N}^{r}}$, where $P_{\mathbf{j}}=P_{\mathbf{e}_{1}}^{j_{1}} \ldots P_{\mathbf{e}_{r}}^{j_{r}}, P_{\mathbf{e}_{i}}=X_{i}-\alpha_{i}$ and $\alpha_{i} \in K$, then it is called a canonical Gauss absolute value. In this case we denote $\left|\left.\right|_{L}=| |_{\left(\alpha_{1}, \delta_{1}\right), \ldots,\left(\alpha_{r}, \delta_{r}\right)}\right.$, where $\delta_{i}=\left|X_{i}-\alpha_{i}\right|_{L}$. For $r=1$ and \bar{K} a fixed algebraic closure of K, we denote by $\left.\right|_{\bar{K}}$ a fixed extension of $|\mid$ to \bar{K}. If $\left|\left.\right|_{K(X)}\right.$ is an extension of $| \mid$ to $L=K(X)$, then there exists an extension $\left.\left|\left.\right|_{\bar{K}(X)}\right.$ of $|\right|_{K(X)}$ to $\bar{K}(X)$ which is also an extension of $\left.\left|\left.\right|_{\bar{K}}\right.$. Moreover, if $|\right|_{K_{(X)}}$ is an r.t. extension of $\left.|\mid$, then $|\right|_{\bar{K}(X)}$ is an r.t. extension of $\left|\left.\right|_{\bar{K}}\right.$ and there exist $\alpha \in \bar{K}$ and $\left.\delta \in\right| \bar{K}^{\times} \mid$such that $\left|\left.\right|_{\bar{K}(X)}=| |_{(\alpha, \delta)}\right.$ is a canonical Gauss absolute value. The pair (α, δ) is called a pair of definition for $\left|\left.\right|_{\bar{K}_{(X)}}\right.$. It is known that two pairs $\left(\alpha_{1}, \delta_{1}\right)$ and $\left(\alpha_{2}, \delta_{2}\right)$ define the same valuation $\left|\left.\right|_{\bar{K}(X)}\right.$ if and only if

$$
\begin{equation*}
\delta_{1}=\delta_{2} \text { and }\left|\alpha_{1}-\alpha_{2}\right|_{\bar{K}} \leq \delta_{1} \tag{36}
\end{equation*}
$$

By a minimal pair (of definition) (see [1-3]) for $\left|\left.\right|_{\bar{K}(X)}\right.$ we mean a pair of definition (α, δ) such that $[K(\alpha): K]$ is minimal.

Proposition 5. Let $\left|\left.\right|_{L}\right.$ be a residual transcendental extension of $| \mid$. Then there exist polynomials f_{1}, \ldots, f_{r}, with $f_{i} \in K\left[X_{1}, \ldots, X_{i}\right]$, which are algebraically independent over K, such that the restriction $\left.\left|\left.\right|_{A}\right.$ of $|\right|_{L}$ to $A=K\left[f_{1}, \ldots, f_{r}\right]$ is a Gauss absolute value with $P_{\mathbf{e}_{i}}=f_{i}$, for $i=1,2, \ldots, r$ and $\delta_{\mathbf{j}}=1$ for every \mathbf{j}. Moreover, if $K_{1}=K\left(f_{1}, \ldots, f_{r}\right)$ and $\left.\left|\left.\right|_{K_{1}}\right.$ is the canonical extension of $|\right|_{A}$ to K_{1}, then L is an algebraic extension of K_{1} and $\left.\left|\left.\right|_{L}\right.$ is an extension of $|\right|_{K_{1}}$.

Proof. Consider a transcendence basis $\bar{F}_{1}, \ldots, \bar{F}_{r}$ of $L_{| |_{L}}$ over $K_{| |}$. Since $\left|\left.\right|_{L}\right.$ is a residual transcendental extension of $\|$ and $K \subset K\left(X_{1}\right) \subset K\left(X_{1}, X_{2}\right) \subset \ldots \subset$ $K\left(X_{1}, \ldots, X_{r}\right)$, we can choose $F_{i} \in K\left(X_{1}, \ldots, X_{i}\right)$. Then for every $i\left|F_{i}\right|_{L}=1$, and if $P=\sum_{\mathbf{j}} a_{\mathbf{j}} \mathbf{F}^{\mathbf{j}} \in K[\mathbf{F}]$, there exists $a \in K$ such that $a P \in \bar{B}_{L}(0,1)$. Hence we may suppose that $P \in \bar{B}_{L}(0,1)$ and at least a coefficient of P has absolute value equal to 1 . Since
$\bar{F}_{1}, \ldots, \bar{F}_{r}$ are algebraically independent over $K_{| |}$it follows that $|P|_{L}=\max _{\mathbf{j}}\left\{\left|a_{\mathbf{j}}\right|\right\}$. Thus $\left|K_{1}^{\times}\right|_{K_{1}}=\left|K^{\times}\right|$and the index e of the subgroup $\left|K^{\times}\right|$in $\left|L^{\times}\right|_{L}$ is finite (see [4], Ch.VI, $\S 8$, Sec. 1, Lemma 2). Since $F_{i}=\frac{g_{i}}{h_{i}}$ with $g_{i}, h_{i} \in K\left[X_{1}, \ldots, X_{i}\right]$ and $\left|F_{i}\right|_{L}=1$ it follows that $\left|g_{i}\right|_{L}=\left|h_{i}\right|_{L}$ and $\left|g_{i}\right|_{L}^{e} \in\left|K^{\times}\right|$. But $\bar{F}_{1}^{e}, \ldots, \bar{F}_{r}^{e}$ are algebraically independent over $\left.\left|\left.\right|_{K}\right.$. Hence we may suppose $| g_{i}\right|_{L} \in\left|K^{\times}\right|_{K}$ and there exist elements $b_{i} \in K^{\times}$such that $\left|g_{i}\right|_{L}=\left|b_{i}\right|$. Thus we can consider $\left|g_{i}\right|_{L}=\left|h_{i}\right|_{L}=1$.

Now we prove that one can replace F_{1}, \ldots, F_{r} by polynomials. Since F_{1} is transcendental over $K\left(F_{2}, \ldots, F_{r}\right)$ at least one of g_{1} and h_{1} is transcendental over $K\left(F_{2}, \ldots, F_{r}\right)$. Thus we can replace F_{1} by a polynomial $f_{1} \in K\left[X_{1}\right]$. Since F_{2} is transcendental over $K\left(f_{1}, F_{3}, \ldots, F_{r}\right)$ we can replace F_{2} by a polynomial $f_{2} \in K\left[X_{1}, X_{2}\right]$ and the proposition follows by induction on i.

Corollary 2. If, in Proposition 5, K is an algebraically closed valued field, then $\left|K^{\times}\right|=\left|L^{\times}\right|_{L}$ and we can choose the polynomials f_{i} to be irreducible for every $i=1,2, \ldots, r$.

Proof. Since, in this case, the group $\left|K^{\times}\right|$is divisible, it follows that $\left|K^{\times}\right|=\left|L^{\times}\right|_{L}$. By Proposition 5, $\left.\right|_{L}$ is a canonical Gauss absolute value with $\delta_{\mathbf{j}}=1$. If $f_{1}=\prod_{j=1}^{n_{1}} f_{1, j}$, where $f_{1, j}$ are irreducible polynomials, there exists j_{0} such that $f_{1, j_{0}}$ is transcendental over $K\left(f_{2}, \ldots, f_{r}\right)$. Hence by multiplying by suitable elements from K, the corollary follows by induction.

Remark 4. Let $(K,| |)$ be an algebraically closed valued field and $r=1$. If $\left|\left.\right|_{L}\right.$ is a non-Archimedean absolute value on $L=K(X)$ which extends $\left|\left.\right|_{K}\right.$ and there exists $P_{1} \in$ $M^{(1)}$ such that $\left|P_{1}\right|_{L}=\inf M_{| |_{L}}^{(1)}$, then for all positive j there exists $Q_{j} \in M^{(j)}$ such that $\left|Q_{j}\right|_{L}=\inf M_{| |_{L}}^{(j)},=\left|P_{1}\right|_{L}^{j}$ and $\left|\left.\right|_{L}\right.$ is a canonical Gauss absolute value defined by $P_{j}=$ P_{1}^{j} and $\delta_{j}=\left|P_{j}\right|_{L}$. To prove this statement it is enough to take $Q \in M^{(j)}$. Then $Q=(X-$ $\left.\alpha_{1}\right) \ldots\left(X-\alpha_{j}\right)$ with $\alpha_{i} \in K$. Hence $|Q|_{L} \geq\left(\min _{1 \leq i \leq j}\left|X-\alpha_{i}\right|_{L}\right)^{j} \geq\left|P_{1}\right|_{L}^{j}$. Since $\left|P_{1}^{j}\right|_{L}=$ $\left|P_{1}\right|_{L}^{j}$, the remark follows.

Now let $(K,| |)$ be a (not necessarily algebraically closed) valued field. We consider a r.t. extension $\left.\left|\left.\right|_{L}\right.$ of $\|$ to $L=K(\mathbf{X})$ and $|\right|_{L_{i}}$ the restriction of $\left|\left.\right|_{L}\right.$ to $L_{i}=K\left(X_{1}, \ldots, X_{i}\right), i=0,1,2, \ldots, r$, with $L_{0}=K$ and $L_{r}=L$. Then $\left|\left.\right|_{L_{i+1}}\right.$ is a r.t. extension of $\left|\left.\right|_{L_{i}}\right.$. Let us denote by \bar{L}_{i} a fixed algebraic closure of L_{i} such that

$$
\bar{K} \subset \bar{L}_{1} \subset \ldots \subset \bar{L}
$$

and by $\left.\left|\left.\right|_{\bar{L}_{i}}\right.$ a fixed extension of $|\right|_{L_{i}}$ to $\bar{L}_{i}, i=0,1, \ldots, r$.
Theorem 3. Let $(K,| |)$ be a valued field and $\left|\left.\right|_{L}\right.$ a r.t. extension of $| \mid$ to $L=K(\mathbf{X})$. Then there exist pairs $\left(\alpha_{i}, \delta_{i}\right)$ with $\alpha_{i} \in \bar{L}_{i-1}, \delta_{i} \in\left|\bar{L}_{i-1}^{\times}\right| \bar{L}_{i-1}, i=1,2, \ldots, r$, such that $\left|\left.\right|_{L}\right.$ is defined by $\left|\left.\right|_{K}\right.$ in the following manner. If $P \in K[\mathbf{X}]$ and $P_{j}=\left(X_{r}-\alpha_{r}\right)^{j}$, then

$$
P=\sum_{j \leq d(P)} b_{j}\left(X_{r}-\alpha_{r}\right)^{j}, b_{j} \in \bar{L}_{r-1}
$$

and

$$
\begin{equation*}
|P|_{L}=\max _{j \leq d(P)}\left\{\left|b_{j}\right|_{\bar{L}_{r-1}} \delta_{r}^{j}\right\} \tag{37}
\end{equation*}
$$

14 GHIOCEL GROZA, NICOLAE POPESCU AND ALEXANDRU ZAHARESCU

Then by using, for each j the minimal polynomial of b_{j} over L_{r-1} one can compute by (3) its absolute value $\left.\left|\left.\right|_{\bar{L}_{r-1}}\right.$ by means of $|\right|_{\bar{L}_{r-2}}, \alpha_{r-1}, \delta_{r-1}$, and so on.

Proof. Since $\left|\left.\right|_{L}\right.$ is an absolute value it is enough to define it on $K\left[X_{1}, \ldots, X_{r}\right]$. By [1], Proposition 1.1 it follows that $\left.\left|\left.\right|_{\bar{L}_{i+1}}\right.$ is a r.t. extension of $|\right|_{\bar{L}_{i}}$ and $\left.\left|\bar{L}_{i+1}^{\times}\right|\right|_{\bar{L}_{i+1}}=\left|\bar{L}_{i}^{\times}\right|_{\bar{L}_{i}}$. From Corollary 2, for $i=r$, it follows that $\left.\left|\left.\right|_{L_{i+1}}\right.$ is defined in (37) by means of $|\right|_{L_{i}}$ and a pair (α_{i}, δ_{i}), where $\alpha_{i} \in \bar{L}_{i}$ is the root of an irreducible polynomial P_{i} of degree 1 and $\delta_{i}=\left|P_{i}\right|_{\bar{L}_{i}}$. Now the theorem follows by induction on i.

Corollary 3. With the hypotheses and notations of Theorem 3 there exist $\beta_{i, j}, \gamma_{i} \in$ $L_{| |_{L}}, i=1,2, \ldots, r, j=1,2, \ldots, n_{i}$ such that the following conditions are satisfied:
(a) $L_{| | L}=K_{| |}\left(\beta_{1,1} \ldots, \beta_{1, n_{1}}, \gamma_{1}, \beta_{2,1}, \ldots, \beta_{2, n_{2}}, \gamma_{2}, \ldots, \beta_{r, 1}, \ldots, \beta_{r, n_{r}}, \gamma_{r}\right)$.
(b) $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{r}$ are algebraically independent over $K_{\mid ।}$.
(c) For every $i, j, \beta_{i, j}$ is an algebraic element over $K_{\mid ।}\left(\beta_{1,1}, \ldots, \beta_{1, n_{1}}, \gamma_{1}, \ldots\right.$, $\left.\beta_{i-1,1}, \ldots, \beta_{i-1, n_{i-1}}, \gamma_{i-1}\right)$.
(d) The algebraic closure of $K_{| |}$in $L_{| | L}$ is a finite dimensional extension of $K_{| |}$.

Proof. Since $\left.\left|\left.\right|_{\bar{L}_{i+1}}\right.$ is a r.t. extension of $|\right|_{\bar{L}_{i}}$, by [1] Corollary 2.3 there exist $\beta_{i+1,1}, \ldots, \beta_{i+1, n_{i+1}}, \gamma_{i+1} \in L_{i+1 \mid L_{i+1}}$ such that $L_{i+1 \mid L_{i+1}}=L_{i \mid L_{i}}\left(\beta_{i+1,1}, \ldots\right.$, $\beta_{i+1, n_{i+1}}, \gamma_{i+1}$) and γ_{i+1} is transcendental over $L_{i \mid L_{L}}$. Now the statements (a)-(c) follow by induction, and (d) holds because (c) implies that the algebraic closure of $K_{| |}$in $L_{| | L}$ is a finitely generated extension of $K_{| |}$.

Next, we consider the problem when $L_{| | L}$ is a transcendental extension of a finite algebraic extension of $K_{\mid ।}$ (Nagata's problem) in the case $r \geq 2$. We need the following three lemmas.

Lemma 3. Let $(K,| |)$ be a valued field, $L=K(\mathbf{X})$ and $\left|\left.\right|_{L}\right.$ the absolute value defined on $K[\mathbf{X}]$ by

$$
\begin{equation*}
\left|\sum_{\mathbf{j}} a_{\mathbf{j}} \mathbf{X}^{\mathbf{j}}\right|_{L}=\max _{\mathbf{j}}\left|a_{\mathbf{j}}\right| . \tag{38}
\end{equation*}
$$

If $X_{i}^{*}, i=1,2, \ldots, r$ is the image of X_{i} in $L_{\left.\right|_{L}}$, then $X_{1}^{*}, \ldots, X_{r}^{*}$ are algebraically independent over $K_{| |}$.

Proof. If

$$
\sum_{\mathbf{j}} b_{\mathbf{j}}^{*} \mathbf{X}^{* \mathbf{j}}=0,
$$

where $b_{\mathbf{j}} \in \bar{B}_{K}(0,1)$, then

$$
\left|\sum_{\mathbf{j}} b_{\mathbf{j}} \mathbf{X}^{\mathbf{j}}\right|_{L}<1
$$

By (38), it follows that all $b_{\mathbf{j}} \in B_{K}(0,1)$. Hence $b_{\mathbf{j}}^{*}=0$ and $X_{1}^{*}, \ldots, X_{r}^{*}$ are algebraically independent over $K_{\mid \text {| }}$.

Lemma 4. Let $(K,| |)$ be a valued field, $L=K(\mathbf{X})$. Then there exists a uniquely defined absolute value $\left|\left.\right|_{L}\right.$ on $K(\mathbf{X})$ which extends $| \mid$ such that for every $i,\left|X_{i}\right|_{L}=1$ and
$X_{1}^{*}, \ldots, X_{r}^{*}$ are algebraically independent over $K_{| |}$. Moreover

$$
\begin{equation*}
\left|K^{\times}\right|=\left|L^{\times}\right|_{| |_{L}} \text { and } L_{| |_{L}}=K_{| |}\left(\mathbf{X}^{*}\right) \tag{39}
\end{equation*}
$$

Proof. The proof is similar to the proof of Proposition 2, Ch.VI, $\S 10$ of [4]. To show the uniqueness it is enough to show that if $\left|\left.\right|_{L}\right.$ is an absolute value on $K[\mathbf{X}]$ which extends $\left|\mid\right.$ such that for every $i,\left|X_{i}\right|_{L}=1$ and $X_{1}^{*}, \ldots, X_{r}^{*}$ are algebraically independent over $K_{| |}$, then it is defined by (38).

Without loss of generality we can consider $P \in K[\mathbf{X}]$ given by (1) such that all $a_{\mathbf{j}} \in \bar{B}_{K}(0,1)$ and at least one of the coefficients has the absolute value equal to one. Since for every $i,\left|X_{i}\right|_{L}=1$, it follows that

$$
P^{*}=\sum_{\mathbf{j}} a_{\mathbf{j}}^{*} \mathbf{X}^{* \mathbf{j}}
$$

By using the fact that $X_{1}^{*}, \ldots, X_{r}^{*}$ are algebraically independent over $K_{| |}$, we obtain that $P^{*} \neq 0$ and $|P|_{L}=1=\max _{\mathbf{j}}\left|a_{\mathbf{j}}\right|$.

Now we prove the existence of the absolute value $\left|\left.\right|_{L}\right.$. It is easy to see that the absolute value defined by (38) extends $\left|\mid\right.$, for every $i,\left|X_{i}\right|_{L}=1$ and $| K^{\times}\left|=\left|L^{\times}\right|_{\mid I_{L}}\right.$. From Lemma 3 it follows that $X_{1}^{*}, \ldots, X_{r}^{*}$ are algebraically independent over $K_{| |}$. To prove that $L_{| | L}=K_{| |}\left(\mathbf{X}^{*}\right)$ we consider $R \in L$. Then we can write

$$
\begin{equation*}
R=\frac{c \sum_{\mathbf{i}} a_{\mathbf{i}} \mathbf{X}^{\mathbf{i}}}{\sum_{\mathbf{i}} b_{\mathbf{i}} \mathbf{X}^{\mathbf{i}}} \tag{40}
\end{equation*}
$$

where $c, a_{\mathbf{i}}, b_{\mathbf{i}} \in \bar{B}_{K}(0,1)$ and at least one of the coefficients $a_{\mathbf{i}}$ and $b_{\mathbf{i}}$ has the absolute value equal to one. Thus $|R|_{L}=1$ if and only if $|c|=1$. In this case

$$
\begin{equation*}
R^{*}=\frac{c^{*} \sum_{\mathbf{i}} a_{\mathbf{i}}^{*} \mathbf{X}^{* \mathbf{i}}}{\sum_{\mathbf{i}} b_{\mathbf{i}}^{*} \mathbf{X}^{* \mathbf{i}}} \tag{41}
\end{equation*}
$$

and this completes the proof of the lemma.
Lemma 5. Let $(K,| |)$ be a valued field. If $\left|\left.\right|_{L}=| |_{\left(\alpha_{1}, \delta_{1}\right), \ldots,\left(\alpha_{r}, \delta_{r}\right)}\right.$, with $\left.\delta_{i} \in\right| K^{\times} \mid$is a canonical Gauss absolute value defined on $L=K(\mathbf{X})$, then $K_{| |}$is algebraically closed in $L_{| | L}$.

Proof. We take $\tau_{i} \in K^{\times}$such that for every $i,\left|\tau_{i}\right|=\delta_{i}$. Then $\left|\frac{X_{i}-\alpha_{i}}{\tau_{i}}\right|=1$ and every polynomial $P \in K[\mathbf{X}]$ can be written in the form

$$
\begin{equation*}
P=\sum_{\mathbf{i}} a_{\mathbf{i}}(\mathbf{X}-\alpha)^{\mathbf{i}}=\sum_{\mathbf{i}} b_{\mathbf{i}}\left(\frac{\mathbf{X}-\alpha}{\tau}\right)^{\mathbf{i}} \tag{42}
\end{equation*}
$$

where $\left(\frac{\mathbf{X}-\alpha}{\tau}\right)^{\mathbf{i}}=\left(\frac{X_{1}-\alpha_{1}}{\tau_{1}}\right)^{i_{1}} \ldots\left(\frac{X_{r}-\alpha_{r}}{\tau_{r}}\right)^{i_{r}}, b_{\mathbf{i}}=a_{\mathbf{i}} \mathbf{i}^{\mathbf{i}}$ and

$$
\begin{equation*}
|P|_{L}=\max _{\mathbf{i}}\left|b_{\mathbf{i}}\right| . \tag{43}
\end{equation*}
$$

By Lemma 3 it follows that $\left(\frac{X_{1}-\alpha_{1}}{\tau_{1}}\right)^{*} \ldots\left(\frac{X_{r}-\alpha_{r}}{\tau_{r}}\right)^{*}$ are algebraically independent over K_{\mid}। and from Lemma 2 we obtain that $L_{| | L}=K_{| |}\left(\frac{\mathbf{X}-\alpha}{\tau}\right)^{*}$. Hence $K_{| |}$is algebraically closed in $L_{| | l_{L}}$.

16 GHIOCEL GROZA, NICOLAE POPESCU AND ALEXANDRU ZAHARESCU

Now we consider a valued field $(K,| |),| |_{\bar{K}}$ an extension of $|\mid$ to \bar{K} and $\left|\left.\right|_{\left(\alpha_{1}, \delta_{1}\right), \ldots,\left(\alpha_{r}, \delta_{r}\right)}\right.$, with $\alpha_{i} \in \bar{K}$, a canonical Gauss absolute value on $\bar{K}(\mathbf{X})$. Then the pair $\left(\alpha_{1}, \delta_{1}\right)$ defines a canonical Gauss absolute value on $\bar{K}\left(X_{1}\right) \subset \overline{K\left(X_{1}\right)}$ such that

$$
\begin{equation*}
\left|\sum_{i} b_{i}\left(X_{1}-\alpha_{1}\right)^{i}\right|_{\left(\alpha_{1}, \delta_{1}\right)}=\max _{i}\left\{\left|b_{i}\right|_{\bar{K}} \delta_{1}^{i}, b_{i} \in \bar{K}\right\} . \tag{44}
\end{equation*}
$$

Similarly, $\left(\alpha_{2}, \delta_{2}\right)$ defines a canonical Gauss absolute value on $\bar{K}\left(X_{1}, X_{2}\right)=\bar{K}\left(X_{1}\right)\left(X_{2}\right)$ which is an extension of $\left|\left.\right|_{\left(\alpha_{1}, \delta_{1}\right)}\right.$ such that

$$
\begin{equation*}
\left|\sum_{j} c_{j}\left(X_{2}-\alpha_{2}\right)^{j}\right|_{\left(\alpha_{2}, \delta_{2}\right)}=\max _{j}\left\{\left|c_{j}\right|_{\left(\alpha_{1}, \delta_{1}\right)} \delta_{2}^{j}\right\}, c_{j} \in \bar{K}\left(X_{1}\right) \tag{45}
\end{equation*}
$$

Hence

$$
\left|\sum_{i, j} a_{i j}\left(X_{1}-\alpha_{1}\right)^{i}\left(X_{2}-\alpha_{2}\right)^{j}\right|_{\left(\alpha_{1}, \delta_{1}\right),\left(\alpha_{2}, \delta_{2}\right)}=\max _{j}\left\{\left|\sum_{i} a_{i j}\left(X_{1}-\alpha_{1}\right)^{i}\right|_{\left(\alpha_{1}, \delta_{1}\right)} \delta_{2}^{j}\right\}
$$

and for every $P \in \bar{K}\left[X_{1}, X_{2}\right]=\bar{K}\left[X_{1}\right]\left[X_{2}\right]$,

$$
\begin{equation*}
|P|_{\left(\alpha_{1}, \delta_{1}\right),\left(\alpha_{2}, \delta_{2}\right)}=|P|_{\left(\alpha_{2}, \delta_{2}\right)} \tag{46}
\end{equation*}
$$

By induction it follows that for every $P \in \bar{K}\left[X_{1}, \ldots, X_{i}\right]=\bar{K}\left[X_{1}, \ldots, X_{i-1}\right]\left[X_{i}\right]$, and for every i,

$$
\begin{equation*}
|P|_{\left(\alpha_{1}, \delta_{1}\right), \ldots,\left(\alpha_{i}, \delta_{i}\right)}=|P|_{\left(\alpha_{i}, \delta_{i}\right)} . \tag{47}
\end{equation*}
$$

The following result shows that Nagata's conjectures holds for $r \geq 1$, if || is a canonical Gauss absolute value.

Theorem 4. Suppose that $(K,| |)$ is a valued field, $L=K(\mathbf{X}),| |_{L}$ an absolute value which is the restriction of a canonical Gauss absolute value $\left|\left.\right|_{\left(\alpha_{1}, \delta_{1}\right) \ldots, \ldots\left(\alpha_{r}, \delta_{r}\right)}\right.$ on $\bar{K}(\mathbf{X})$ such that:
(a) $\left[\left|L^{\times}\right|_{L}:\left|K^{\times}\right|_{K}\right]<\infty$.
(b) For every $i,\left(\alpha_{i}, \delta_{i}\right)$ is a minimal pair of definition for the absolute value $\left|\left.\right|_{\left(\alpha_{i}, \delta_{i}\right)}\right.$ defined on $\overline{K\left(X_{1}, \ldots, X_{i-1}\right)}\left(X_{i}\right)$.

Then $\left|\left.\right|_{\left(\alpha_{1}, \delta_{1}\right), \ldots,\left(\alpha_{r}, \delta_{r}\right)}\right.$ is a r.t. absolute value on $L(\mathbf{X})$ and there exists a finite algebraic extension K_{1} of K such that $K_{1| |_{K}} \subset L_{| |}$and

$$
\begin{equation*}
L_{| | L}=K_{1| | \bar{K}}\left(\mathbf{Y}^{*}\right) \tag{48}
\end{equation*}
$$

with $Y_{1}^{*}, \ldots, Y_{r}^{*} \in L_{| |_{L}}$ algebraically independent over $K_{\left.1\right|_{\bar{K}}}$.
Proof. We denote $K_{1}=K\left(\alpha_{1}, \ldots, \alpha_{r}\right), n_{i}=\left[K\left(\alpha_{1}, \ldots, \alpha_{i}\right): K\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\right]$ and we prove that $K_{\left.1\right|_{K}} \subset L_{| |_{L}}$. If $P=\sum_{\mathbf{i}} a_{\mathbf{i}}(\mathbf{X}-\alpha)^{\mathbf{i}} \in L$ and for every i the degree d_{i} of $|P|$ with respect to X_{i} is less than n_{i}, then by (47) and Theorem 2.1 from [1] it follows that

$$
\begin{equation*}
|P(\mathbf{X})|_{L}=\left|P\left(X_{1}, \ldots, X_{r-1}, \alpha_{r}\right)\right|_{\left(\alpha_{r-1}, \delta_{r-1}\right)}=\ldots=\left|P\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{r}\right)\right|_{\bar{K}} \tag{49}
\end{equation*}
$$

Now, if $\gamma \in K_{1}$ there exists $P \in L$ with $d_{i}<n_{i}$ such that $\gamma=P(\alpha)$. Then by (49) it follows that

$$
|\gamma|_{\bar{K}}=|P(\alpha)|_{\bar{K}}=|P|_{L}
$$

and $K_{1| |_{\bar{K}}} \subset L_{| |}$.
We show that $K_{1| | \bar{K}}$ is the algebraic closure of $K_{| |}$in $L_{| | L}$. We choose q_{1} the smallest natural number such that $\delta_{1}^{q_{1}}=\left|\theta_{1}\right|_{\bar{K}}$, where $\theta_{1} \in K_{1}$ and we take β_{1} a root of the polynomial $Z_{1}^{q_{1}}-\theta_{1}$. Since

$$
q_{1} \leq e\left(K_{1}\left(\beta_{1}\right) / K_{1}\right) \leq\left[K_{1}\left(\beta_{1}\right): K_{1}\right] \leq q_{1},
$$

it follows that $f\left(K_{1}\left(\beta_{1}\right) / K_{1}\right)=1$. Hence $K_{1}\left(\beta_{1}\right)_{| |_{K}}=K_{1| |_{K}}$. Similarly, we choose q_{2} the smallest natural number such that $\delta_{2}^{q_{2}}=\left|\theta_{2}\right|_{\bar{K}}$, where $\theta_{2} \in K_{1}\left(\beta_{1}\right)$ and we take β_{2} a root of the polynomial $Z_{2}^{q_{2}}-\theta_{2}$. Then we obtain $K_{1}\left(\beta_{1}, \beta_{2}\right)_{\left.\right|_{\bar{K}}}=K_{1}\left(\beta_{1}\right)_{\left.\right|_{\bar{K}}}$ and by induction, for every i,

$$
\begin{equation*}
K_{1}\left(\beta_{1}, \ldots, \beta_{i}\right)_{\left.\right|_{\bar{k}}}=K_{1}\left(\beta_{1}, \ldots, \beta_{i-1}\right)_{| |_{\bar{k}}} . \tag{50}
\end{equation*}
$$

Now, by (50) and Lemma 5 for $M=K_{1}\left(\beta_{1}, \ldots, \beta_{r}\right)(\mathbf{X})$, it follows that $K_{1| |_{\bar{K}}}=$ $K_{1}\left(\beta_{1}, \ldots, \beta_{r}\right)_{\left.\right|_{\bar{K}}}$ is algebraically closed in $M_{\left.\mid \|_{\alpha_{1}}, \delta_{1}\right) \ldots \ldots\left(\alpha_{r}, \delta_{r}\right)}$. Then the canonically defined commutative diagram

implies that the algebraic closure of $K_{| |}$in $L_{| |_{L}}$ is included in $K_{1| |_{\mathcal{K}}}$. Since $K_{1| |_{K}}$ is a finite extension of $K_{| |}$, it follows that $K_{1| |_{\bar{K}}}$ is the algebraic closure of $K_{| |}$in $L_{| |_{L}}$.

Finally, we prove (48). Since the multiplicative group G / H, where $G=\left|L^{\times}\right|_{L}$, $H=\left|K^{\times}\right|$, is generated by the images $\bar{\delta}_{1}, \ldots, \bar{\delta}_{r}$ of $\delta_{1}, \ldots, \delta_{r}$, from (a) it follows that G / H is a finite commutative group. Hence it is a direct product of cyclic groups:

$$
\begin{equation*}
G / H=<g_{1}>\times<g_{2}>\times \ldots \times<g_{r}>, \tag{51}
\end{equation*}
$$

where it is possible that some of $g_{i}=1$. We denote by o_{i} the order of g_{i}. If $P \in K[\mathbf{X}]$ is given by (42), then

$$
\begin{equation*}
P=\sum_{\mathbf{i}} b_{\mathbf{i}}\left(\frac{\mathbf{X}-\alpha}{\beta}\right)^{\mathbf{i}} \tag{52}
\end{equation*}
$$

where $\left(\frac{\mathbf{X}-\alpha}{\beta}\right)^{\mathbf{i}}=\left(\frac{X_{1}-\alpha_{1}}{\beta_{1}}\right)^{i_{1}} \ldots\left(\frac{X_{r}-\alpha_{r}}{\beta_{r}}\right)^{i_{r}}, b_{\mathbf{i}}=a_{\mathbf{i}} \beta^{\mathbf{i}}$. Since $\left|\frac{X_{i}-\alpha_{i}}{\beta_{i}}\right|_{\bar{K}}(\mathbf{X})=1$ it follows that $|P|_{L}=1$ if and only if

$$
\begin{equation*}
\max _{\mathbf{i}}\left\{\left|a_{\mathbf{i}} \beta^{\mathbf{i}}\right|_{\bar{K}}\right\}=\max _{\mathbf{i}}\left\{\left|a_{\mathbf{i}}\right|_{\bar{K}} \delta^{\mathbf{i}}\right\}=1 . \tag{53}
\end{equation*}
$$

Because, in $G / H, g_{i}=\bar{\delta}_{1}^{m(i, 1)} \ldots \bar{\delta}_{r}^{m(i, r)}$, then (53) holds if and only if $\bar{\delta}_{1}^{i_{1}} \ldots \bar{\delta}_{r}^{i_{r}}=$ $g_{1}^{o_{1} s_{1}} \ldots g_{r}^{o_{r} s_{r}}$, for each \mathbf{i} such that $\left|a_{\mathbf{i}}\right|_{\bar{K}} \delta^{\mathbf{i}}=1$. If we put $Y_{i}^{*}=\left(\frac{X_{1}-\alpha_{1}}{\beta_{1}}\right)^{* m(i, 1) o_{1}}$ $\ldots\left(\frac{X_{r}-\alpha_{r}}{\beta_{r}}\right)^{* m(i, r) o_{r}}$, it follows that for $P \in \bar{B}_{L}(0,1)$ we have

$$
\begin{equation*}
P^{*}=\sum_{\mathbf{s}} b_{\mathbf{s}}^{*} \mathbf{Y}^{* \mathbf{s}} \tag{54}
\end{equation*}
$$

which implies (48).
Remark 5. In order to prove that Nagata's conjecture does not hold generally we can take, for an odd prime $p, K=\mathbb{Q}_{p},\left|\left|=| |_{p}\right.\right.$ the p-adic absolute value, $L=$ $K\left(X_{1}, X_{2}\right),| |_{L}$ an absolute value which is the restriction of a Gauss absolute value $\|_{(0,1),\left(\alpha_{2}, \delta_{2}\right)}$ on $\overline{K\left(X_{1}\right)}\left(X_{2}\right)$ such that: $X_{1}^{q}+\alpha_{2}^{q}=1$, with q an odd prime different from $p, \delta_{2} \notin\left|K^{\times}\right|$and its order in the group $\left|L^{\times}\right|_{L} /\left|K^{\times}\right|$is finite. Then $\left|\alpha_{2}\right|_{K\left(X_{1}\right)}=1$ and by using the notations from the proof of Theorem 4 we find $K_{| |}=\mathbb{F}_{p}$ (the field with p elements) and $L_{| |_{L}}=\mathbb{F}_{p}\left(X_{1}^{*}, \alpha_{2}^{*},\left(\frac{X_{2}-\alpha_{2}}{\beta_{2}}\right)^{*}\right)$. Hence it is easy to see that $L_{| |_{L}}$ is not a transcendental extension of a finite extension of $K_{| |}$.

REFERENCES

1. V. Alexandru, N. Popescu and A. Zaharescu, A theorem of characterization of residual transcendental extensions of a valuation, J. Math. Kyoto Univ. 28(4) (1988), 579-592.
2. V. Alexandru, N. Popescu and A. Zaharescu, All valuations on K(X), J. Math. Kyoto Univ. 30(2) (1990), 281-296.
3. V. Alexandru, N. Popescu and A. Zaharescu, Minimal pairs of definition of a residual transcendental extension of a valuation, J. Math. Kyoto Univ. 30(2) (1990), 207-225.
4. N. Bourbaki, Algèbre commutative, Ch. VI Valuations (Hermann, Paris, 1964).
5. I. S. Cohen, On non-Archimedean normed spaces, Indag. Math. 10 (1948), 244-249.
6. O. Goldman and N. Iwahori, The space of p-adic norms, Acta Math. 109 (1963), 137177.
7. F.-V. Kuhlmann, Value groups, residue fields and bad places of rational function fields, Trans. Amer. Math. Soc. 356(11) (2004), 4559-4600.
8. A. F. Monna, Sur les espaces linéaires normés I-IV, Indag. Math. 8 (1946), 643-660, 682-700.
9. M. Nagata, A theorem on valuation rings and its applications, Nagoya Math. J. 29 (1967), 85-91.

[^0]: *Partially supported by CEEX program of the Romanian Ministry of Education and Research, Contract No. CEx 05-D11-11/2005.

