LETTER TO THE EDITOR

Dear Editor,

Pfeifer (1982) has given a proof of the following interesting fact: if $\{\tau_n\}_1^\infty$ are points of a simple point process on $R_+ = [0, \infty)$ with counting random function N(t), then if $\{N(t); t \ge 0\}$ is a Markov process, $\{\tau_n\}_1^\infty$ is also a Markov process. In addition, $p_{ii}(s, t) = P\{\tau_i > t \mid \tau_{i-1} = s\}$, where $p_{ij}(s, t)$ are transition probabilities of N(t). In connection with these, I would like to point out that there exist more general results on this topic, some of which have already been published (Todorovic (1976)). A short proof exists, based on the following equation:

$$\mathscr{L}_n \cap \{N(t) = n\} = \mathscr{F}_t \cap \{N(t) = n\},\$$

where $\mathcal{L}_n = \mathcal{G}\{\tau_1, \dots, \tau_n\}$ and $\mathcal{F}_t = \mathcal{G}\{N(s); s \leq t\}$, that if N(t) is a Markov process, not only is $\{\tau_n\}_1^\infty$ Markov, but it has the strong Markov property. In other words, for any stopping time T with respect to the filtration $\{\mathcal{L}_n; n \geq 1\}$, we have:

$$P\{\tau_{T+1} \leq t \mid \mathscr{L}_T\} = P\{\tau_{T+1} \leq t \mid \tau_T\} \quad (a.e.).$$

In addition,

$$p_{j,k}(s,t) = P\{N(t) = k \mid \tau_j = s\}$$

Both Dr Pfeifer, and the readers of the *Journal of Applied Probability*, will, I hope, wish to be informed of these results.

University of Kentucky Lexington Yours sincerely, P. TODOROVIC

References

PFEIFER, D. (1982) The structure of elementary pure birth processes. J. Appl. Prob. 19, 664–667. TODOROVIC, P. (1976) On the structure of the Radon-Nikodym derivative for Markov processes (abstract). Adv. Appl. Prob. 8, 247–248.

996