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Let K be a bounded open convex set in euclidean w-space Rn symmetric
in the origin 0. Further let L be a discrete point set in Rn containing 0 and
at least n linearly independent points of Rn. Put mi = inf ut extended over
all positive real numbers u( for which ut K contains i linearly independent
points of L, i = 1, 2, • • •, n.

Denote by P a parallelopiped in Rn centred at 0. For each positive
integer N denote by L(NP) the number of points of L contained in NP.
Put

d(L, P) = lim inf (V{NP)IL(NP)), N -> oo,

where V(NP) denotes the Jordan content oiNP and

d(L) = inf d(L, P)

extended over all nondegenerate parallelopipeds P. It is assumed here that
L is such that d{L) is finite and positive. In particular if L is a lattice then
d(L) is the determinant of L and in this case Minkowski's second inequality
in the geometry of numbers asserts that

(1) mxm% • • • mnV(K) ^ 2nd(L).

The object here is to show that (1) remains true if the restriction of L to a
lattice is replaced by the weaker condition

(A) if X e L and Y eL then either X—Y or Y—X is in L. Examples of
such sets are obtained by taking a lattice A, a positive integer m and a fixed
point X of Rn such that the sets

A, A+X, A+2X, • • •, A+mX

are pairwise disjoint. With L as the union of these m-\-\ sets it is evident
that L satisfies (A) and that d(L) = d(A)j{m-\-\). In particular with m = 1,
L becomes the familiar double lattice relating homogeneous and inhomo-
geneous problems in the geometry of numbers and (1) becomes a trans-
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ference theorem. M. Bleicher has pointed out in correspondence that there
are sets L other than those given here with property A.

Minkowski's original proof of (1) for lattices has been simplified by Weyl
[3] and Cassels [4], and a quite different proof has been given by Daven-
port [1]. Further simplifications of both lines of proof are given in Bambah,
Woods and Zassenhaus [5]. It is the version by Bambah of Davenports proof
that is used here to obtain the generalisation stated above and it is interest-
ing to note that the Minkowski method of proof appears to break down for
this wider class of sets.

2. Proof of the generalisation

THEOREM 1. Suppose that S is a bounded set in Rn. Let %{X) be its char-
acteristic function. Suppose further that

exists and I > d(L). Then the sets S-{-A, A e l overlap so that there exists
points X, Y in S such that X—YeL.

PROOF. By way of contradiction assume that the sets S+A, A eL do
not overlap. Let P denote the cube given by

max (I^JI, • • • , \xn\) ^ 1.

Since S is bounded there exists a positive integer k such that 5 is contained
in kP. For a fixed positive integer N consider the set Z of points A of L
that lie in the cube NP. Define

2
AeZ

By hypothesis the sets S+A do not overlap, hence F(X) ^ 1 for all X.
Further F(X) = 0 if X is not in the cube (N+k)P. Therefore

(2N+2k)m ^ r • • • r F(X)dXl ' • • d x n
J — OO J — OO

= 5 r ---r X(x-A)dx1'--dxn
AeZ J — oo J — oo

= 5 r •••f°° %{x)dx1---dxn
AeZ J — oo J — oo

= Z(ATP)7.
Thus

7 ^ (V(NP)IL(NP))((2N+2k)l2N)n).
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Let N tend to infinity; this implies that

I ^d(L, P) and therefore also I ^d(L),

the contradiction that proves the theorem.

LEMMA 1. If T is a nonsingular transformation of Rn into itself then
d{T(L)) = \\T\\d(L).

PROOF. Let P be a parallelopiped centred at 0. For a fixed positive
integer N the number of points of T(L) in NP is the same as the number of
points of L in NT~1(P). Hence

d(T(L), P) = lim inf [7(iVP)/Z(iVr-1(P))]

= | |r | | liminf ^(NT-^P^mNT-^P))]

= \\T\\d{L,T-i(P)).

Thus d(T(L))=iniP\\T\\d(L, T-^P)) = \\T\\d{L), which proves the lemma.

LEMMA 2. Let nlt n2, • • •, nnbe n positive real numbers such that

nx SS n2 ^ • • • ^ nn.

There exist sets Klt K2, • • •, Kn such that

(i) K^faK,
(ii) K( C^n(K for * = 1, 2, • • •, n,

(iii) If X, Y eK{ for i > 1 and xt = yit • • •, xn = yn then there exist points
X', Y' in K(_i such that X-Y = X'-Y',

(iv) / / Xi(X~) is the characteristic function of K( then

exists and Vt = J
(hh)"V(K) if i=

- i */ * > 1 -

A proof of this lemma is given in [5].

THEOREM 2. If L has property (A) then (1) holds.

PROOF. Since L is discrete and contains n linearly independent points
of Rn, it follows that there exist n linearly independent points Flt F2l • • •,
Fn of L such that F( lies on the boundary of m(K for each i = 1, 2, • • •, n.
From lemma 1 it follows that (1) is an invariant inequality under nonsingu-
lar linear transformations of Rn, so without loss of generality it may be as-
sumed that the coordinate system is such that Ft has coordinates of the form
(/i» /2» ' " '» fi> °. " " "» °) for each i — 1, 2, • • •, n. Now if \m{K contains
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two points X = (xlt • • ', xn) and Y = (ylt- • -, yn) such that X—Y is
in L then, by the convexity and symmetry of K, X—Y is in mfK and so
cannot be linearly independent of Flf • • •, Fi_1; hence xt:=yi,---,
xn = Vn- Apply lemma 2 with nt = mi for i = 1, 2, • • •, n to obtain the
sets ifx, • • •, Kn. Assume by way of contradiction that (1) is false so that

m1---mnV{K) >2nd{L).
Then

and by theorem 1 there exist points X, Y in Kn such that 0 ^ X—Y e L.
Since if,, Q\mnK this implies that xn = yn, and by property (1) of the sets
Kt, Kn_x contains points Xw, Y(1) such that

X-Y = X<»-Y«».

Since Kn_xC\mn_xK this implies that x^lx = y^, x^ = y™ and there
exist points X<2), Y12' in /Cn_2 with

X - Y = X<2>-Y<2>.

Repeating this argument a number of times we obtain points X*, Y*
in \mxK such that X-Y = X*-Y*. But X*-Y*eL implies that
X* = Y* and X—Y = 0, which is a contradiction. This proves the theorem.

3. A comment on Minkowski's method

Minkowski's method relies upon the fact that the measure of any meas-
urable subset of Rn in the quotient space of Rn modulo a lattice of dimension
SS n is monotone, that is to say, if C < C then the measure of C does not
exceed the measure of C in the quotient space. Such a measure can be ge-
neralised to sets L other than lattices as follows. Let C be a measurable sub-
set of Rn. If C is bounded there exist at most a finite number of points
Z1( • • •, Zk other than 0 such that C-\-Zt intersects C. Denote by Mi+l the
measure of the set of points X of C such that C lies in exactly i of the sets
C-\-Zx, • • •, C-\-Zk and define

M(C) = M1+^Ma+\Mt+ • • • \Mk.

Now if M(C) is monotone so that C C C implies M(C) ^ M{C) for bound-
ed measurable sets C, C then it is possible to show that (1) holds provided
d{L) is replaced by the upper bound of M(C) taken over all measurable
bounded sets C. However the author has been unable to find any interest-
ing sets L other than lattices that have this property.
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