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G. A. WATTERSON1 * AND P. DONNELLY2

1 Department of Mathematics, Mortash University, Victoria 3168, Australia
2 School of Mathematical Sciences, Queen Mary and Westfield College, London, El 4NS, U.K.

(Received 2 March 1992 and in revised form 2 June 1992)

Summary

Consider a random sample of genes at a locus, drawn from a population evolving according to the
infinitely many, neutral, alleles model. The sample will have a most recent common ancestor gene,
which we shall call 'Eve'. The probability distribution, for the number of genes of oldest allelic
type in a sample, is known and has a neat form. Rather less is known about the distribution for
the number of genes in the sample which are of the same allelic type as Eve possessed. If the latter
number is positive, then these genes are automatically of the oldest type in the sample. But Eve
may have no non-mutant descendants in the sample; then, the oldest allele will be a mutant arising
in a line of descent after Eve. The paper studies the number of non-mutant descendants from Eve,
its distribution and moments. It seems that there may be few neat results. In large samples, the
proportion of genes of Eve's type has an approximate /?-like density, together with a discrete
probability atom at zero, if the mutation rate parameter is low. Extinction of the allele of even the
population's common ancestor is possible, but not certain, and bounds are obtained for its
probability. Some comments are made about the applications and implications of the results for
human mitochondrial DNA.

1. Introduction

We use the term 'Eve' to denote the most recent
common ancestor (MRCA) of a random sample of
genes drawn from one locus in the present generation.
How many of these descendant genes will have
inherited Eve's allele, without mutation? We study
this question, using the coalescent process as a model
for the stochastic development of the sample's
genealogical tree. For a discussion of the coalescent,
see e.g. Kingman (1982), Watterson (1984), Tavare
(1984), and Griffiths (1989).

Consider a sample of n genes, one from each of n
homologous chromosomes, taken at a particular
instant. Looking backwards in time, usually one sees
that each gene has descended from its own parent
gene, without mutation. However, occasionally, two
genes will have descended from a common parent
gene (a coalescing of their ancestral lines) or, again
occasionally, a gene will have been subject to mutation,
changing its previous allelic type to a completely new
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allelic type. We call either of these occurrences an
'event' in the genealogy.

When there are n genes under discussion, the
model assumes that the most recent event in the past
was either a coalescent event, with probability
(n — \)/(n + 6 — 1), or a mutation event, with prob-
ability 8/(n + 6—l). Here, 6 is a mutation rate
parameter; if the population size is 2N genes and u is
the probability of any one gene mutating in one
generation, then 8 is twice the mutation rate per gene
per unit time, where time is measured in units of 2N
generations. Thus 0 = 4Nu. (For haploid mito-
chondrial ' genes' discussed in Section 4, however, we
define 6 = 2Mu, where M is the size of the female
population, and measure time in units of M genera-
tions.)

The sample of genes may be traced back, through
various coalescent events, to a single ancestor, 'Eve'.
Were it not for mutation, the sample genes would all be
of the same allelic type as Eve's type. Of course, the
possibility of mutation means that many, if not all, of
the sample genes may be of new allelic types, arising in
the lines of descent since Eve. Ail mutations are
assumed to result in new alleles.
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Kelly (1979), Exercise 7.2.6, showed that the oldest
allele present in a sample would have / representative
genes in the sample with probability

Pn(O = Z
'd + n-\

i

n (1.1)

for / = 1,2,..., n, and, of course, pn(0) = 0. See also
Donnelly (1986).

The oldest allele in the sample may be descended
from a mutant ancestor after Eve, or could possibly be
descended from Eve's gene without mutation. We
denote the number of genes in the sample which are of
Eve's type by Yn, and the number of genes of the
oldest type in the sample by Xn. Thus

and let

Of course, if it happens that the oldest allele is present
in all the genes in a sample, then it must be that Eve
had that allele. Hence

More generally, because

Yn = Xn if Yn>\,

then for i 5= 1,

In = Pn(0 Pr (oldest allele = Eve's allele | Xn = /),

(1.3)

but the second probability on the right is apparently
not easy to evaluate.

It is the aim of the present paper to investigate the
distribution qn{.). Because of a theorem of Shimizu
(1987), see also Watterson (1989), this distribution
applies also to the number of non-mutant copies of an
MRCA in a multi-gene family of n genes on one
chromosome, subject to mutation and gene con-
version.

An explicit, but complicated, formula for qn(i) is
given by (2.14) and (2.15) below, and various other
aspects of the distribution are studied in Section 2. In
Section 3, limiting results are found when n^oo. In
Section 4, we make some remarks about the appli-
cation of our results to human mitochondrial DNA.

Further work could be done on the other distri-
butions, introduced by Griffiths (1989), for the
numbers of non-mutant copies of ancestors at the
nodes of the genealogical tree subsequent to the
MRCA.

Later, we will use the notations

and

8M= d(6-

2. The distribution

(i) A recurrence relation

Griffiths (1989), eqn (3.7), obtained the recurrence
relation

(2.1)

as a special case of a more general result. The equation
holds for i = 0,1,...,« [provided we interpret qn(i) as
zero for i outside this range] and for n = 2,3,

The equation (2.1) can be derived directly as follows.
In order for the sample of size n to have i genes of
Eve's type, the immediately preceding event was either
a mutation or a coalescent. If it were a mutation
[probability 8/(n + 6— 1)] then either there were z'+l
genes of Eve's type [probability qn{i+\)] and one of
them mutated [probability (i+\)/n], or there were i
genes of Eve's type [probability qJJ)], and one of the
other genes mutated [probability {n — i)/ri\. If the most
recent event had been a coalescence [probability
(« — 1 )/(« + #— 1)], then there were n — 1 ancestors at
that stage. If / of these were of Eve's type [probability
<7n-i(0] then one of the other genes must leave two
descendants [probability (« — /— \)/{n — 1)], while if
i—\ of these ancestors were of Eve's type [probability
^n_j(/—1)] then one of these must leave two de-
scendants [probability (/—l)/(n —1)]. Putting the
various possibilities together, we get

e
n + 6-\

n — n — i—

This can be re-arranged to yield (2.1).
The probabilities (2.1) can, of course, be computed

in succession, for n = 2,3,... and, for each n, for
/ = n—1,« — 2,..., 1,0. The boundary condition (1.2)
applies (or can be deduced as the / = n case), as does
the initial condition qx(i) = S( 1( the Kronecker delta.

(ii) Some moments

Griffiths (1986), see also Beder (1988), showed that
the mean number of genes of Eve's type, fin say, is
given by

(2.2)
"2 l(»-l) + 0'

The mean number of genes of the oldest allele is
simpler:

n) = £ iPn{i) =
( - 1

(2.3)
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Table 1. Distributions of numbers of genes of MRCA allele, ql0(-), and
of oldest allele, pio(.), in sample of 10 genes

Tabulated: qlo(i) above plo(0-

i

0

1

2

3

4

5

6

7

8

9

10

Mean

Var.

0

001

00000
00000
00011
00011
00012
00012
00014
00014

00017
00017
00020
00020
00025
00025
00033
00033
00049
00049
00097
00097
0-9722
0-9722
9-9105
9-9109
0-4439
0-4394

01

00056
00000
00105
00110

00117
00122
00132
00138
00152
00158
00180
00186
00220
00227
00286
00292

00410
00418
00752
00759
0-7591
0-7591
91522
91818
3-9266
3-5773

0-5

00897
00000
00414
00526

00446
00557

00484
00594

00532
00640
00593
00698
0-0675
00776
00791
00887
00978
01064
01351
01419

0-2838
0-2838
6-5809
70000
11-5740
8-4000

1

0-2307
00000
00628
01000
00649
01000
00672
01000
00698
01000
00727
01000
00761
01000
00800
01000
00848
01000
00909
01000
01000
01000
4-5507
5-5000
12-6064
8-2500

2

0-4717
00000
00754
01818
00720
01636
00683
01455
00641
01273
00593
01091

00538
00909
0-0473
0-0727
00397
00545

0-0303
00364
00182
00182
2-4031
40000
8-7791
60000

5

0-8182
00000
00507
0-3571
00397
0-2473
00302
01648
0-0223
01049
00158
00629
00106
00350
00066
0-0175
0-0037
00075
00017
00025
00005
00005
0-5482
2-5000
2-0575
2-6786

see Kelly (1979), Exercise 7.2.3. It can also be shown
that the variance of the number of genes of the oldest
allele is

Var ( JO =
0(n-\)(n

(2.4)

(iii) Examples

In Table 1 we show some examples of the distributions
/?„(.) ar>d qn{-), together with their means and
variances, in the case when n = 10. In particular, we
note that in conformity with (1.3),

1n(0<P«(.Q, / = 1,2,...,« — 1,

although the two agree to 4 decimal places when
n = 10 and 0 = 0-01, for instance. Note also that
pn(0) = 0 whereas qn(0) > 0, and that pn(n) = qjn).

The />„(.) distribution is
(i) J-shaped when 0 < 1,

(ii) uniform on 1,2,...,n when 0 = 1 ,
(iii) L-shaped when 0 > 1.

The qn(.) distribution can be similar, but can also be
bimodal (modes at 0 and n) for a range of intermediate
0 values. The uniform solution qn(i) = ! / ( « + ! ) for

i = 0, ± 1 , ± 2 , . . . solves (2.1) when 0 = 2, but it does
not satisfy the boundary conditions of our problem in
general. The one case when qn(.) is correctly uniform
over 0 , 1 , . . . , n is when n = 2,0 = 2.

We note from Table 1 that the means decrease, and
the variances at first increase and then decrease, as 0
increases. These results are to be expected.

While it is possible to obtain, from (2.1), explicit
expressions for qn(i) for values of / close to n, the only
simple ones seem to be the expression (1.2) for qjji),
and

8n k—\

For instance, the next most simple is

4>-2 ) = Anqn(n)

where, for n = 2,

(2.5)

(2.6)

and for n > 2,
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with

R(i\ U kik~:

The product here is interpreted as 1 when j = n.
It is clear that we need some further information to

gain insight into the distribution qn{.) for Yn. We now
describe some equations which pertain to this dis-
tribution.

(iv) An integral equation

It is possible to obtain, from (2.1), an integral equation
for the probability generating function (p.g.f)

224

Another derivation will be mentioned later.
The equation (2.9) involves more terms than does

(2.1); on the other hand it is an equation for qn{i)
using gn_i() terms only. While the latter may be of
some theoretical advantage, it is clear that (2.1) is
simpler for computation.

(vi) Factorial moments

Another deduction which can be made from (2.7) is an
equation for all the factorial moments of Yn. Using the
notation

for the Arth factorial moment, we have

namely

where

= a , s<v<\,

(2-7)

(2.8)

is a probability density function, and where

a = ar,=

(v) Another recurrence relation

The moments of the/n s(v) distribution in (2.8) can be
shown to be

r
say, where

'k,l — "
k\

/! (a

If we use these moments, and expand both sides of
(2.7) in powers of s and equate coefficients, we find the
recurrence

»-,(*)[«^"j-(«+1) V£\.t

which, when substituted into (2.7) and after equating
powers of 1 — s, yields, for k ^ 1,

-l)/tB_l i t_J. (2.10)

[The integral of (l—v)k with respect to the density
(2.8) is a{\ — s)k/(a + k), and is needed to obtain
(2.10).]

It may be noticed that (2.10) is rather simpler than
either (2.1) or (2.9). Of course, because Yn ^n,/inJC = 0
for all k > n. This can be taken as a boundary
condition, together with /*„ 0 = 1. Solving (2.10) in
succession, both from k = 0 upwards and from k = n
downwards, yields explicit solutions for the factorial
moments. But they get progressively more com-
plicated, the further is the order away from 0 or n.

The first order moment is, of course, given by (2.2):

The second order factorial moment is

A/-1) 1

in which the empty product when k = 1 is interpreted
as 1. At the other end, we have

and

^ . . , - i ( 1

We shall show in the next section how the general
form for the factorial moments may be obtained.
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(vii) Probabilities from moments

In principle, it is possible to obtain expressions for the
qn(i)s by the use of factorial moments, via the formula

(—
(2.11)

For instance,

1

and

1
/"'n.nJ

™" -' ( « - l ) !^" -

which agree with (1.2) and (2.5).
The factorial moments, /in k can be very large; it is

numerically preferable to use scaled moments

rn(k) = fink/nm (2.12)

which must lie in [0,1]. Indeed, since

rn(k) = E

we see that rn(k) is the probability that, if we choose
k genes without replacement from the sample of n,
then all k genes would be of Eve's allelic type.
Substituting from (2.12) into (2.10) yields the re-
currence

-\) + kd]rn{k) = k{k-\)rn^{k-\)

+ Wn-\)-k(k-X)]ru_l(k\ (2.13)

with boundary condition

r.(0) = l, « = l , 2 , . . . .
The distribution for Yn can then be found, in principle
from

7,(0 = S ( - :
1-0

(2.14)

While (2.13) is a good method for calculating the
probabilities rn{.) in succession, it is possible to obtain
explicit, but complicated, algebraic expressions.

PROPOSITION 1. The scaled factorial moments are
given by

v v ...2

/(/-l) ]

(2.15)

where the i—\-fold summation is over

1 = k0 ̂  kl < k2 < ... < kt_x <kt = n.

Proof. In the coalescent process describing the way
in which equivalence classes of genes coalesce in

backwards time because of sharing common ancestors,
the jump chain is independent of the time variables
between the jumps; Kingman (1982). Let K} denote
the number of ancestors of the whole sample of n
genes when the number of ancestors of a sub-sample
of / genes has just reduced to/O <j ^ /. During the
drop in the sub-sample from j toy'— 1, the number of
ancestors of the whole sample drops from K}X.o K} — \,
then to K} — 2,..., to K}_x +1 and then to Kf_v The last
transition must involve a coalescing of two sub-
sample ancestors, with probability

because of the random pairing of ancestors. The
earlier transitions, e.g. from in to m — \ ancestors,
must involve the coalescing of two ancestors which
are not both sub-sample ancestors, with probability

Thus

m{m-\)

which is essentially (2.7) in Saunders et al. (1984) with
their /, j , k and / replaced by kp j , j — \ and kH1

respectively. Hence,

m{m-\)

n\n

Here, we assume that

1 ^ /c, < k2,..., kt_t < k, = n.

In order that all / genes, in our sub-sample from n,
are of Eve's type, no mutations can occur in their lines
of descent. Now the probability that no mutations
occur while they had j ancestors, over a time interval
of length Tj say, is the Poisson probability

Supposing that Kt = k} and K^_x = kt_x, then the time,
Tp over which our / genes had)ancestors is the sum of
independent, exponentially distributed random vari-
ables with means

Averaging the Poisson probability over the distri-
bution of 7J yields the probability of no mutation
during this period as

It
17-2
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Putting these facts together, and introducing the
conventions k0 = 1 and that empty products are 1, we
have proven (2.15). •

The explicit expression (2.15) is obviously not very
attractive! In principle, it yields expressions for the
factorial moments, using (2.12), and for the distri-
bution qn{.), via (2.14).

(viii) Two stochastic processes

Our Yn need not be considered as a once-only random
variable, but also as one term in a stochastic process
(Yn,n = 1,2,...}. Thus Yn is the number of genes of
Eve's allele in the genealogy, just prior to each change
in descendant number from n to n +1. The initial state
is Y1 = 1, as Eve's gene has Eve's allele! The transition
probabilities can be read off (2.9), or derived by
considering the evolution of the coalescent in forward
time:

Pr(Fn = l\ Yn_x = 0 =

226

- i - VH
ft — 1

These are, unfortunately, functions of n rather than
being time-homogeneous.

The corresponding conditional factorial moments
are

+ k(k-\)i[k_1]/[n(n-

which are consistent with (2.10). In particular,

E(Yn | rK_x = 0 = in2/[n{n-l) + 0\. (2.16)

A bivariate process in continuous time, which allows
for the exponential waiting times between coalescent
events, is {N(t), Y(t)}, in which N(t) plays the role of n,
the number of descendants at time t. The transition
rates, from state («, /), are to

l . i+1) :
n(n-\)

(n+1,0:
(2.17)

( H . I - 1 ) : 6i/2.

This process has initial state N(0) = 2, 7(0) = 2,
because we take t = 0 to be just after Eve's gene split
into two offspring genes, which will both be of Eve's
allelic type except for a negligible probability of a
mutation. Yn in the previous process corresponds to
Y(t) here, just before N(t) jumps from n to « + l.

We will make some use of these processes in the
next section, in connection with asymptotic behaviour.

3. Some asymptotics

The rather unsatisfactory state of the ' solution' so far
found for our problem suggests that we should attempt
to find asymptotic results when n is large. Limiting

results may be interpreted as applying to an infinite
population. We will assume from now on that 6
remains fixed as n increases. We start by summarizing
some limiting results for Xn and />„(.).

(i) The oldest allele

It is easy to check that for pn{.) given by (1.1),

n
if oo (3.1)

if n — i=O{\) as«-*oo.

(3.2)

The mean (2.3) is given, fairly accurately, by an
integral approximation based on (3.1):

f
Jo"

dv =

The corresponding variance is asymptotically
n 2

which may be calculated either from (2.4) or from the
continuous /?(1,#) density

d(\-v)e-\ 0 < t > < l .

This density is the density of the oldest of the
population's age-ordered allele frequencies,

lim — = V, say,

(now said to have the GEM distribution); see Donnelly
(1986) and Hoppe (1987).

Thus the oldest allele's behaviour is well understood.

(ii) Eve's allele

PROPOSITION 2. There exists a random variable, W
say, such that

—--> W a.s. as «-» oo.
n

Proof. From (2.16) we see that

«(«-!) Yn_, ^ Yn_,

so that YJn,n — 1,2,3,... is a supermartingale,
bounded on [0,1], and that

is a (bounded) martingale. The expression (2.2) can be
derived this way, noting the initial value Yn/n = 1
when n = 1. Doob's Martingale Convergence
Theorem can now be applied to obtain the
result. •
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We will now discuss various aspects of the asymp-
totic behaviour of the distribution of Yn, and hence of
Ws distribution. We will show, inter alia, that M ĥas
an absolutely continuous distribution on (0,1],
together with an atom of discrete probability at 0.

(iii) Moments

It is known, Beder (1988), that the limit of the mean
of Yn/n, that is, of /in/n from (2.2), is

if 6>\.

(3.3)

Higher order moments are given by

3-1

1

from (2.15), where the /—1 fold summation is over

1 -— Is- <T \r <* If ^ ^ If ^ * Is- — r*f~\

(iv) Some particular probabilities

For the distribution of main interest, qn(.), we see
from (1.2) and (3.2) that

(3.4)* as w^oo.

Then, (2.5) shows that

qn(n-\)~dT{\+6)n-e as n-^ao.

While it may be possible to find an asymptotic
expression for qn(n — 2) using (2.6), the continuation
of this line of investigation seems not to be promising.

none of Eve's allele; but then its 'Eve', i.e. its most
recent common ancestor, may be further back in
time.) There must be convergence to some positive
limit, say ^(O) = Pr (Yn = 0 for some n);

Crude bounds on ^(O) are

= 6.

(3.5)

The bounds establish that the probability, that the
population has none of Eve's allele, approaches 0 or
1 as 0 ^ 0 or oo, respectively.

A more accurate upper bound can be obtained from
the bivariate process (2.17).

PROPOSITION 3. The extinction probability of Eve's
allele has the upper bound

a s (3.6)

Proof. q^iQ) is the probability that Y(i) ever hits 0,
starting from 7(0) = 2. This is smaller than the
corresponding probability for the following modi-
fication of the {N(t), Y(t)} process. Let {Z(t)} be a
univeriate birth and death process, with Z(0) = 2 and
when Z(t) = i, with birth and death rates being in the
ratio

id

7^1 if

and

Lid if i = l.

We note that this process has, if anything, a higher
relative death rate than {Y(t)} had in (2.17), for which
the ratio was

(v) Extinction probability

When {Yn} is viewed as a stochastic process, the state
in which no genes are of Eve's type, Yn = 0, is
absorbing. Therefore, W has a distribution with an
atom of probability at 0. Putting / = 0 in (2.1) yields

-, where / < n, and n ̂  2.

so that

This shows that qn(0) is monotonically increasing in n.
The transition from n — \ ancestors to n descendants
can only increase the probability that there are none
of Eve's allele remaining. (Paradoxically, the larger
sample might be thought to have less chance of having

• « - r

For the {Z(t)} process, define

foVt^+l], if i = 1,

v l , if/ = 0.

Then it may be checked that {M[Z(t)]} is a martingale.
But because Z{f) approaches either 0 or oo, and hence
M[Z(t)] approaches either 1 or 0 respectively, then

Pr (Z(0 -+ 0) = lim E (M[Z{t)] | Z(0) = 2),
(-00

= M(2),

_ dee-d
~ dee+Y
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Table 2. Probability of loss of MRCA's allele, gn(0)

228

n

1
2
3
4
5

10
20
30
40
50

100

6e°-e
0e°+\

6

001

0
4-93 x
5-75 x
603 x
615 x
6-31 x
6-35 x
6-36 x
6-36 x
6-36 x
6-36 x

9-95 x

io-*
io-*
io-*
io-*
10"*
io-*
10"*
10"*
10"*
10"*

10"*

01

0
4-33 x
508 x
5-34 x
5-46 x
5-61 x
5-64 x
5-65 x
5-65 x
5-65 x
5-66 x

9-47 x

10"3

10"3

io-3

io-3

10"3

10"3

io-'
io-'
10"'
io-'

10"'

0-5

0
00667
00799
00845
0-0867
00897
00904
00905
00906
00906
00906

0-1778

1

0
01667
0-2024
0-2156
0-2219
0-2307
0-2329
0-2333
0-2335
0-2336
0-2337

0-4621

2

0
0-3333
0-4083
0-4372
0-4514
0-4717
0-4772
0-4783
0-4787
0-4788
0-4791

0-8099

5

0
0-5952
0-7170
0-7628
0-7852
0-8182
0-8279
0-8299
0-8306
0-8309
0-8314

0-9919

Hence the required bound (3.6) is proved. •

PROPOSITION 4. Extinction of Eve's allele is neither
certain, nor impossible, for any positive value of 6.
Hence there is no sub-critical, super-critical phenom-
enon here.

Proof. The upper bound (3.6) is always less than 1
and the lower bound in (3.5) is always positive, for all
6>0. •

In Table 2 we show qn(0) values, and the upper
bound (3.6), for various values of n and 6. It seems
that the limit is attained quite quickly, at least for
these 6 values. The upper bound is not a very accurate
approximation for intermediate values of 8. It could
be improved by conditioning on the first step(s) of
Y(t) and starting the Z(t) approximation at a later
stage. Another approximation to the limit will be
considered later, in connection with Table 5.

(vi) The continuous part

PROPOSITION 5. There exists some function, J{w) ^ 0
say, such that for any Borel set, B, in (0,1],

(3.7)

where 0 ^f(w) < 1. W also has an atom of probability
at 0.

Proof. The limiting proportions of the oldest allele,
V, and of Eve's allele, W, are equal so long as Eve's
allele is still present. Thus

(3.8)

so that

0 s? Pr (We B) < Pr (Ve B),

Radon Nikodym theorem yields the existence of/,
and (3.8) yields the bounds for J{w),Q < w s% 1. •

The equation (3.7) is analogous to (1.3); but there
may be no neat formula for the continuous part of
PF's distribution. We now develop an approximate
formula when 6 is small.

(vii) An empirical approximation for small 6

Numerical studies of successive values of rn(i), for i
near n, suggested that the following approximate ratio
holds:

rn(i)/rn(i+1) « (/+1 + 26)/(i+1 + 6).

This leads to the approximation, fn(f), say,

(3.9)

There are several virtues in (3.9).
(i) When (3.9) is substituted into (2.14), it gives a

(rather surprisingly) tractable approximation to qn(f).
We discuss this a little later.

(») rn(n) = rn(n) and rn(n-\) = rjn-1) exactly,
for each n.

(iii) Using somewhat inconsistent applications of
Stirling's formula, if we approximate

I > + 6) T{i+1 + 26) r(n +1 + 6)

(,-+l+2g)(,_0

by n~

but

in particular when the right side is zero. Thus over (0,
1], Wis absolutely continuous with respect to V. The

by

ne(\+\d(\+?>d)/n)

and
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Table 3. Accuracy of approximating rn(i) by fn(i)

Tabulated: /•„(/) above fn{i), for various values of »v = i/n.

w

0

10000
10008

10000
0-9999

10000
0-9965

10000
0-9868

10000
0-8436

10000
0-7913

10000
0-6000

10000
0-5100

10000
0-2758

10000
01768

10000
00307

10000
00053

01

0-9911
0-9910

0-9713
0-9713

0-9152
0-9135

0-7518
0-7517

0-6581
0-6327

0-2673
0-2662

0-4551
0-4000

00866
00850

0-2403
01655

00127
00117

00548
00168

00001
00001

0-2

0-9861
0-9861

0-9648
0-9648

0-8726
0-8720

0-7036
0-7036

0-5367
0-5273

01939
01937

0-3196
0-3000

00466
00464

01350
01103

00040
00038

00201
00098

00000
00000

0-3

0-9829
0-9829

0-9610
0-9610

0-8450
0-8447

0-6764
0-6764

0-4655
0-4614

01598
01597

0-2482
0-2400

00319
00319

00883
00788

00019
00019

00094
00060

00000
00000

0-4 0-5

n = 1 0 , 0 =

0-9804 0-9785
0-9804 0-9785

n = 100, 6 =

0-9583 0-9562
0-9583 0-9562

« = 10, 0 =

0-8247 0-8088
0-8246 0-8087

n = 100, 0 --

0.6575 0-6432
0-6575 0-6432

n = 1 0 , 6 =

0-4171 0-3815
0-4152 0-3806

n = 100, 6 --

01390 01247
01390 01247

n = 1 0 , 6--

0-2037 0-1731
0-2000 0-1714

n = 100, 6

00243 00196
00243 00196

« = 1 0 , 0-

00630 00476
00591 00460

n = 100, 0

00011 00007
00011 00007

00051 00030
00039 00026

n = 100, 0

00000 00000
00000 00000

0-6

0.01

0-9768
0-9768

= 001

0-9545
0-9544

= 01

0-7957
0-7957

= 01

0.6317
0-6317

= 0-5

0-3538
0-3534

= 0-5

01141
01141

= 1

01507
01500

= 1

00165
00165

= 2

00374
00368

—- 7

00005
00005
c

= J

00019
00018

= 5

00000
00000

0-7

0-9754
0-9754

0-9530
0-9530

0-7847
0-7846

0.6222
0-6222

0-3315
0-3313

01058
01058

01336
01333

00142
0-0142

00303
00301

00004
00004

00013
00013

00000
00000

0-8

0-9742
0-9742

0-9517
0-9517

0-7751
0-7751

0-6140
0-6140

0-3130
0-3129

00991
00991

01201
01200

0-0124
0-0124

00251
00251

0-0003
00003

00009
00009

O-OOOO
O-OOOO

0-9

0-9732
0-9732

0-9506
0-9506

0-7667
0-7667

0-6068
0-6068

0-2973
0-2973

00935
00935

01091
01091

00111
00111

00212
00212

00002
00002

00007
00007

00000
00000

1

0-9722
0-9722

0-9496
0-9496

0-7591
0-7591

0-6005
0-6005

0-2838
0-2838

00887
00887

01000
01000

00100
00100

00182
00182

00002
00002

00005
00005

00000
00000

by

r%\ - £0(1+30)//),

then we have, for large i and n,

This approximation is reasonable for ;' large, but less
so for small /.

(iv) When (3.9) is substituted into both sides of
(2.13), the ratio of the right to the left sides is

1+;
d\\+d)(n-i){n-i-\)

which is exactly 1 (as would be needed for (3.9) to be a
perfect solution) when 6 = 0 or /' = n or i = n — 1, and
which is
1 + 0 2 ( 1 + 0 ) 0 ( H - 5 ) if H - j = 0(1) asrt^co,

and
\+02(l+d)O(n-\i + dy1) ifn-j = 0(«) as«->oo.
Thus (3.9) is likely to be a very good approximation to
rn(j) when 6 is very small, for all / and n, and also for
all 6, when i is close to n.

In Table 3, we illustrate the above remarks by
comparing rji) and rB(i) for various n, i, and 0 values.
The approximation is remarkably accurate for many
entries in the table, and improves as n increases,
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provided w and 0 are held fixed, where w = i/n > 0.
However, when / is fixed, particularly when it is close
to 0, the approximation gets progressively worse as 0
or n increase.

Analytical results for the worst cases of the
approximation may be helpful outside the range of
Table 3; (3.9) yields

' ,(0) =

whereas the exact value is

rn(0) = X,

and, further, (3.9) says
n

^(i) = n

+20) '

,-2 (i+0) ( ' - 1 + 0) 0 + 20) r( l + 26>)'

whereas (2.12) and (2.2) show that

with asymptotic behaviour as for /tn/n in (3.3).
Let us denote by gn(i) the approximation for qJJ),

obtained by substituting fn{i) from (3.9) into (2.14).
Then we obtain

4«(Q =
, T(n+X)T(n)Tin-i+d)Tii+X+d)
T(i + X)Tin-i+X)T(n + 6) Tin + 1 + 0)

0 n -
n-i+0,.,-W-1 + e£ij-1 + 0

" + 1 ; _ 1

=Pnii) n . _ t g (if i > o).

(3.10)

(3.11)

In Table 4 we show the comparison of nqJJ)
with nqJJ) for a range of 0, n and < values, with
w = i/n > 0. Some comments about the results (and
others not shown in the Table) are

(0 4n(i) = tfn(0 exactly for / = n-X and n.
(ii) If qnii), as given by (3.10), is substituted into

both sides of (2.1), the ratio of the right to left sides is

1 + ;
(9(1 +6)in-i)in-i-\){n- 1 +20)

[w(/i - 1) + /0] in - 1) (« - / - 1 + 0)(; + 0)'

This should be 1, for qnii) to be an exact solution of
(2.1). We see that this is so for i = n or n—X, or if
0 = 0. Otherwise, we have that the ratio is

1 + 0 ( 1 + 0 ) 0 ( A T 3 ) i f n - / = 0 ( l ) as«-^oo,

and

) if n-i =
Unfortunately, these depart from 1 by terms which
are larger than those established earlier for the
accuracy of rn(i), indeed by factors of n2 and n
respectively. It is therefore not surprising that qJJ)
does not, in general, agree as well with qn(i) as did fn(f)
with rjj). We might judge the agreement as reasonable
for 0^0-1 and all i, but for larger 0, only for / close
to n.

(iii) qni0) is certainly not a satisfactory approxi-
mation to qn(0), in general. We have

9.(0) = 0
r»r(i+0) • 0r( i+0) »-

which decreases as n increases, whereas <?n(0) itself
increases with n. This is most unfortunate, because
one of the most interesting aspects of the whole
problem is the asymptotic behaviour of qni0).

(iv) It should be noted that (3.11) holds only for
/ > 0, because /?n(0) = 0. (3.11) gives an approximate
solution to the problem posed by (1.3), namely the
evaluation of the probability that the oldest allele in
the sample is Eve's allele, given Xn.

(v) We see from Table 4 that, for fixed w = i/n,
0-1 ̂  w ̂  0-9, nqniwri) has already come close to its
limit when n = 10. There is little change when n
increases to 100, except for the higher w values when
0 is high. It might be noted, however, that when
0 < 1, nqjji) diverges as n increases, in accordance
with (3.4).

It is suggested by (3.10) that nqn(i) might itself be
approximated, as «-> oo with w = i/n, by

nqn(i) = 0w*(l - w)e'\ 0 < w ̂  1, (3.12)

an approximating, non-normalized, ft density for
W = lim Yn/n. This is dominated by the /?(1,0) density,
as it should be, and suggests the approximation

in (3.7). The difference, between the integral of the
density (3.12) and 1, would give us an approximation
for the atom at 0:

7 , ( 0 ) = 1 - f
Jo

(3.13)
w h e n 0 « l . (3.14)

The last approximation comes from 6.1.36 in Abramo-
witz & Stegun (1972), but it exceeds the approximate
bound 02 in (3.6).

We might also hope that (3.12) would provide an
approximation to the mean of Yn,/in, by

tln=n

= dnr(2+0)r(0) (3.15)

and to the variance, a\ say, by

c?2 = H2 I 0w2+%X -wy^dw-fil
Jo

(3.16)
Clearly (3.15) does not equal (2.2), although both are
«(1 — 0) to first order terms in 0.

In Table 5 we show comparisons of the actual
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Table 4. Accuracy of approximating nqn{i) by nqn(i)

Tabulated: nqn(i) above nqn{i), for various values of w = i/n.

231

w

01

00110
00109

00110
00109

01046
00909

01049
00878

0-4139
0-2134

0-4203
0-1722

0-6281
01818

0-6444
01089

0-7538
00826

0-7792
00231

0-5068
00071

0-4930
00001

0-2

00124
00123

00124
00123

01166
01060

01171
01043

0-4459
0-2824

0-4534
0-2536

0-6491
0-2727

0-6658
0-2079

0-7203
01488

0-7363
00719

0-3966
00173

0-3527
00012

0-3

00142
00141

00142
00141

01319
01234

01325
01223

0-4845
0-3514

0-4935
0-3300

0-6723
0-3636

0-6893
0-3069

0-6828
0-2204

0-6882
01354

0-3025
0-0307

0-2405
00042

0-4

00165
00164

00165
00164

01520
0-1452

01529
01446

0-5322
0-4258

0-5433
0-4102

0-6982
0-4545

0-7154
0-4059

0-6407
0-2893

0-6336
0-2019

0-2233
00440

01539
00087

0-5 0-6

„ = io, d = 001

00198 00247
00197 00246

n = 100, (9 = 001

00198 00247
00197 00247

,2 = 10, 0 = 0-1

01796 0-2201
01742 0-2160

n = 100, (9 = 01

01809 0-2221
01741 0-2167

n = 10, 6 = 0-5

0-5932 0-6747
0-5109 0-6150

n = 100, 6 = 0-5

0-6075 0-6944
0-5012 0-6127

,2=10, (9=1

0-7274 0-7610
0-5455 0-6364

n = 100, 0 = 1

0-7448 0-7782
0-5050 0-6040

0-5928 0-5377
0-3471 0-3857

„ = 100, (9 = 2

0-5712 0-4989
0-2600 0-2981

n = 1U, u = D

0-1582 01061
00528 00538

,, = 100, 6 = 5

00902 00465
00124 00126

0-7

00328
00328

00329
00328

0-2856
0-2827

0-2891
0-2849

0-7915
0-7530

0-8214
0-7628

0-8003
0-7273

0-8170
0-7030

0-4735
0-3967

0-4137
0-3046

00659
00461

00196
00090

0-8

00490
00490

00491
00491

0-4105
0-4089

0-4185
0-4156

0-9784
0-9601

10326
0-9959

0-8480
0-8182

0-8632
0-8020

0-3969
0-3719

0-3115
0-2681

00365
00321

00057
00039

0-9

00971
00971

00976
00976

0-7516
0-7516

0-7845
0-7828

1-3513
1-3513

1-4997
1-4838

0-9091
0-9091

0-9206
0-9010

0-3030
0-3030

01849
01770

00167
00167

00007
00007

1

9-7218
9-7218

94-9620
94-9620

7-5914
7-5914

600533
600533

2-8377
2-8377

8-8734
8-8734

10000
10000

10000
10000

01818
01818

00198
00198

00050
00050

00000
00000

Table 5. Comparison of true and approximate qn(0), /in, and a\ values
for samples of size n = 100

6

001
01
0-5
10
2-0
5-0

<7ioo(O)

00001
00057
00906
0-2337
0-4791
0-8314

?loo(0)

00002
00142
0-2146
0-5000
0-8333
0-9960

/"loo

9902
90-70
62-92
41-60
2009

3-51

fiioo

9900
90-36
58-90
33-33
1000
0-22

°1oo

48-73
423-88

1164-92
1169-51
697-77
10616

49-64
460-45

1438-96
1388-89
566-67

12-58

GRH 60
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atomic probability qn(0), the mean/tn and the variance
a\, with the approximations in (3.13), (3.15) and
(3.16) respectively, using n = 100 as sample size. It is
clear that qn(0) seriously over-estimates the actual
probability of loss of Eve's allele, and it exceeds the
bound (6ee-6)/(0e°+\) in Table 2. The mean and
variance approximations are fairly reasonable (on a
proportional basis) for 6 ^ 1, say, but are poor when
6=5. It would be preferable if more accurate
approximations could be found.

4. Application to human mitochondrial DNA

It is natural to ask about the extent to which the
results of the previous sections apply to aspects of
human evolution, particularly in the case of (selectively
neutral) haploid mitochondrial DNA. Interest in the
most recent common ancestor, Eve, of human
mitochondrial DNA was stimulated by Cann et al.
(1987). We may ask, what proportion of the extant
human population carries her genes? (Here, we think
of a gene as being any sequence of bases in
mitochondrial DNA; the fact that our model does not
allow recombination within a gene now becomes a
virtue!)

There are at least three aspects of the preceding
analysis which are likely to be unrealistic for modelling
human evolution: the infinite alleles assumption, and
the (implicit) assumptions that the population size is
constant over the period under consideration and that
the population is panmictic rather than spatially
structured. Nevertheless, we would argue that some
broad conclusions may still be drawn.

The central feature of the infinite alleles assumption
is that it excludes the possibility of back-mutation. If
this is unrealistic in a particular case (for example, if
attention is focused on a particular nucleotide site)
then the analysis applies to the number, or proportion,
of descendants who are identical by descent at that
locus with the MRCA. In the context, this is of more
interest than being just identical in state. But to study
the latter concept, progress could be made by
modifying the bivariate process \N(f), Y(t)] of Section
2, so that its transitions, in (2.17), would also include
a jump from state (n,i) to (n,i+1) because of
mutations back to the type of the common ancestor.
Of course, the number of descendants with their
common ancestor's allele is always bounded below by
the number of individuals who are identical by descent
with that ancestor. We do not pursue back mutation
here.

Suppose now that the population size is not constant
over the period back to the MRCA, but for the
moment continue to assume random mating. Denote
the present time by 0 and the population size /
generations ago by Mt. (For human mitochondrial
DNA the appropriate population consists only of
human females. Note also that similar results apply to

models with overlapping generations.) In the case of
constant population size M, = M, the genealogy of
the sample converges to the coalescent provided we
rescale the way we measure time: in this case the step
from generation t—\ to tin the past contributes M"1

units of time in the new time scale. If the population
size is variable (provided, as seems reasonable for
human evolution since Eve, that the variability is not
dependent on the gene frequencies at the locus in
question) the same result is true (Kingman, 1982) if we
adopt a new, non-linear, time scale in which the step
from generation t to t— 1 in the past contributes M~l

units of time in the new time scale. Thus if an event of
interest occurred at time T in the coalescent, this
would correspond to generation t' given by

t' = min|r:
J

(4.1)

Perhaps the most natural way to think about
mutation in neutral models is first to choose a
realization of the genealogical tree of the sample,
according to the coalescent, and then to superimpose
mutation onto this genealogical tree. In the infinite
alleles case with constant population size, with
Mt = Mas the number of haploids, we defined = 2Mu,
where u is the mutation rate per gene per generation.
Then we put mutations on each branch of the tree at
the points of a Poisson process of rate 6/2, with the
processes on distinct branches being independent. But
in the variable population size case, the Poisson
processes of mutation are not time homogeneous on
the coalescent branches. Denote the time to a common
ancestor in the coalescent timescale by TC. Running
forward from this point, through the genealogy, after
a time T (< TC) (which corresponds to time T = rc — r in
the evolution of the coalescent) the Poisson processes
on each branch of the genealogy are running at rate
6T/2, where 0T = 2M,u for /' given by (4.1), again
independently for each branch.

An exact analysis, analogous to that given earlier, is
thus substantially complicated by the effect of the new
time scaling. Further, it depends crucially on knowl-
edge of the size (or possibly effective size) of the
population of human females throughout its evolution
since Eve. And, were one to embark on such a task, it
is not clear how, or to what extent, one should
incorporate available knowledge about the time since
our mitochondrial MRCA. Instead, we make a
number of qualitative points.

Whatever the exact details, it is clear that for
human populations the sequence M,, M2,... is
decreasing, with a substantial change (of perhaps
between three and five orders of magnitude) over the
period back to the alleged mitochondrial Eve. This
means that in converting from real time to the
appropriate timescale for the coalescent, initially
(small 7) we greatly speed up time, but this speeding
up factor decreases markedly as we go further into the
past. Under the assumption that w, the mutation rate

https://doi.org/10.1017/S0016672300030974 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300030974


Eve's alleles 233

per gene per generation, is constant, this means that as
we go forward through the genealogy from the
MRCA, the rate of the mutation processes increases
by the same substantial factor. One very crude
approach then would be to bound aspects of the
distribution of the proportion of the population who
are identical by descent with the MRCA between two
extreme cases, one for the smallest value of 6
(presumably 6T) and one for the largest (#0).

Observe, however, that in the constant population
size case, the fate of the MRCA's allele is determined
by mutations very early on in the genealogy (i.e. close
to the MRCA). This is evident from the dynamics of
the bivariate process [N{t], Y{t)] and for example from
Tables 2 and 4 where aspects of the distribution do
not change substantially as the genealogy grows from,
say, size 4 or 10 to 100, even for large 6. This suggests
that in the variable population size case one should
approximate the distribution by using the value of 6
appropriate early on in the genealogy. It is prob-
lematical as to the effective population size then,
especially if allowance is made for overlapping
generations and spatial subdivision. Takahata (1986)
estimated that the common ancestral species for
humans, rat, mouse and bovine had an effective
population size of about 107 at about 75 million years
ago. On the other hand, Cann et al. (1987) estimated
that the human mitochondrial Eve may have lived
only about 200000 years ago. They, and Wainscoat
(1987), speculated that a population bottleneck may
have occurred around the speciation time or around
Eve's time. Cavalli-Sforza (1991) surveyed results
from various studies of genetic and language evol-
ution, which support the hypothesis of Eve existing in
Africa some 100000-200000 years ago, although the
issue remains contentious. For argument's sake, we
consider the range 102 to 106 for the effective female
population size around Eve's time.

The appropriate value of u will depend on the
region of the genome and the number of bases in the
gene in question. For a single nucleotide site one
might take u = 10~9 while for a gene of 1000 bases
somewhere of the order of 10~6 may be more natural.
A referee has suggested considerably higher u values,
for primate mtDNA, of 6x 10~7 per site per genera-
tion, i.e. 6 x 10"4 for a 1000-base gene. Depending on
the exact choices, one might thus consider approxi-
mating by the constant population size results for 6 in
the range 2 x 102 x 10"9 = 2 x 10"7 to 2 x 106 x 6 x 10~7

= 1-2 for a site, and between 2 x 102 x 10"6 = 2 x 10"4

to 2 x 106 x 6 x 10~4 = 1200 for a 1000-site gene. Our
general point is that if small (or large) 6 values were
correct then, their use in our theory should give some
idea of the current distribution of the proportion of
alleles now, identical by descent with Eve's alleles,
even at loci for which larger d values would be
appropriate for current evolution.

If we focus on small values of 6, then, by (3.6), 6i

over-estimates the probability that Eve's allele (at a

particular locus) would be missing from a population.
For instance, for 6 < 10"1 say, there is very little
chance that Eve's allele would be lost from the
population, and (3.12) is an approximation for the
density of the proportion of genes identical by descent
with Eve's gene. On the other hand, if large values of
6 were appropriate, say d > 50, the lower bound in
(3.5) shows that there would be a very high probability
of Eve's allele being lost.

Of course, the evolution of real human populations
since the MRCA is likely to have been affected by
spatial population structure. Genealogy in the pres-
ence of population subdivision has recently been
studied (e.g. Takahata, 1988; Takahata & Slatkin,
1990; Notohara, 1990; Hey, 1991) and although more
complicated than the panmictic case, one could
superimpose mutation and try to repeat the earlier
analysis, before again taking account of variable
population (and subpopulation) sizes. This is well
beyond our current scope. More qualitatively, it
should again be the case that the fate of the MRCA's
allele depends on events early in the genealogy. The
time for which the sample (or population) has exactly
two ancestors (and hence the 'length' of the early
genealogy) is more variable and also (in some sense)
longer if the population is geographically structured.
Thus such structure increases the chance that this
early part of the genealogy will be quite long, in which
case Eve's allele is more likely to be lost. While it is not
entirely clear, it seems that population structure (with
or without variability in population sizes) may well
increase the probability that Eve's alleles are lost.
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