
Glasgow Math. J. 52 (2010) 1–18. C© Glasgow Mathematical Journal Trust 2009.
doi:10.1017/S0017089509990115.

ALL NON-ARCHIMEDEAN NORMS ON K[X1, . . . , Xr]

GHIOCEL GROZA
Department of Mathematics, Technical University of Civil Engineering,

Lacul Tei 124, Sec.2, RO-020396 Bucharest, Romania
e-mail: grozag@mail.utcb.ro

NICOLAE POPESCU∗

Romanian Academy, Institute of Mathematics, P.O. Box 1-764, RO-70700
Bucharest, Romania

e-mail: Nicolae.Popescu@imar.ro

and ALEXANDRU ZAHARESCU
Department of Mathematics, University of Illinois at Urbana-Champaign,

1409 W. Green Street, Urbana, IL 61801, USA
e-mail: zaharesc@math.uiuc.edu

(Received 10 June 2008; revised 24 December 2008; accepted 24 March 2009)

Abstract. If K is a field with a non-trivial non-Archimedean absolute value
(multiplicative norm) | |, we describe all non-Archimedean K-algebra norms on the
polynomial algebra K [X1, . . . , Xr] which extend | |.
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1. Introduction. Let K be a field with a non-trivial non-Archimedean absolute
value (multiplicative norm) | |. In this paper, we study K-algebra non-Archimedean
norms on K [X1, . . . , Xr] which extend | |. Some problems connected with the norms
on p-adic vector spaces were solved by I. S. Cohen [5] and A. F. Monna [8], and then
O. Goldmann and N. Iwahori were concerned in [6] with the intrinsic structure that is
carried by the set of all norms on a given finite dimensional vector space over a locally
compact field. When r = 1, the case of K-algebra non-Archimedean norms on K [X ]
which are multiplicative and extend | | has been treated in [1–3]. In Section 2 below
we consider generalizations of the Gauss valuation. We investigate the case when a
K-vector space norm is a K-algebra norm and we also address the question of when
two norms are equivalent. In Section 3 we then discuss possible types of norms on
K [X1, . . . , Xr] which extend a given non-trivial non-Archimedean absolute value on
K . The completion of K [X1, . . . , Xr] with respect to a non-Archimedean Gauss norm
is given in Section 4.

There are many applications of non-Archimedean multiplicative norms on
K [X1, . . . , Xr] in algebraic geometry where a basic tool is to describe all the absolute
values on K(X1, . . . , Xr) which extend | |. In [7] F.-V. Kuhlmann determined which
value groups and which residue fields can possibly occur in this case. In the case r = 1
the r.t. extensions | |L of | | to L = K(X) have been considered by M. Nagata [9], who
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conjectured that L| |L is a simple transcendental extension of a finite algebraic extension
of K| |. This problem has been affirmatively solved (see for example [1]). Some results
on the corresponding problem for K(X1, . . . , Xr) are given in Section 5.

2. Gauss norms on K [X1, . . . , Xr]. Let K be a field with a non-trivial non-
Archimedean absolute value (multiplicative norm) | |, i.e. | | : K → [0,∞) such that
for all α, β ∈ K

A1. |α| = 0 ⇔ α = 0;

A2. |αβ| = |α| |β|;
A3. |α + β| ≤ max{|α|, |β|};
A4. there exists γ ∈ K different from zero such that |γ | 	= 1.

Then (K, | |) is called a valued field.
In what follows we work with the polynomial algebra K [X1, . . . , Xr], and study

the K-algebra norms || || : K [X1, ..., Xr] → [0,∞) which extend | |, i.e. || || satisfies, for
all P, Q ∈ K [X1, . . . , Xr], the conditions A1, A3 and for all α ∈ K and P, Q ∈ K [X1,

. . . , Xr]
N1. ||αP|| = |α| ||P||;
N2. ||PQ|| ≤ ||P||||Q||;
N3. ||α|| = |α|.
If n = (n1, . . . , nr) ∈ �r, we put N(n) = n1 + · · · + nr. We order the elements of �r

in the following manner: i < j if either N(i) < N(j) or N(i) = N(j) and i is less than j
with respect to the lexicographical order. Hence it follows that for each j there are only
a finite number of i such that i ≤ j. For simplicity, for any m = (m1, . . . , mr) ∈ �r, we
denote Xm = Xm1

1 · · · Xmr
r and am = am1,...,mr . We also denote X = (X1, . . . , Xr).

If

P =
∑
j≤n

ajXj ∈ K [X], (1)

denote

E(P) = {j ∈ �r : j ≤ n, aj 	= 0}
and d(P) = n is the greatest element of E(P) with respect to the lexicographical order.
If ad(P) = 1 the polynomial P is called monic.

Let (K, | |) be a valued field as above and || || a K-algebra norm on K [X] which
extends | |. In what follows we define a non-Archimedean norm on the polynomial
algebra K [X] which is a generalization of the Gauss valuation.

We start with the following simple lemma.

LEMMA 1. Suppose that K is a field and F = {Pj}j∈�r a sequence of polynomials from
K [X] such that, for every j, d(Pj) = j and ordered with respect to the order defined on �r.
Then every Q ∈ K [X] can be represented uniquely in the form

Q =
∑

j≤d(Q)

bjPj, (2)

where bj ∈ K.
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Proof. If Q = ∑
j∈E(Q) cjXj, Pd(Q) = ∑

j∈E(Pd(Q)) ajXj, then Q = cd(Q)a−1
d(Q)Pd(Q) +Qi,

where i = d(Qi) and i < d(Q). By putting bd(Q) = cd(Q)a−1
d(Q) the statement follows easily

by induction with respect to d(Q). �
We denote

EF (Q) = {j ∈ �r : bj 	= 0 , in (2)}.

Suppose that (K, | |) is a valued field, F = {Pj}j∈�r a sequence of polynomials from
K [X] such that, for every j, d(Pj) = j, ordered with respect to the order defined on �r

and N = {δj}j∈�r a sequence of positive real numbers such that δ(0,0,...0) = 1. We call F
and N admissible sequences of polynomials and positive numbers, respectively.

For every Q ∈ K [X] written in the form (2) we define

‖Q‖F,N = max
j≤d(Q)

{|bj|δj}, (3)

with j ∈ EF (Q). If Ps, Pt ∈ F , then by Lemma 1

PsPt =
∑

j≤s+t

γj(s, t)Pj, γj(s, t) ∈ K, (4)

where γj(s, t) = γj(t, s), for every j. Then we set

ρs,t = max
j≤s+t

{|γj(s, t)|δj}. (5)

PROPOSITION 1. Suppose that (K, | |) is a valued field, F and N admissible sequence
of polynomials and real numbers, respectively. Then ‖ ‖F,N , defined by (3) is a K-vector
space non-Archimedean norm on K[X] which extends | |. Moreover ‖ ‖F,N , is a K-algebra
norm on K [X] if and only if

ρs,t ≤ δsδt, (6)

for every s, t.

Proof. The first statement is easily verified. For the second part we consider P, Q ∈
K [X], where P = ∑

i≤d(P) aiPi and Q is given by (2). Then, by (4),

PQ =
∑

u≤d(PQ)

( ∑
v+w=u

avbwPvPw

)
=

∑
u≤d(PQ)

⎛
⎝ ∑

v+w=u

avbw

⎛
⎝∑

j≤u

γj(v, w)Pj

⎞
⎠

⎞
⎠

=
∑

u≤d(PQ)

⎛
⎝∑

j≤u

( ∑
v+w=u

avbwγj(v, w)

)
Pj

⎞
⎠ =

∑
j≤d(PQ)

cjPj,

where

cj =
∑

j≤u≤d(PQ)

( ∑
v+w=u

avbwγj(v, w)

)
(7)

https://doi.org/10.1017/S0017089509990115 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990115


4 GHIOCEL GROZA, NICOLAE POPESCU AND ALEXANDRU ZAHARESCU

and since only a finite number of av, bw are different from zero, all the sums are finite.
Then, if (6) holds,

‖PQ‖F,N ≤ max
j≤d(PQ)

{
max

j≤u≤d(PQ)

{∣∣∣∣∣
∑

v+w=u

avbwγj(v, w)

∣∣∣∣∣
}

δj

}

≤ max
j≤d(PQ)

{
max

j≤u≤d(PQ)

{
max

v+w=u

{∣∣avbwγj(v, w)
∣∣}} δj

}

≤ max
u≤d(PQ)

{
max

v+w=u

{|avbw| ρv,w
}} ≤ max

u≤d(PQ)

{
max

v+w=u
{|avbw| δvδw}

}

≤ max
i≤d(P)

{|ai| δi} max
j≤d(Q)

{∣∣bj
∣∣ δj

} = ‖P‖F,N ‖Q‖F,N .

This completes the proof of the proposition. �
We call the norm given by (3) the Gauss norm on K [X] defined by F and N .
If ‖ ‖F,N is a K-algebra norm on K [X], then by (5) and (6) it follows that

δn ≤ min
i + j = n

{
δiδj

|γn(i, j)|
}
. (8)

If

Pj =
∑
i≤j

ai,jXi, (9)

then

PsPt =
∑

j≤s+t

cjXj,

where

cj =
∑

u+v=j

au,sav,t,

and all the sums are finite. We consider i1 the greatest element of E(PsPt −
γs+t(s, t)Ps+t). Thus, by (4),

γi1 (s, t) = ci1 − ai1,s+t. (10)

By induction with respect to the defined order it follows that

γj(s, t) = Tj − aj,s+t, j = i2, i3, . . . , (11)

where i0 = s + t > i1 > i2 > . . . , ik is the greatest element of E(PsPt −∑
iz>ik−1

γiz (s, t)Piz ), Tj is a polynomial with integral coefficients in av,w with either
w < s + t or w = s + t and v > j.

Now for k ∈ {1, 2, . . . , r} we consider ek = (0, . . . , 1, . . . , 0) ∈ �r. If n ∈ �r,

N(n) > 1 we denote n− ∈ �r, the greatest element such that n = n− + ek, for some
k ∈ {1, 2, . . . , r}. In this case we denote ek = e(n).
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The following result shows that for every admissible N = {δj}j∈�r such that

C = inf
j,k

{
δj+ek

δj

}
> 0, (12)

and satisfying (8) one can construct Gauss norms on K [X ] of the form ‖ ‖F,N . A
trivial case is when we take Pj(X) = Xj, but also we can find Gauss norms such that
Ps+t 	= PsPt.

We put μ(0,0,...,0) = 1 and for any n with N(n) > 1,

μn = min
i+j=n

{
δiδj

}
, τn = min

N(m)=N(n)−1
{μn, Cμm}. (13)

PROPOSITION 2. Suppose that (K, | |) is a valued field and N = {δj}j∈� an admissible
sequence of real numbers verifying (8) and (12). Then there exist infinitely many sequences
of admissible polynomials F = {Pj}j∈�r such that ‖ ‖F,N defined by (3) is a Gauss norm
of K-algebra on K [X].

Proof. We construct sequences of monic polynomialsF = {Pj}j∈�r such that ‖ ‖F,N
defined by (3) is a Gauss norm of K-algebra on K [X]. We put P(0,...,0) = 1 and if j = er =
(0, . . . , 0, 1) ∈ �r, Pj = aj + Xj, with an arbitrary aj ∈ K. Generally, if N(j) = 1, we
take an arbitrary monic polynomial Pj = ∑

i≤j ai,jXi, where ai,j ∈ K. If j = (0, . . . , 0, 2)
we take the monic polynomial Pj = ∑

i≤j ai,jXi, with E(Pj) \ {j} a subset of the union
of all E(Pi) with i < j. Then by (4), we can write P2

er
= Pj + ∑

v<j γv(er, er)Pv and by
(11) we can find the coefficients ai,j such that

|γi(er, er)|δi < τj, i < j.

By choosing arbitrary the coefficients ai,j when i is not in EFj (P
2
er

), whereFj = {Pi}i≤j, we
find E(Pj). In the same manner we can construct all the polynomials Pj = ∑

i≤j ai,jXi,

with N(j) = 2. Then by induction, we consider n ∈ �r, and suppose that for all s with
N(s) ≤ N(n) − 1 and t ∈ EFs (Ps) we have

|γt(ek, s−)|δt ≤ τs +ek , |γt(i, j)|δt ≤ δiδj, i + j = s, k ∈ {1, 2, . . . , r}. (14)

By (11) we can choose the coefficients of Pn such that the first condition of (14) holds
for s = n. To verify the second condition we consider i + j = n, with N(i) and N(j) less
than N(n). Then, without loss of generality, we may suppose that e(j) = e(n) and we
obtain

Pe(n)Pn− = Pe(n)

(
PiPj− −

∑
t<n−

γt(i, j−)Pt

)

= Pi

∑
t≤j

γt(e(n), j−)Pt −
∑
t<n−

γt(i, j−)Pe(n)Pt

= PiPj +
∑
t<j

γt(e(n), j−)
∑

u≤i+t

γu(i, t)Pu −
∑
t<n−

γt(i, j−)
∑

u≤e(n)+t

γu(e(n), t)Pu

= PiPj +
∑
t<j

∑
u≤i+t

γt(e(n), j−)γu(i, t)Pu −
∑
t<n−

∑
u≤e(n)+t

γt(i, j−)γu(e(n), t)Pu.
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Hence, for a fixed u,

γu(e(n), n−) = γu(i, j) +
∑

t < j
u ≤ i + t

γt(e(n), j−)γu(i, t)

−
∑

t < n−
u ≤ e(n) + t

γt(i, j−)γu(e(n), t). (15)

Now by (14) it follows that

|γt(e(n), j−)γu(i, t)| ≤ τj

δt

δiδt

δu
≤ δiδj

δu
, |γt(i, j−)γu(e(n), t)|

≤ δiδj−

δt

τt+e(n)

δu
≤ δiδj−

δt

Cμt

δu
≤ δiδj

δu
.

Hence one has (14) for s = n and by Proposition 1, it follows that we can find infinitely
many sequences of monic polynomials F = {Pj}j∈�r such that ‖ ‖F,N defined by (3) is
a Gauss norm of K-algebra on K [X]. �

Next, we study when two Gauss norms are equivalent.

PROPOSITION 3. Suppose that (K, | |) is a valued field and ‖ ‖Fα,Nα
, α = 1, 2, where

Fα = {Pj,α}j∈�r, Nα = {δj,α}j∈�r, are two Gauss norms on K[X]. If by (2)

Pj,α =
∑
i≤j

c(α)
i,j Pi,3−α, α = 1, 2, (16)

then the norms are equivalent if and only if there exist positive constants C1, C2 such that

δj,1 ≥ C1
∣∣c(1)

i,j

∣∣δi,2, C2δj,2 ≥ ∣∣c(2)
i,j

∣∣δi,1, for any i, j, with i ≤ j. (17)

Proof. If the norms are equivalent, then there exist positive constants C1, C2 such
that for every Q ∈ K [X]

C1‖Q‖F2,N2 ≤ ‖Q‖F1,N1 ≤ C2‖Q‖F2,N2 .

Consequently, we obtain

δj,1 = ∥∥Pj,1
∥∥
F1,N1

≥ C1

∥∥∥∥∥∥
∑
i≤j

c(1)
i,j Pi,2

∥∥∥∥∥∥
F2,N2

= C1 max
i≤j

{∣∣∣c(1)
i,j

∣∣∣ δi,2

}
.

Conversely, suppose that (17) holds. If Q ∈ K [X], then

Q =
∑

j≤d(Q)

bjPj,2 =
∑

j≤d(Q)

bj

⎛
⎝∑

i≤j

c(2)
j,i Pi,1

⎞
⎠ =

∑
j≤d(Q)

⎛
⎝∑

i≥j

c(2)
j,i bi

⎞
⎠ Pj,1.
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Hence it follows that

‖Q‖F1,N1 = max
j≤d(Q)

⎧⎨
⎩

∣∣∣∣∣∣
∑
i≥j

c(2)
j,i bi

∣∣∣∣∣∣ δj,1

⎫⎬
⎭ ≤ max

j≤d(Q)

{
max

i≥j

{∣∣∣c(2)
j,i bi

∣∣∣}δj,1

}

≤ C2 max
i≤d(Q)

{|bi| δi,2
} = C2‖Q‖F2,N2 . �

REMARK 1. Consider ‖ ‖F,N , a Gauss K-algebra norm on K [X] defined by F =
{Pj}j∈�r , N = {δj}j∈�r . If for every j ∈ �r, cj is an element different from zero from K
and P∗

j = cjPj, δ∗
j = |cj|δj, then by Proposition 3 it follows easily that the Gauss norm

defined by F∗ = {P∗
j }j∈�r , N ∗ = {δ∗

j }j∈�r is a K-algebra norm on K [X] and the norms
‖ ‖F∗,N ∗ , ‖ ‖F,N are equivalent. Hence it follows that up to an equivalence we can
consider a Gauss norm defined by a family of monic polynomials.

EXAMPLE 1. Suppose (K, | |) is a valued field and S = {(βk,1, . . . ,

βk,r)}k≥1 is a fixed sequence of elements of
◦

K
r
, where

◦
K= B̄K (0, 1) = {x ∈ K ; |x| ≤ 1}.

We take F1 = {Xj}j∈�r , F2 = {Pj,2}j∈�r, where

Pj,2 =
∏

0<k≤j1

(X1 − βk,1)
∏

0<k≤2

(X2 − βk,2) . . .
∏

0<k≤r

(Xr − βk,r) .

Then it follows easily that all c(α)
i,j , α = 1, 2, defined by (16) belong to

◦
K .

We put N1 = N2 = {δj}j∈�r where, for every j, s, t ∈ �r with j ≤ s + t,

δj ≤ δsδt.

For example we may take either δj = aN(j) with a > 1, for all j, or δj = (N(j) + 1)p with
p a fixed positive integer, for all j. Since all γj,α, α = 1, 2, defined by (4) belong to

◦
K, by

Proposition 1 it easily follows that ‖ ‖F1,N1 and ‖ ‖F2,N2 are K-algebra norms on K [X]
and (17) holds with C1 = C2 = 1. Hence the norms are equivalent.

Let (K, | |) be a valued field and ‖ ‖ a non-Archimedean norm on K [X] which
extends | |. If j ∈ �r, put

M(j) = {Q ∈ K [X] monic, d(Q) = j} , M(j)
‖ ‖ =

{
‖Q‖; Q ∈ M(j)

}
. (18)

On K [X] there are non-Archimedean norms which are not Gauss norms (see
Remark 3). The following result gives a criterion for a non-Archimedean norm on
K [X] to be a Gauss norm.

PROPOSITION 4. Let (K, | |) be a valued field and let ‖ ‖ be a K-algebra non-
Archimedean norm on K [X] which extends | |. Then ‖ ‖ is a Gauss norm defined by
a family of monic polynomials if and only if for every j ∈ �r, there exists Pj ∈ M(j) such
that ‖Pj‖ = inf M(j)

‖ ‖. In this case ‖ ‖ is defined by F = {Pj}j∈�r , N = {‖Pj‖}j∈�r .

Proof. If ‖ ‖ is a Gauss norm defined by a family of monic polynomials F =
{Pj}j∈�r , then by (3) it follows that for every j ∈ �r, and Q ∈ M(j), ‖Q‖ ≥ δj. Since

‖Pj‖ = δj, it follows that ‖Pj‖ = inf M(j)
‖ ‖.
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Conversely, if for every j ∈ �r there exists Pj ∈ M(j) such that ‖Pj‖ = inf M(j)
‖ ‖,

then we can takeF = {Pj}j∈�r ,N = {‖Pj‖}j∈�r . Since ‖Ps+t‖ ≤ ‖PsPt‖ ≤ ‖Ps‖‖Pt‖ and

‖Pi1‖ ≤ ‖Ps+t−PsPt‖
|γi1 (s,t)| , where i1 is the greatest element of E(PsPt − Ps+t), by induction with

respect to the given order it follows thatF andN verify the conditions of Proposition 1.
We take Q ∈ K [X] and prove by induction on q = d(Q), with respect to the given order
that ‖Q‖ = ‖Q‖F,N . It is enough to consider the case when Q is a monic polynomial.
If q = (0, . . . , 0, 1) we can write Pq = Xq − a and Q = Xq − b, a, b ∈ K. Since

Q = Pq + a − b, (19)

we obtain

‖Q‖ ≤ max
{‖Pq‖, |a − b|} = ‖Q‖F,N . (20)

If ‖Pq‖ 	= |a − b|, by (19) it follows that ‖Q‖ = ‖Q‖F,N . Otherwise, by the definition
of Pq and by (20) we obtain ‖Pq‖ ≤ ‖Q‖ ≤ ‖Q‖F,N = ‖Pq‖ and ‖Q‖ = ‖Q‖F,N , for
q = (0, . . . , 0, 1).

Now suppose that ‖P‖ = ‖P‖F,N , for all the polynomials with d(P) < q and let
Q ∈ K [X] such that d(Q) = q. Then

Q = bqPq + Qi, (21)

where bq ∈ K and d(Qi) = i < q. Hence

‖Pq‖ ≤ 1
|bq| ‖Q‖ ≤ max

{
‖Pq‖, 1

|bq| ‖Qi‖
}
. (22)

Thus,

|bq|‖Pq‖ ≤ ‖Q‖ ≤ max
{‖bqPq‖, ‖Qi‖F,N

} = ‖Q‖F,N . (23)

If ‖Qi‖F,N = ‖bqPq‖, by (23) it follows that ‖Q‖ = ‖Q‖F,N . Otherwise by by (21) we
obtain ‖Q‖ = ‖Q‖F,N and the proposition is proved. �

Now we prove that in the case of p-adic fields all non-Archimedean norms on K [X]
which extend | | are Gauss norms.

COROLLARY 1. Suppose K is a locally compact field and ‖ ‖ is a K-algebra non-
Archimedean norm on K [X] which extends | |. Then ‖ ‖ is a Gauss norm.

Proof. By Proposition 4 it follows that it is enough to show that for j ∈ �r,

there exists Pj ∈ M(j) such that ‖Pj‖ = inf M(j)
‖ ‖. Thus for a fixed j ∈ �r we choose

a sequence {Pj,i}i∈� of elements from M(j) such that for every i, ‖Pj,i‖ ≥ ‖Pj,i+1‖, and
limi→∞ ‖Pj,i‖ = inf M(j)

‖ ‖. If Pj,i = ∑
t≤j aj,i,tXt, we distinguish two cases:

(i)The set of coefficients of all polynomials Pj,i is bounded in K. Then, since K is
locally compact, for every t there exists a subsequence {aj,im,t}m∈� of {aj,i,t}i∈� which
converges to an element aj,t ∈ K. If we put Pj = ∑

t≤j aj,tXt, it follows easily that

Pj ∈ M(j) and ‖Pj‖ = inf M(j)
‖ ‖.

(ii)The above set of coefficients is unbounded. If B̄K (0, 1) = {x ∈ K ; |x| ≤ 1} then
its maximal ideal BK (0, 1) = {x ∈ K ; |x| < 1} is a principal ideal generated by an
element π . We take bi, the smallest positive integer such that fi = πbi Pj,i ∈ B̄K (0, 1)[X].
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Choosing, if it is necessary, a subsequence we may assume that limi→∞ bi = ∞. Since
B̄K (0, 1) is a compact set, there exists a subsequence {fis}s∈� which converges to a
polynomial f ∈ B̄K (0, 1)[X]. From our choice of bi it follows that fi is primitive for
any i. Hence it follows that f is primitive, in particular f 	= 0. Since ‖Pj,i‖ ≤ ‖Pj,1‖
for each i, we obtain that f = limi→∞ ‖fi‖ = 0, a contradiction which implies the
corollary. �

3. Types of non-Archimedean norms on K [X] . In order to describe all the non-
Archimedean norms on K [X] which extend | | we first establish the following lemma.

LEMMA 2. Suppose that (K, | |) is a valued field and {‖ ‖i}i∈I is a family of non-
Archimedean norms on K[X] which extend | | such that for any Q1, Q2, Q3 ∈ K [X] there
exists an i0 ∈ I verifying

inf
i∈I

{‖Qj‖i
} = ‖Qj‖i0 , j = 1, 2, 3.

Then, if for all R ∈ K [X] we define

‖R‖ = inf
i∈I

{‖R‖i}, (24)

we obtain a non-Archimedean norm on K[X] which extends | |. Furthermore, if for every
i ∈ I, ‖ ‖i is a K-algebra norm, then also the norm given by (24) is a K-algebra norm.

Proof. If Q, R ∈ K [X], we consider for example Q1 = Q + R, Q2 = Q, Q3 = R.

Then there is an i0 ∈ I such that

‖Q + R‖ = ‖Q + R‖i0 ≤ max
{‖Q‖i0 , ‖R‖i0

} = max {‖Q‖, ‖R‖}.
The other required properties are similarly proved. �

Let ‖ ‖ be a non-Archimedean norm on K [X] which extends | |. For every j ∈ �r

we construct a sequence of polynomials 	j = {Pj,i}i∈�
, with Pj,i ∈ M(j) in the following

way. If there exists Qj ∈ M(j) such that ‖Qj‖ = inf M(j)
‖ ‖, we fix this polynomial and for

every i ∈ � we put Pj,i = Qj, otherwise we take {Pj,i}i∈�
such that ‖Pj,i+1‖ < ‖Pj,i‖, for

any i, and limi→∞ ‖Pj,i‖ = inf M(j)
‖ ‖. We consider


 = {
σ = {si}i∈�r , si ∈ �

}
, (25)

and for every σ = {sj}j∈�r ,

Fσ = {
Pj,sj

}
j∈�r , Nσ = {‖Pj,sj‖

}
j∈�r , Pj,sj ∈ 	j. (26)

REMARK 2. If inf M(j)
‖ ‖ is not attained, for each j, then for each P ∈ M(j) there

exists Q ∈ M(j) such that ‖Q‖ < ‖P‖. Then ‖P‖ = |a|‖(P − Q)/a‖, where a ∈ K and
(P − Q)/a ∈ M(i) with i < j. Hence, by induction it follows that the values of the norm
coincide with the valuation group |K∗|.

We are ready to prove the following result.

THEOREM 1. Let (K, | |) be a valued field and let ‖ ‖ be a non-Archimedean norm
on K [X] which extends | |. If, for every j ∈ �r, there exists Pj ∈ M(j) such that ‖Pj‖ =
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inf M(j)
‖ ‖, then ‖ ‖ is a Gauss norm defined by F = {Pj}j∈�r , N = {‖Pj‖}j∈�r , where Pj

can be chosen in 	j. Otherwise, the set of K-vector space norms {‖ ‖Fσ ,Nσ
}σ∈
 verifies

the conditions from Lemma 2 and ‖ ‖ is equal to the norm defined by (24).

Proof. The first case follows by Proposition 4, where Pj can be chosen in 	j.
In the second case, we prove that {‖ ‖Fσ ,Nσ

}σ∈
 verifies the conditions from Lemma
2. We take the monic polynomials Qj ∈ K [X] with qj = d(Qj), j = 1, 2, 3 and put

θj = inf
σ∈


{‖Qj‖Fσ ,Nσ

}
, j = 1, 2, 3.

If ‖Qj‖ = inf M(qj)
‖ ‖ , we choose Pqj,sqj

with sqj = 0, otherwise we can take Pqj,sqj
∈ 	qj

such that ‖Qj‖ > ‖Pqj,sqj
‖. Then Qj = Pqj,sqj

+ aq(1)
j ,jQq(1)

j ,j, where Qq(1)
j ,j is monic,

d(Qq(1)
j ,j) = q(1)

j < qj and

‖Qj‖ = max
{
‖Pqj,sqj

‖, ‖aq(1)
j ,jQq(1)

j ,j‖
}
. (27)

Now we choose polynomials Pq(1)
j ,s

q(1)
j

such that either sq(1)
j

= 0, if ‖Qq(1)
j ,j‖ = inf M

(q(1)
j )

‖ ‖

or ‖Qq(1)
j ,j‖ > ‖Pq(1)

j ,s
q(1)

j

‖, otherwise. Hence Qq(1)
j ,j = Pq(1)

j ,s
q(1)

j

+ ãq(2)
j

Qq(2)
j ,j, where Qq(2)

j ,j is

monic and d(Qq(2)
j ,j) = q(2)

j < q(1)
j . Thus

‖Qq(1)
j ,j‖ = max

{
‖Pq(1)

j ,s
q(1)

j

‖, ‖ãq(2)
j

Qq(2)
j ,j‖

}
(28)

and

Qj = Pqj,sqj
+ aq(1)

j ,jPq(1)
j ,s

q(1)
j

+ aq(2)
j

Qq(2)
j ,j,

where aq(2)
j

= aq(1)
j

ãq(2)
j

. In this way after a finite number of steps we obtain

Qj = Pqj,sqj
+ aq(1)

j ,jPq(1)
j ,s

q(1)
j

+ aq(2)
j ,jPq(2)

j ,s
q(2)

j

+ · · · + a(0,...,0),j.

Hence

‖Qj‖ ≤ max

{
‖Pqj,sqj

‖, ‖aq(1)
j ,jPq(1)

j ,s
q(1)

j

‖, ‖aq(2)
j ,jPq(2)

j ,s
q(2)

j

‖, ..., |a(0,...,0),j|
}

. (29)

By using (27) and (28), it follows that one has equality in (29). Moreover, one can
choose the same polynomials Pi,si for all the polynomials Qj, j = 1, 2, 3. Now we
choose σ = {ti}i∈�r ∈ 
 such that, if q = max1≤j≤3 {qj}, then for i ≤ q and i = q(r)

j , ti =
sq(r)

j
. It follows that ‖Qj‖ = ‖Qj‖Fσ ,Nσ

= θj and {‖ ‖Fσ ,Nσ
}σ∈
 verifies the conditions of

Lemma 2.
Lastly, take R ∈ K [X]. Since ‖R‖ ≤ ‖R‖Fσ ,Nσ

, it can be proved in the same manner
that the norm is equal to the norm defined by (24). �

REMARK 3. On K [X] there exist non-Archimedean norms which are not Gauss
norms and extend | |. Even in the case of multiplicative norms and r = 1 such examples
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can be found. For instance, one may take K = �, p a prime number and x ∈ �p a
transcendental element over �. Then we consider on �[x] the absolute value induced
by the p-adic absolute value | |p defined on �p. If {an}n≥1 is a sequence of rational
numbers which tends to x in �p, the polynomials Pn(X) = X − an ∈ �[X ] define a
sequence such that |Pn(x)|p tends to zero. Hence, by Proposition 4, it follows that one
obtains a norm as in the second case of Theorem 1.

4. Completions of K [X] with respect to non-Archimedean norms . We now proceed
to study the completion of K [X] with respect to a Gauss norm ‖ ‖F,N . We denote by
K̃ the completion of K with respect to | |, and consider the set of formal sums

˜K [X] =
{

f =
∑
i∈�r

aiPi; ai ∈ K̃, lim
N(i)→∞

|ai| δi = 0

}
. (30)

If f ∈ ˜K [X], define

‖f ‖F,N = sup
i∈�r

{|ai| δi}. (31)

THEOREM 2. Suppose that (K, | |) is a valued field and ‖ ‖F,N is a Gauss norm of
K-algebra on K [X]. Then ˜K [X] is a K-algebra which contains K[X]. Furthermore the map
given by (31) is a K-algebra norm and ˜K [X] is the completion of K[X] with respect to the
Gauss norm.

Proof. If f, g = ∑
j∈�r bjPj ∈ ˜K [X], then

fg =
∑
u∈�r

cuPu,

with

cu =
∑
u≤v

τ (u)
v , τ (u)

v =
∑
w≤v

awbv−wγu(w, v − w). (32)

Since, for v ≥ u,

∣∣τ (u)
v

∣∣ ≤ max
w≤v

{|awbv−wγu(w, v − w)|} ≤ max
w≤v

{
|aw| |bv−w| δwδv−w

δu

}
, (33)

it follows that limN(v)→∞ τ
(u)
v = 0 and cu ∈ K̃. Moreover, limN(u)→∞ |cu| δu = 0 and fg ∈

˜K [X]. Then it follows easily that ˜K [X] is a K-algebra which contains K [X]. Since

‖fg‖F,N = sup
u∈�r

{|cu| δu}

by (32) and (33) we obtain that the map given by (31) is a K-algebra norm on ˜K [X].
We need to show that (˜K [X], ‖ ‖F,N ) is complete. Let f [t] = ∑

i∈�r ai,tPi ∈ ˜K [X],
t ≥ 1 a Cauchy sequence. Since, for a fixed i,

|ai,t+1 − ai,t| ≤ ‖f [t+1] − f [t]‖F,N
δi

, (34)
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it follows that each sequence ai,t, t = 1, 2, . . . is a Cauchy sequence in K̃ . For i ∈ �r, let
ai ∈ K̃ be the limit of this sequence and f = ∑

i∈�r aiPi. We have to prove that f ∈ ˜K [X]
and limt→∞ ‖f − f [t]‖F,N = 0. By restricting to a subsequence we may assume that

‖f [s] − f [t]‖F,N ≤ 1
t

(35)

for all s ≥ t, t = 1, 2, . . .. By (34) and (35) we obtain |ai,s − ai,t| ≤ 1
tδi

, s = t, t +
1, . . . and hence |ai − ai,t| ≤ 1

tδi
, for any i ∈ �r, t ≥ 1. Since f [t] ∈ ˜K [X], we

obtain limN(i)→∞ |ai,t|δi = 0. But, for every t, |ai|δi ≤ max{|ai,t|δi,
1
t }. Hence

limN(i)→∞ |ai|δi = 0 and f ∈ ˜K [X]. Then ‖f − f [t]‖F,N = supi∈�r {∣∣ai − ai,t
∣∣ δi} ≤ 1

t and
limt→∞ ‖f − f [t]‖F,N = 0. This proves the theorem. �

5. Non-Archimedean absolute values on K(X). In the following we deal with non-
Archimedean absolute values (multiplicative norms) on K [X] which extend an absolute
value of K .

Let (K, | |) be a valued field and | |L an absolute value on L = K(X) which extend
| |. We call | |L a residual transcendental (r.t.) extension of | | if the residue field
L| |L is a transcendental extension of K| | of transcendence degree r. We call | |L a
Gauss absolute value if its restriction to K [X] is a non-Archimedean Gauss norm.
If a Gauss absolute value | |L is defined by F = {Pj}j∈�r and N = {|Pj|L}j∈�r , where
Pj = Pj1

e1 . . . Pjr
er , Pei = Xi − αi and αi ∈ K , then it is called a canonical Gauss absolute

value. In this case we denote | |L = | |(α1,δ1),...,(αr,δr), where δi = |Xi − αi|L. For r = 1 and
K̄ a fixed algebraic closure of K , we denote by | |K̄ a fixed extension of | | to K̄. If
| |K(X) is an extension of | | to L = K(X), then there exists an extension | |K̄(X) of | |K(X)

to K̄(X) which is also an extension of | |K̄ . Moreover, if | |K(X) is an r.t. extension of
| |, then | |K̄(X) is an r.t. extension of | |K̄ and there exist α ∈ K̄ and δ ∈ |K̄×| such that
| |K̄(X) = | |(α,δ) is a canonical Gauss absolute value. The pair (α, δ) is called a pair of
definition for | |K̄(X). It is known that two pairs (α1, δ1) and (α2, δ2) define the same
valuation | |K̄(X) if and only if

δ1 = δ2 and |α1 − α2|K̄ ≤ δ1. (36)

By a minimal pair (of definition) (see [1–3]) for | |K̄(X) we mean a pair of definition (α, δ)
such that [K(α) : K ] is minimal.

PROPOSITION 5. Let | |L be a residual transcendental extension of | |. Then there exist
polynomials f1, . . . , fr, with fi ∈ K [X1, . . . , Xi], which are algebraically independent over
K, such that the restriction | |A of | |L to A = K [f1, . . . , fr] is a Gauss absolute value with
Pei = fi, for i = 1, 2, . . . , r and δj = 1 for every j. Moreover, if K1 = K(f1, . . . , fr) and
| |K1 is the canonical extension of | |A to K1, then L is an algebraic extension of K1 and
| |L is an extension of | |K1 .

Proof. Consider a transcendence basis F̄1, . . . , F̄r of L| |L over K| |. Since | |L
is a residual transcendental extension of | | and K ⊂ K(X1) ⊂ K(X1, X2) ⊂ . . . ⊂
K(X1, . . . , Xr), we can choose Fi ∈ K(X1, . . . , Xi). Then for every i |Fi|L = 1, and if
P = ∑

j ajFj ∈ K [F], there exists a ∈ K such that aP ∈ B̄L(0, 1). Hence we may suppose

that P ∈ B̄L(0, 1) and at least a coefficient of P has absolute value equal to 1. Since
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F̄1, . . . , F̄r are algebraically independent over K| | it follows that |P|L = maxj {|aj|}.
Thus |K×

1 |K1 = |K×| and the index e of the subgroup |K×| in |L×|L is finite (see [4],
Ch.VI, §8, Sec. 1, Lemma 2). Since Fi = gi

hi
with gi, hi ∈ K [X1, . . . , Xi] and |Fi|L = 1 it

follows that |gi|L = |hi|L and |gi|eL ∈ |K×|. But F̄ e
1 , . . . , F̄ e

r are algebraically independent
over | |K . Hence we may suppose |gi|L ∈ |K×|K and there exist elements bi ∈ K× such
that |gi|L = |bi|. Thus we can consider |gi|L = |hi|L = 1.

Now we prove that one can replace F1, . . . , Fr by polynomials. Since F1 is
transcendental over K(F2, . . . , Fr) at least one of g1 and h1 is transcendental over
K(F2, . . . , Fr). Thus we can replace F1 by a polynomial f1 ∈ K [X1]. Since F2 is
transcendental over K(f1, F3, . . . , Fr) we can replace F2 by a polynomial f2 ∈ K [X1, X2]
and the proposition follows by induction on i. �

COROLLARY 2. If, in Proposition 5, K is an algebraically closed valued field,
then |K×| = |L×|L and we can choose the polynomials fi to be irreducible for every
i = 1, 2, . . . , r.

Proof. Since, in this case, the group |K×| is divisible, it follows that |K×| = |L×|L.

By Proposition 5, | |L is a canonical Gauss absolute value with δj = 1. If f1 = ∏n1
j=1 f1,j,

where f1,j are irreducible polynomials, there exists j0 such that f1,j0 is transcendental
over K(f2, . . . , fr). Hence by multiplying by suitable elements from K , the corollary
follows by induction. �

REMARK 4. Let (K, | |) be an algebraically closed valued field and r = 1. If | |L is a
non-Archimedean absolute value on L = K(X) which extends | |K and there exists P1 ∈
M(1) such that |P1|L = inf M(1)

| |L, then for all positive j there exists Qj ∈ M(j) such that
|Qj|L = inf M(j)

| |L, = |P1|jL and | |L is a canonical Gauss absolute value defined by Pj =
Pj

1 and δj = |Pj|L. To prove this statement it is enough to take Q ∈ M(j). Then Q = (X −
α1)...(X − αj) with αi ∈ K. Hence |Q|L ≥ (min1≤i≤j |X − αi|L)j ≥ |P1|jL. Since |Pj

1|L =
|P1|jL, the remark follows.

Now let (K, | |) be a (not necessarily algebraically closed) valued field. We
consider a r.t. extension | |L of | | to L = K(X) and | |Li the restriction of | |L to
Li = K(X1, . . . , Xi), i = 0, 1, 2, . . . , r, with L0 = K and Lr = L. Then | |Li+1 is a r.t.
extension of | |Li . Let us denote by L̄i a fixed algebraic closure of Li such that

K̄ ⊂ L̄1 ⊂ . . . ⊂ L̄,

and by | |L̄i
a fixed extension of | |Li to L̄i, i = 0, 1, . . . , r.

THEOREM 3. Let (K, | |) be a valued field and | |L a r.t. extension of | | to L = K(X).
Then there exist pairs (αi, δi) with αi ∈ L̄i−1, δi ∈ |L̄×

i−1|L̄i−1
, i = 1, 2, . . . , r, such that | |L

is defined by | |K in the following manner. If P ∈ K [X] and Pj = (Xr − αr)j, then

P =
∑

j≤d(P)

bj(Xr − αr)j, bj ∈ L̄r−1,

and

|P|L = max
j≤d(P)

{|bj|L̄r−1
δj

r

}
. (37)

https://doi.org/10.1017/S0017089509990115 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990115


14 GHIOCEL GROZA, NICOLAE POPESCU AND ALEXANDRU ZAHARESCU

Then by using, for each j the minimal polynomial of bj over Lr−1 one can compute by (3)
its absolute value | |L̄r−1

by means of | |L̄r−2
, αr−1, δr−1, and so on.

Proof. Since | |L is an absolute value it is enough to define it on K [X1, . . . , Xr]. By
[1], Proposition 1.1 it follows that | |L̄i+1

is a r.t. extension of | |L̄i
and |L̄×

i+1|L̄i+1
= |L̄×

i |L̄i
.

From Corollary 2, for i = r, it follows that | |Li+1 is defined in (37) by means of | |Li and
a pair (αi, δi), where αi ∈ L̄i is the root of an irreducible polynomial Pi of degree 1 and
δi = |Pi|L̄i

. Now the theorem follows by induction on i. �
COROLLARY 3. With the hypotheses and notations of Theorem 3 there exist βi,j, γi ∈

L| |L, i = 1, 2, . . . , r, j = 1, 2, . . . , ni such that the following conditions are satisfied:
(a) L| |L = K| |(β1,1 . . . , β1,n1 , γ1, β2,1, . . . , β2,n2 , γ2, . . . , βr,1, . . . , βr,nr , γr).
(b) γ1, γ2, . . . , γr are algebraically independent over K| |.
(c) For every i, j, βi,j is an algebraic element over K| |(β1,1, . . . , β1,n1 , γ1, . . . ,

βi−1,1, . . . , βi−1,ni−1 , γi−1).
(d) The algebraic closure of K| | in L| |L is a finite dimensional extension of K| |.

Proof. Since | |L̄i+1
is a r.t. extension of | |L̄i

, by [1] Corollary 2.3
there exist βi+1,1, . . . , βi+1,ni+1 , γi+1 ∈ Li+1| |Li+1

such that Li+1| |Li+1
= Li | |Li

(βi+1,1, . . . ,

βi+1,ni+1 , γi+1) and γi+1 is transcendental over Li | |Li
. Now the statements (a)–(c) follow

by induction, and (d) holds because (c) implies that the algebraic closure of K| | in L| |L
is a finitely generated extension of K| |. �

Next, we consider the problem when L| |L is a transcendental extension of a finite
algebraic extension of K| | (Nagata’s problem) in the case r ≥ 2. We need the following
three lemmas.

LEMMA 3. Let (K, | |) be a valued field, L = K(X) and | |L the absolute value defined
on K [X] by ∣∣∣∣∑

j

ajXj
∣∣∣∣
L

= max
j

|aj|. (38)

If X∗
i , i = 1, 2, . . . , r is the image of Xi in L| |L , then X∗

1 , . . . , X∗
r are algebraically

independent over K| |.

Proof. If ∑
j

b∗
j X∗j = 0,

where bj ∈ B̄K (0, 1), then ∣∣∣∣∑
j

bjXj
∣∣∣∣
L

< 1.

By (38), it follows that all bj ∈ BK (0, 1). Hence b∗
j = 0 and X∗

1 , . . . , X∗
r are algebraically

independent over K| |. �
LEMMA 4. Let (K, | |) be a valued field, L = K(X). Then there exists a uniquely

defined absolute value | |L on K(X) which extends | | such that for every i, |Xi|L = 1 and
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X∗
1 , . . . , X∗

r are algebraically independent over K| |. Moreover

|K×| = |L×|| |L and L| |L = K| |(X∗). (39)

Proof. The proof is similar to the proof of Proposition 2, Ch.VI, §10 of [4]. To
show the uniqueness it is enough to show that if | |L is an absolute value on K [X] which
extends | | such that for every i, |Xi|L = 1 and X∗

1 , . . . , X∗
r are algebraically independent

over K| |, then it is defined by (38).
Without loss of generality we can consider P ∈ K [X] given by (1) such that all

aj ∈ B̄K (0, 1) and at least one of the coefficients has the absolute value equal to one.
Since for every i, |Xi|L = 1, it follows that

P∗ =
∑

j

a∗
j X∗j

.

By using the fact that X∗
1 , . . . , X∗

r are algebraically independent over K| |, we obtain
that P∗ 	= 0 and |P|L = 1 = maxj |aj|.

Now we prove the existence of the absolute value | |L. It is easy to see that the
absolute value defined by (38) extends | |, for every i, |Xi|L = 1 and |K×| = |L×|| |L .
From Lemma 3 it follows that X∗

1 , . . . , X∗
r are algebraically independent over K| |. To

prove that L| |L = K| |(X∗) we consider R ∈ L. Then we can write

R = c
∑

i aiXi∑
i biXi

, (40)

where c, ai, bi ∈ B̄K (0, 1) and at least one of the coefficients ai and bi has the absolute
value equal to one. Thus |R|L = 1 if and only if |c| = 1. In this case

R∗ = c∗ ∑
i a∗

i X∗i∑
i b∗

i X∗i . (41)

and this completes the proof of the lemma. �
LEMMA 5. Let (K, | |) be a valued field. If | |L = | |(α1,δ1),...,(αr,δr), with δi ∈ |K×| is a

canonical Gauss absolute value defined on L = K(X), then K| | is algebraically closed in
L| |L .

Proof. We take τi ∈ K× such that for every i, |τi| = δi. Then |Xi−αi
τi

| = 1 and every
polynomial P ∈ K [X] can be written in the form

P =
∑

i

ai(X − α)i =
∑

i

bi

(
X − α

τ

)i

, (42)

where
(X−α

τ

)i = (X1−α1
τ1

)i1
. . .

(Xr−αr
τr

)ir
, bi = aiτ

i and

|P|L = max
i

|bi|. (43)

By Lemma 3 it follows that ( X1−α1
τ1

)∗ . . . ( Xr−αr
τr

)∗ are algebraically independent over K| |
and from Lemma 2 we obtain that L| |L = K| |( X−α

τ
)
∗
. Hence K| | is algebraically closed

in L| |L . �
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Now we consider a valued field (K, | |), | |K̄ an extension of | | to K̄ and
| |(α1,δ1),...,(αr,δr), with αi ∈ K̄ , a canonical Gauss absolute value on K̄(X). Then the
pair (α1, δ1) defines a canonical Gauss absolute value on K̄(X1) ⊂ K(X1) such that∣∣∣∣∑

i

bi(X1 − α1)i
∣∣∣∣
(α1,δ1)

= max
i

{|bi|K̄δi
1, bi ∈ K̄

}
. (44)

Similarly, (α2, δ2) defines a canonical Gauss absolute value on K̄(X1, X2) = K̄(X1)(X2)
which is an extension of | |(α1,δ1) such that

∣∣∣∣∑
j

cj(X2 − α2)j
∣∣∣∣
(α2,δ2)

= max
j

{|cj|(α1,δ1)δ
j
2

}
, cj ∈ K̄(X1). (45)

Hence∣∣∣∣∑
i,j

aij(X1 − α1)i(X2 − α2)j
∣∣∣∣
(α1,δ1),(α2,δ2)

= max
j

{∣∣∣∣ ∑
i

aij(X1 − α1)i
∣∣∣∣
(α1,δ1)

δ
j
2

}

and for every P ∈ K̄[X1, X2] = K̄ [X1][X2],

|P|(α1,δ1),(α2,δ2) = |P|(α2,δ2). (46)

By induction it follows that for every P ∈ K̄ [X1, . . . , Xi] = K̄ [X1, . . . , Xi−1] [Xi], and
for every i,

|P|(α1,δ1),...,(αi,δi) = |P|(αi,δi). (47)

The following result shows that Nagata’s conjectures holds for r ≥ 1, if | | is a canonical
Gauss absolute value.

THEOREM 4. Suppose that (K, | |) is a valued field, L = K(X), | |L an absolute value
which is the restriction of a canonical Gauss absolute value | |(α1,δ1),...,(αr,δr) on K̄(X) such
that:

(a)[|L×|L : |K×|K ] < ∞.

(b) For every i, (αi, δi) is a minimal pair of definition for the absolute value | |(αi,δi)

defined on K(X1, . . . , Xi−1)(Xi).
Then | |(α1,δ1),...,(αr,δr) is a r.t. absolute value on L(X) and there exists a finite algebraic

extension K1 of K such that K1| |K̄ ⊂ L| | and

L| |L = K1| |K̄ (Y∗), (48)

with Y∗
1 , . . . , Y∗

r ∈ L| |L algebraically independent over K1| |K̄ .

Proof. We denote K1 = K(α1, . . . , αr), ni = [K(α1, . . . , αi) : K(α1, . . . , αi−1)] and
we prove that K1| |K̄ ⊂ L| |L . If P = ∑

i ai(X − α)i ∈ L and for every i the degree di of
|P| with respect to Xi is less than ni, then by (47) and Theorem 2.1 from [1] it follows
that

|P(X)|L = |P(X1, . . . , Xr−1, αr)|(αr−1,δr−1) = . . . = |P(α1, α2, . . . αr)|K̄ . (49)
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Now, if γ ∈ K1 there exists P ∈ L with di < ni such that γ = P(α). Then by (49) it
follows that

|γ |K̄ = |P(α)|K̄ = |P|L
and K1| |K̄ ⊂ L| |.

We show that K1| |K̄ is the algebraic closure of K| | in L| |L . We choose q1 the
smallest natural number such that δ

q1
1 = |θ1|K̄ , where θ1 ∈ K1 and we take β1 a root of

the polynomial Zq1
1 − θ1. Since

q1 ≤ e(K1(β1)/K1) ≤ [K1(β1) : K1] ≤ q1,

it follows that f (K1(β1)/K1) = 1. Hence K1(β1)| |K̄ = K1| |K̄ . Similarly, we choose q2 the
smallest natural number such that δ

q2
2 = |θ2|K̄ , where θ2 ∈ K1(β1) and we take β2 a

root of the polynomial Zq2
2 − θ2. Then we obtain K1(β1, β2)| |K̄ = K1(β1)| |K̄ and by

induction, for every i,

K1(β1, . . . , βi)| |K̄ = K1(β1, . . . , βi−1)| |K̄ . (50)

Now, by (50) and Lemma 5 for M = K1(β1, . . . , βr)(X), it follows that K1| |K̄ =
K1(β1, . . . , βr)| |K̄ is algebraically closed in M| |(α1 ,δ1),...,(αr ,δr) . Then the canonically defined
commutative diagram

��

�

�
K1| |K̄

K| | L| |L

M| |M

implies that the algebraic closure of K| | in L| |L is included in K1| |K̄ . Since K1| |K̄ is a
finite extension of K| |, it follows that K1| |K̄ is the algebraic closure of K| | in L| |L .

Finally, we prove (48). Since the multiplicative group G/H, where G = |L×|L,
H = |K×|, is generated by the images δ̄1, . . . , δ̄r of δ1, . . . , δr, from (a) it follows that
G/H is a finite commutative group. Hence it is a direct product of cyclic groups:

G/H =< g1 > × < g2 > × . . . × < gr >, (51)

where it is possible that some of gi = 1. We denote by oi the order of gi. If P ∈ K [X] is
given by (42), then

P =
∑

i

bi

(
X − α

β

)i

, (52)

where ( X−α
β

)i = ( X1−α1
β1

)i1 . . . ( Xr−αr
βr

)ir , bi = aiβ
i. Since |Xi−αi

βi
|K̄(X) = 1 it follows that

|P|L = 1 if and only if

max
i

{|aiβ
i|K̄} = max

i
{|ai|K̄δi} = 1. (53)
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Because, in G/H, gi = δ̄
m(i,1)
1 . . . δ̄

m(i,r)
r , then (53) holds if and only if δ̄

i1
1 . . . δ̄ir

r =
go1s1

1 . . . gorsr
r , for each i such that |ai|K̄δi = 1. If we put Y∗

i = ( X1−α1
β1

)∗m(i,1)o1

. . . ( Xr−αr
βr

)∗m(i,r)or , it follows that for P ∈ B̄L(0, 1) we have

P∗ =
∑

s

b∗
s Y∗s, (54)

which implies (48). �
REMARK 5. In order to prove that Nagata’s conjecture does not hold generally

we can take, for an odd prime p, K = �p, | | = | |p the p-adic absolute value, L =
K(X1, X2), | |L an absolute value which is the restriction of a Gauss absolute value
| |(0,1),(α2,δ2) on K(X1)(X2) such that: Xq

1 + α
q
2 = 1, with q an odd prime different from

p, δ2 	∈ |K×| and its order in the group |L×|L/|K×| is finite. Then |α2|K(X1) = 1 and
by using the notations from the proof of Theorem 4 we find K| | = �p (the field with
p elements) and L| |L = �p(X∗

1 , α∗
2 , ( X2−α2

β2
)∗). Hence it is easy to see that L| |L is not a

transcendental extension of a finite extension of K| |.
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