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INFLECTION POINTS OF BESSEL FUNCTIONS 
OF NEGATIVE ORDER 

To Tim Rooney on his 65th Birthday 

LEE LORCH, MARTIN E. MULDOON AND PETER SZEGO 

ABSTRACT. We consider the positive zeros j u k , k — 1,2,..., of the second deriva
tive of the Bessel function Ju(x). We are interested first in how many zeros there are 
on the interval (OJ^i), where j v \ is the smallest positive zero of Jv(x). We show that 
there exists a number A = —0.19937078... such that jv x < j u 2 < jv \ for A < v < 0 
and/^ > j v \ fo r -1 < v < A. For v = A, jvX < j v \ < fv2. Moreover,/^ de
creases to 0 andy'^ increases tO701 as v increases from A to 0. Further, j v k increases 

in —1 < v < oo, for k = 3,4, Monotonicity properties are established also for 
ordinates, and the slopes at the ordinates, of the points of inflection when — 1 < v < 0. 

1. Introduction. Here, as in [10] and in [13], we consider the positive zeros fvk, 
k = 1,2,..., of the second derivative of the Bessel function Ju(x). In [10] and [13], v 
was supposed to be positive. Here we pay special attention to the case — 1 < v < 0 
and ask first how many zeros there are on the interval (OjVi) where j v \ is the smallest 
positive zero of Ju(x). We show that there exists a number A = —0.19937078 ... such 
thaty'^j < j u 2 < j u \ for A < v < 0 andy'̂ j > j u \ for — 1 < v < A. For v — A, 
j'l\ < yVi < fV2' Moreover,/^, decreases to 0 andy^ increases io j'Q[ as v increases 
from A to 0. Further, jl/k increases in —1 < v < oo, for k = 3,4, — Monotonicity 
properties are established also for ordinates, and the slopes at the ordinates, of the points 
of inflection when — 1 < v < 0. 

2. Preliminaries. As requisite preliminary information, we mention that the func
tion Jv {x) satisfies the differential equations 

(1) x 2 / +xy + (x2 - v2)y = 0, 

and [4, p. 13,(67)] 

(2) ^{x2 - z /V" + xtf - 3 z / V +Pv{*)y = 0, 

where 

(3) p„(x) = x4 - (2v2 + \)x2 + v4- v2. 
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It follows from (2) that any j v k , — 1 < v < 0, k — 1,2,..., must give rise to a point of 
inflection except possibly when/vij^) = 0, i.e., when 

2 0 1 1 1 

2 + 2 
j u k = Mi/

2 := z/2 + - + ->/8i / 2 + l, - 1 < i/ < 0. 

(Another situation arising from (2) and possibly not leading to a point of inflection is 
y (jvk) — y (jvk) — 0. But, using (1), this would imply j u k = | v |, a possibility ruled out 
by Lemma 5 below.) That Pv(juk) can vanish will be established in Theorem 1. However, 
it can do so only once, when v — A = —0.19937078 .. . and k — 1. In this single 
instance7^ = ful does not give rise to an inflection. We will also need the power series 

(4) HX) = r^fv(X) = £ ^ram+v)gm+v-^ 
W ^ W ^ o 4mm\Y{v+m+\) 

and the inequality [9, (5)1 

(5) /„, > max(/Vi,|H)> - 1 < v < 0. 

Further, we note that Jv (0
+) = +oo, since — 1 < v < 0, and so fv (x) > 0, 0 < x < 5. 

(The second assertion is a consequence of the first and of (1), or may be inferred from 
(4).) 

Our first Lemma exhibits a contrast in the behaviour of j'u { when — 1 < v < 0 from 
that which occurs in v > 1 where j v x < v [12, p. 486, (2)]. The Lemma implies that 
}vX > i/2, — 1 < v < 0, a result which holds also for 0 < v < 1, but this is not needed 
here. 

LEMMA 1. If— I < v < 0, thenjvX > 2{yl — v). 

PROOF. The conclusion will follow once it is established, using (4), that fv (x) > 0, 
x2 < 2(z/2 — v). The power series in (4) is alternating, with terms approaching 0. We 
show now that they decrease in absolute value when x2 < 2{y2 — v), at least from m — 2 
on, —1 < v < 0. The sum of the first two terms then provides a lower bound for 
2vx2~v fu(x) = </> (x) which will be seen to be positive for x2 < 2{v2 — i/), — 1 < v < 0, 
justifying the conclusion. 

The ratio of the absolute value of the (m + 1 )-st term to that of the m-th is 

1 2m + v + 2 2m + v + 1 x2 

(6) rm(x)= , m = 0 , 1 , . . . . 
4 2m + v 2m + v — 1 (m + 1 )(m + v + 1 ) 

For fixed x and v (— 1 < v < 0), the sequence ri(jc), ri(x), r3(x). . . , decreases. Further, 
r2(x) < 1, - 1 < v < 0, x2 < 2(y2 - v), so that 

A ( ^ v(y-\) (y + \)(v + 2)x2 

YK J r(i/ + i) 4r(i/ + 2) 
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The expression (j)\(x) on the right is positive for x2 < 2(z/2 — v), — 1 < v < 0, so that 
(j> (x) > 0 for these values as well, since 

I > + l)(/>i(jt) = v(v - 1) - -Xv + 2)x2 

> r(i/ + i)^!([2(i/2 -1 / ) ] 1 / 2 ) 

= -X-v2(v - 1) > 0, - 1 < v < 0, 

as asserted. This completes the proof. 

COROLLARY 1. There are no zeros of fv (x), — 1 < v < 0, in juk < x < j u k , 
k= 1,2,.... 

PROOF. Applying the consequence j'vX > v1 of Lemma 1 to ( 1 ) with x — j"uk > j"vx 

shows that J^ij'lj^ an<^ ^OC/c) n a v e opposite signs. (This follows also from [10, Lemma 
2.1].) 

COROLLARY 2. Iffvk > j u h then pu(jlk) > 0, - 1 < v < 0, so thatJl(j"vk) ^ 0 
andjvk gives rise to a point of inflection. 

PROOF. From Corollary 1 and [9, (5')] , /^ > jvX > / „ = 1.84118... > 31 /2 . On 
the other hand, 0 < p,v < 31 /2 , — 1 < v < 0. The conclusion is now evident in view of 
(2). 

COROLLARY 3. Injuk' < x < yV^+i, k = 1,2,..., — 1 < v < 0, there exists exactly 
one point of inflection of Jv (x). 

PROOF. From (1), it follows that fv(jv1^ and fv(jv,k+\) n a v e opposite signs so that 
at least one point of inflection is present. Were there a second, say at x = £'', it would 
follow from (2) tha t / ?^ ) < 0, contradicting Corollary 2. 

REMARK. These Corollaries hold also for v > 0; cf. [10, Lemma 2.1] 

LEMMA 2. Ifjv\ < jv\ yields a point of inflection of Ju(x), —\<i/< 0, then 
h\ ^ hi < yVi- Moreover, in this case, 

(7) v1 < 2(v2 - i / )< j"l/X
2 < ill <j"J < j u l

2 . 

PROOF. That there must be an even number (perhaps 0) of points of inflection in 
0 < x < j v \ is clear, since fu(0+) = +oo and (1) implies that fv(ju\) > 0, — 1 < v < 0. 

Inasmuch as the first point of inflection, assumed to lie in 0 < x < ju \, occurs where 
fv (x) changes from positive to negative, it follows that fv (j"u {) < 0. Putting x = j'u x in 
(2), noting that/^ > v1 (from Lemma 1) and that J,

l/(j"l/]) < 0 (from (5)), we find 
thatpv(j"uj) < 0, i.e., that/^j < \iv. Suppose j v l — \iv. Differentiating (2) and putting 
x — j'vX — [iv in the result gives ^4)(/Ci) > 0» s m c e Pu(^u) > 0» while from (2) and 
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Lemma 1, fv(j'vX) = 0 under these circumstances. But this means that /J(x) and hence 
also fv(JC) increase from 0 as x increases pastx = fiu — ]v\ so that Jv (JC) would be positive 
instead of negative, a contradiction. 

There remains only to show that j u 2 > \LV. Suppose that j u 2 < p>v and put x = j v 2 

in (2). Then fv{]'v7) < 0 since now pv(j"vl) < 0 a nd also Jv(j"v2) < 0. Hence fv{x) 
decreases from 0 as x increases through j u 2 thus being (indeed remaining) negative in 
hi < x < hi + e f° r sufficiently small e > 0. If, however, x — j u 2 yields a point of 
inflection this is impossible since fv{x) would be changing from negative to positive as 
x passes through/^. 

If, on the other hand, x = fu2 does not yield a point of inflection, then f'v(j'v2) — 0 so 
that/^O'^) = 0. Then j u 2 = \iv, also contradicting the assumption thaty^ < \LV. 

The Lemma is proved. 

REMARK. The possibility that x — \xv might give rise to an inflection-point, — 1 < 
v < 0, is ruled out by Theorem 1 below where it is shown that fv (fiu) = 0, — 1 < v < 0, 
can occur only for v — X = —0.1993707809 For this value of i/, \iv is a double 
zero of fv(x), as (2) shows, arising (Theorem 2) from the confluence of two points of 
inflection. However, for temporary convenience, we consider now what will later appear 
vacuous. 

LEMMA 3. Iffiu —ju2> then it gives a point of inflection, — 1 < v < 0. 

PROOF. Differentiating (2) and putting JC = \iv — j u 2 in the resulting equation gives 
J^\fiu) > 0, since pv(iiv) > 0, Jv(j'1/2) < 0. Therefore f^{x) and hence also fu(x) 
increase from 0 as x increases past [iv. Since Ju(x) < 0,jul < x < j u 2 , it follows that 
x = j v 2 = pv gives a point of inflection. 

LEMMA 4. If—I < v < oo, thenj"u3 > jvX. 

PROOF. Unless j v 2 < j v \ there is nothing to prove. In this case j u 3 > p,v, so that (2) 
implies fv(j'v^) > 0. But this is a contradiction, since at a point of inflection on (OjVi) 
which/^3 would yield, Jv{x) would change from positive to negative. 

REMARK. In case v > 1, the foregoing proof requires us to notice that j u 2 exceeds 
the larger of the two positive roots which pv(x) possesses when v > 1. That j u 2 does so 
is a consequence of pv{]'vX) < 0. 

Next we observe that pv (ju j ) < 0, — 1 < v < 0, if j u l < j v \ , as may be seen from 
(2),since^(/Ci)<0. 

It is indeed possible that /J(/Ci) = ®* saY f° r v = ^ • Tlns is equivalent to/^,, being 
a double zero of fv{x), v = À, a situation studied numerically by M. K. Kerimov and 
S. L. Skorokhodov in [61 and [7]. In this case, 

(8) fXi
2
 = x^+

l-+
l-Vs^T\; 

the right-hand side is the square of the (unique) positive root of p\ (x) — 0. 
If, on the other hand, fv(]'vX) < 0, as can also occur, then Ju(x) does have a point of 

inflection when x = j j , and conversely. 
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LEMMA 5. Ifv>—\, thenjv\ — fiu is an increasing function of v. There exists oc, 
- | < a < — \, such that 

[7V1 < Vv, - 1 < v < <x, 
(9) lja\ = Va, 

[ju\ > fiv, a < 1/ < oo. 

PROOF. For —1 < v < 0, all that is needed in the application to be made in this 
paper, the desired monotonicity is obvious, since j v \ increases for v > — 1 [12, p. 508, 
(3)], while \iv decreases, — 1 < v < 0. This is also sufficient to establish the bounds 
claimed for a, sincey_1/2J = TT/2 > /z_1/2 = (3/4 + \ /3 /2) 1 / 2 = 1.27122 . . . , while 
[1]7-2/3,1 = 1.2304... < (17/18 + \ / 4 Ï / 6 ) 1 / 2 = 1.41832... =/x_2 /3 . 

To establish the Lemma for v > 0 (since it does add another inequality foryVi) we 
recall that djv \ j dv > 1 [3] and consider 

d djuX z /+2 ï / (&/ 2 +i r 1 / 2 

-(Jul - Vv) ^ dv dv (z/2 + I + iv /8z/2+l)1/2 

This equation, by the way, incorporates a proof for — 1 < v < 0. To use it to complete 
a proof for v > 0, we need to show that 

1 1 

i.e., 

or 

v + 2v(Sv2 + I ) - 1 / 2 < (v2 + - + - V ^ + l ) 1 / 2 , 

2 4l/ 4l/
 2 1 1 / o 9 , 

v + , + z—^—7 < v + -z + -V 8z/2 + 1, 
V ^ + l 8z/2 + l 2 2 

, + 0 9 , < V8i/2 + l + l, 

which clearly holds. 

REMARKS. 1. The upper bound for a can be reduced readily by using an inequality 
foryVi due to Elbert [2], namely, j2

vX > (v + l)(v + 5), — 1 < v < 0, which in turn is at 
least 

2 2 

for v > - 1 0 / 17. Thus a < - 1 0 / 17 = -0.588235294.... 

2. The value of a is approximately —0.60731, as may be inferred by using the 
Rayleigh upper and lower bounds foryVi [12, p. 502]. These bounds are particularly 
sharp when — 1 < v < 0. 
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3. The existence and number of inflection points. So far we have not established 
either the existence or non-existence in 0 < x < j v \ of inflection points of Jv(x) for any 
part of the v -interval — 1 < v < 0. This will be done now. It will be shown that Jv (x) has 
two inflection points before its first positive zero when —0.1993707809 .. . < v < 0 
and none in 0 < x < ju{ for - 1 < v < -0.1993707809.... Ifantis, Kokologiannaki 
and Kouris [5, Theorem 3.4 and Remark 3.6] have the result that there are no such zeros 
for -1 < v < -0.3934. 

THEOREM 1. There exists a unique number X = —0.1993707809 .. . , such that 

[fv\ <Jv2<JvU A < ! / < 0 , 

j'li > jvu - l < y < A, 

lj"xl = (\2 + ± + ±y/s\i+\)l/2 = 1.0553517724... < jX\ < j"X2. 

(10) 

PROOF. We break the proof into three parts, establishing respectively the unique
ness, the existence and the approximate value of À. The method and ideas of part (i) of 
the proof will be used also in the proof of Theorem 2. 

(i) Uniqueness ofX : We use the differential equation (1) and the recurrence relation 
[12, p. 45, (4)] 

(11) xJv (x) -vJv (x) = -xJv+\ (x). 

From these we see that the positive zeros of fv (x) occur where 

1 2 Jy + \(X) = X2 -V2 +V 

Jv{x) x 

In view of the Mittag-Leffler partial fractions expansion [12, p. 498, (1)] 

Jv+i(x) _ ^ 2x 
^ ' 1 (x\ ^ i2 - y2' 

Jv\X) k=\Jvk X 

the positive roots of fv (x) are the same as those of the equation 

°° 1 v2-v 
(14) ftW:=2Er-7 + - r = l . 

k=\Jvk~X X 

It is clear that 

lim Gv(x) — lim Gv(x) = +oo, — 1 < v < 0. 

Consequently the graph of y = Gv(x) is U-shaped, with a unique minimum, on 0 < x < 
j v \ , — \ < y < 0, since CJU{X) > 0, 0 < x < j u \ , — 1 < v < 0. To verify this we write 

k=\ \Juk ~ x ) ^ 
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That Gv (x) (see ( 17)) and Gu (x) exist and have the representations stated follows from the 
uniform convergence over compact subsets of (0,jv \ ) U (ju \ Jv2) U • • • U (jukJu,k+\ ) U .. . 
of both differentiated series. 

Also, for each fixed x in the interval 0 < x < j u \ , Gv{x) is a decreasing function of 
v, — 1 < v < 0. More precisely, for —1 < v < v + e < 0, we have Gv+€{x) < Gu(x), 
0 < x < j v \ , since [12, p. 508] each zeroyV^ is an increasing function of v. 

The zeros of fv (x) occur where the U-shaped graph of y = G^ (x) crosses the horizontal 
line y = 1. Now it is clear from the consequence 

tf > 2(z/2 - v) 

of Lemma 2 that there are no zeros for v close to — 1; there are no crossings for these 
values of v. However as v increases, the U-shaped curve referred to above becomes lower 
and if it meets the line y = 1 will do so for a unique value À. (Recall the uniqueness of 
the minimum of the U-shaped graph of y — Gu(x).) 

(ii) Existence ofX : The existence of such a A is established as follows. Suppose that 
no such A exists. In that case we would have for all v satisfying — 1 < v < 0, 

G1/(x)> 1, 0<X<M. 

Taking the limit as v —> 0~, we would get 

Now 

G0(x)> 1, 0<x<j0\. 

oo 1 

G0(x) = 2 Y, ~2 2 
*z — xl 

is continuous on [OjVi) so we would get G0(0) > 1. But [12, p. 502] 
CO 1 

G0(0) = 2]T — = 1/2. 
n=\Jon 

Hence we have a contradiction and so A exists as asserted. 
(iii) Evaluation ofX: In view of Lemma 2, the actual value of A follows from a de

termination of the sign of fv (\iv )forA < z / < 0 , i/ = A,— 1 < i/ < A. For those v for 
which that sign is negative there are two points of inflection preceding the first positive 
zero. When the sign is positive, there are no such points and when it is zero there is a 
double zero of fv(x) which does not yield a point of inflection. 

This sign, the same as that of <j)(iiv), will be determined by a study of the infinite 
series (4). Here, from (6), 

r2(^)= 12(, + 3 ) V + 4 ) < 1 ' - K ^ 0 -

Thus the terms in the alternating series in (4), evaluated at x = \iv, decrease to zero 
beginning with m= 2, when, as here, — 1 < v < 0. If we write 

_ " {-\T(2m + v)(2m + V - \)rfm 

* ** h> *"m!r ( i /+m+l ) 
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for the partial sums of <j> (/!„), we have, for — 1 < v < 0, 

To determine when <j> (/i^), and hence also /^ (//„), changes sign, we consider equivalently 
the polynomials T{v +7)</>7(/xl/) and T(y +7)0g(/xI/). The former changes from negative to 
positiveonly when v decreases from-0.19937078099to-0.199370781, the latter only 
when v decreases from -0.19937078098 to -0.19937078099. Thus fv(\iv) = 0 when 
v = A = -0.1993707809.... This conforms with the value recorded in [5, p. 104] 
and with the calculation made independently by Mr. Edgar Smart of the Department of 
Computer Science, University of Toronto. 

4. Monotonicity of the abscissas with respect to v. In [ 10] and [ 13] it was estab
lished that for all v > 0, the abscissas of the points of inflection of Jv (x) are increasing 
functions of v. The corresponding result for — 1 < v < 0 is somewhat different. 

THEOREM 2. With the notation of Theorem 1, jvX decreases to 0 andjl/2 increases to 
j0{ = 1. 841184..., as v increases on the interval (A, 0), so thatjv2 —jv x increases from 
0 toj0l as v increases from A to 0. 

PROOF. Here we use the method which was described in part (i) of the proof of 
Theorem 1. As we pointed out there, the zeros oîfv(x) occur where the U-shaped graph 
of y — Gv{x) crosses the horizontal line y — 1. We noted that as v increases, this U-
shaped curve becomes lower and meets the line y — \ when v = A. Beyond this point 
it meets the line in two points which move apart, the lefthand one, j v x, moving left and 
the righthand o n e , ^ , moving right as v is further increased. 

That j'l j decreases to 0 follows from the inequalities 

(15) 2(i/2 - i/)< fu]
2 < -4v, i / 0 < i / < 0 , 

where i/0 = -0.17848262 . . . . 
The first inequality in (15) is from Lemma 1. It is repeated here only for comparison, 

being unnecessary for the conclusion that7^ decreases to 0. We rely on the power series 
for (j> (x) now with x = 2^—v. Its terms alternate in sign, approach 0, and, from m — 1 
on, decrease in absolute value for x2 < —4v, —3.6 < v < 0. Therefore 

2 I > + 3)(/>(2v
/I1^) < 2 I > + 3)02(2\/=:^) 

= v [ 5 J / 3 + 2 1 I / 2 + 26J/ + 4 ] < 0, z/0 < v < 0. 

Hence, fv(2y/—v) < 0, i/o < v < 0, showing that7" ĵ < —4i/, z/0 < 1/ < 0, since 
j'l (x) > 0 for all sufficiently small x > 0. 

We have shown that j u 2 increases. It remains to show that it increases tO701. The U-
shaped graph of Gv(x), — 1 < v < 0 lies above the strictly increasing graph of GQ(X) on 
the interval 0 < JC < 7V1 so/^2 < 7^ and so there exists A such that/^2 | A < 7^ as 
v increases from A to 0. Thus, j'l (A) > 0, A < 1/ < 0. But fp{x) is continuous (even 
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analytic) in v so thatO < X(A) - • 4(A) as v —> 0 . Hence /Q(A) > 0. Therefore 
A >/oi> since / Q W < 0, 0 < * < y"̂ , and so A = y^, as asserted. 

The approximate value of j 0 l was calculated by noting that, from (12), it is the first 
positive zero of J\ (x) — xJo(x), and using the IMSL routine BSJS to evaluate the latter 
function. 

This completes the proof of the Theorem. 
The next result overlaps with [10], especially Theorem 5.1, but its main import is to 

establish monotonicity for7^ in — 1 < v < 0 when the zeros of fv(x), larger thanyVi, 
are at issue. 

THEOREM 3. IfjUK > jv\, thenjuk increases, —1 < 1/ < 1/2, k — K,K + 1, 
Further, j v k increases, —1 < v < 00, & = 3,4, 

PROOF. With Gv(x) defined as in (14), we have 

Gu(jvk
+) = - 0 0 , Gv(jvk~) = +00, k = 2 , 3 , . . . . 

Further, 

(16) Gjy(x) increases for ju * < x < 7„,*+i » k=l,2,.... 

To see this we use 

/ °° JC 2 (V 2 — 1/) 
(17) G, (*) = 4 V ^ - - h r ^ . * * < U , t . 

Combining the isolated term with the first term of the infinite series always yields here a 
positive result, since 

21- =-) > 2 > z / 2 - * / , - K i / < 1 . 

V2-Jlx) 
Thus Gu(x) > 0, x > j u \ , x ^ yVfc, & = 1,2,... . and so (16) holds. We also have 

(18) Gu(x) decreases for fixed i a s i / increases. 

This follows from 
dGu(x) _ Ay,jvkdjvk/di/ 2v - 1 

to ~ V(/2*-*2)2 + *2 

and this is negative for —1 < v < 1/2, since yV À: increases for each k, v > —1 [12, 
p. 508]. The proof of the first sentence now concludes as for Theorem 2. 

Combined with the results of [10] and [13], Theorem 3 establishes thaty^ is an in
creasing function of 1/, —1 < v < 00, for each fixed fc = /c,/c + l , . . . , when jUK > yVi • 
This condition is satisfied when AC = 3, since j u 3 > } v \ even when j u 2 < yVi, for all 
— 1 < v < 00 (Lemma 2). The second part of the theorem is now also proved. 

REMARK. When the interval — 1 < v < 00 is considered in toto, « cannot be 
taken any smaller, since two points of inflection come into existence when À < v < 0, 
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before the others and one of them disappears when v > 0 (Theorem 1). One of these 
increases, but the other decreases (Theorem 2), so that a mere change in notation would 
not abbreviate the statement of results. If attention is restricted either to— 1 < v < A or 
to 0 < v < oo, then for each of these intervals /€ could be chosen to be 1, even though 
the statement relative to 0 < v < oo conceals a change in notation:^ for 0 < v < 1 
becomesy'^ once v > 1 since a new (and preceding) point of inflection comes into being 
whenz/ > 1 [12, p. 486]. 

5. An upper bound for fvx. The upper bound for j"v{ , given in (15), adequate for 
the purpose it served, is valid for the subinterval I/Q < v < 0 of À < i/ < 0. A similar 
upper bound can be established valid over the entire interval À < v < 0, exact at both 
endpoints, but at the cost of being larger. 

THEOREM4. IfX <v < 0, thenjl* < -(5vy where -A/3 = X2 + { + ̂ \/8A2 + 1 
so that (3 = 5.586412241. 

PROOF. The conclusion of the theorem follows from the statement that 
fv(y/-$v) < 0, A < v < 0, since fv(x) > 0 for all sufficiently small x > 0, 
— 1 < v < 0. Using the notation defined in (4), this is the same as proving that 
(/)(v

/~/5^) < 0, A < v < 0, also as establishing 

^ZQ Amm\Y(v +m + 1) 

To prove this last inequality, we write 

In oo 

(20) f(v)=YJ+ E •=f2n(v) + F2n+x(v), n=l,2,.... 
ra=0 m=2n+\ 

The infinite series defining F2n+i(v) is an alternating series with positive first term, since 
A < v < 0. Its terms decrease (to 0) already for n = 1. Hence 

(21) * F3(y) > F5(y) > > F2n+i(y) > • • • > 0, - 1 < v < 0, 

and 

(22) f2{v)<fA(v)< . . . < / 2 „ ( i / ) < • • •< / ( ! / ) , - K * / < 0 , n = l , 2 , . . . . 

We shall show that each/2«(^) has a zero, pn, in A < i/ < 0, that/2A2(^) > 0, 
p„ < i/ < 0 and that pn decreases as n increases, from which it will follow, as required, 
that/(i/) > 0, A < v < 0, since/(A) = 0, from Theorem 1. 

We examine fz(y) by writing 

32 I> + 3)f2(v) = ((32 + 8/3 + 32)z/3 + (7/3 2 + 40/3 + 64)*/2 

+ 4(3f32 + 16/3 - 8)?/ + 32(/3 - 2). 

It is easily seen that this polynomial and hence f2(y) vanish in —1 < v < 0 at p2 = 
—0.188623404232; indeed this is the polynomial's only real root. The precise numerical 
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value is a matter of indifference. However, it is of importance to note that^O7) > 0, 
p2 < V < 0. 

Hence, from (22),/4(V) > 0, p2 < v < 0, so that any root, p4, off4(i/) in — 1 < v < 0 
must precede p2. If there were no root, p4, in — 1 < v < 0, then of course this would 
conclude the proof. But there must be such a root, since f(X ) = 0, and it must lie in 
A < v < 0 in view of (22). 

This applies to all/^O7) for all n = 1,2,..., as well. It is not necessary to establish 
that there is only one such root in À < v < 0. We define pn to be the largest such root. 

Repeating the reasoning which established that A < p4 < p2 < 0, we find that 

A < • • • < p2n+2 < P2n < ' ' ' < P4 < P2 < 0, 

and that/(V) > 0, p2n <v < 0, n = 1,2, Hence p2n approaches a limit A > A, 
as n —» oo and, with/(i/) > 0, A < v < 0. (The fact that/2«(^) —• fiy) uniformly, 
A < v < 0 follows from the fact that the alternating series for F2n+\(y) approaches 0 
uniformly in v, in any interval — 1 + e < v < 0.) Therefore, 0 = f2n(pin) —>/(A'). But, 
from Theorem l,/(i/) = 0, — 1 < v < 0, only when v — A and so A' = A, completing 
the proof. 

REMARK. The exactness at v — A of the upper bound given here follows from 
Theorem 1 since j"X] is the unique double root of 7^(JC), — 1 < v < 0. For — 1 < v < A, 

h\ >jui2 > v2 + 6v+5. 

6. Monotonicity properties of ordinates and slopes at points of inflection. As 
when v > 0, we are able to establish in the case — 1 < v < 0 certain monotonicity 
properties of the ordinates and slopes at the points of inflection of Ju(x), for fixed order 
and changing rank. 

THEOREM 5. If — 1 < v < 0, then the sequences { \Jv(Jl^\}, k — 1,2,..., and 
{ \^u(jlk)\ } > & = 2 ,3 , . . . both decrease. For —1 < v < A, with A as in Theorem 7, then 
also \Jv(fvX)\ > \fu(fv2)\ while for X < v < 0, |^(/Ci)l < l - ^ O l -

PROOF. These results will emerge chiefly, but not exclusively, from the Sonin-Pôlya-
Butlewski Theorem [11, p. 166, footnote] of differential equations. The differential equa
tion (2) for y = Jv (JC) can be put in the form 

where 

JC JCZ7 f j c ) 

(23) g(x) = -2 J' / W = 7 T J i ~ ^ 2 ' 
JCZ — vl (xl — v1)1 

with/?^(jc) defined as in (3). The functionpv(x) has exactly one positive zero, pu, with 
1^2 = v2 + L + iy8z/2 + 1 > i/2, when, as here, z/2 < 1. 

The hypotheses of the Sonin-Polya-Butlewski Theorem require that/(jc) > 0, g(jc) > 
0, Dx{f(x)g(x)} > 0, for the jc-interval in which it is to be applied. 
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We denote by JlK the first zero of fv{x) which exceeds \iv and proceed to establish 
that the two sequences in question decrease for k = n, n + 1, 

It is clear that/O) and g(x) are positive for x > [iv > | v |. To show that Dx{f(x)g(x)} 
> 0, x > | v |, when i/2 < 1, we write 

lx-\j?-v2f^{f(x)g(x)} 

= x6 - Av V + z/2(5z/2 + 4 ) ^ - 2Z/4(J/2 - 1) := <&„(*). 

Now 
<$>v{x) = 2JC[3JC4 - 8 i /V + z/2(5z/2 +4)], 

a polynomial whose only real root is x — 0 when v1 < 12 and is therefore positive for all 
x > 0. Hence, Oj/O) increases from 0^(0) = 2z/4(l — z/2) > 0 and is therefore positive 
for all x > 0 when v1 < 1. 

The Sonin-Polya-Butlewski Theorem therefore enables us to conclude that, 

(24) for7V« > [iv, { \Jvijvk)\} decreases,/: = K,K + 1, . . . , — 1 < v < 0. 

The same information for the other sequence now follows, i.e., 

(25) fotJvK > /i^, { \Ju(Juk)\} decreases,/: = «,« + 1, . . . , — 1 < i/ < 0. 

The transition is made by putting x = j v k in the differential equation (1). This yields 

JisQvk) = ~7~2 T -A/ (/V*)-

When7^ > z/2 as for k > K, the factor of Jv (j"vk) decreases as k increases. Together 
with (24) this yields (25). 

Now we divide into three cases: 
(i) À < v < 0. Here we may take « = 2, since, from Lemma 2 and the Remark 

following it, j u 2 > \xv. Moreover, as we have seen in § 3,^1 < jvi < 7V1, A < v < 0, 
while, from (5)Jv] > j v \ , — 1 < v < 0. Thus 

Jl(j'li)> lii'lil A < i /<0 

as asserted in the statement of the Theorem. 
Finally in this case, we note that /^(0+) = +00, — 1 < v < 0, so that Jv(x) increases, 

0 < x < fvl, and decreases,/^ < x < fv2 < jf„i,A < v < 0. Thus 0 > Ju(j"uX) > 

//(/C2) s o m a t l̂ i/OCi)! < I//(7^2)! a s stated m m e theorem. 
This concludes case (i). 
(ii) — 1 < v < A. Here, recalling (5),/^ > j v l > \i/\. Puttingx = j"vX in (2) we find 

that pv (ju j ) > 0, so that 7V1 > / i I / , — l < i / < A . Thus we may take K — 1 in (24) and 
(25), all there is to verify in this case. 
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(iii) v — X. Here, (24) and (25) hold for K = 2, and it remains to establish that 

A2(/Al)>A2(/A2). 

This will yield as before also the corresponding inequality for ]\ (x). 
We appeal to [8, Lemma 4.1 (4.2), p. 355] which, in this application, reads 

// 
(26) A 2 ( / A 2 ) ~ A 2 ( / A I ) = /+ [!;\g(t)jx(t)]

2Dt{\f(t)g(t)ri}dt, 

where/(0, g(t) are as in (23) and/A1 = px. 
We need to verify the existence of / and to evaluate it. It is, by definition, 

g(x)fx (x) 
I = lim 

fix) 

= l i m * y - A y ; 2 ( x ) 
* — M A P\ (x) 

= / i ^ _ A
2 ) l i m ^ . 

The existence and value of the last limit follow from l'Hospital's rule, since px (fi\ ) 
fx(p\) = fx(j'xl) = O.Thus 

y A 2 W _ ^ 2fx(x)/;(x) 
lim — = lim 

*—/*A P A W *->/XA px(x) 

o, 2/A0AIVI( /AI)_ 

PA (/AI) 

sincepA(/xA) = 2/iA(8A2 + l)1 /2 > 0. 
Thus, / = 0, and so (26) implies 

I^A0A2)I < I^A0A.)I. 

since f(x)g(x) increases inyA1 < x < j X 2 . This completes the proof of Theorem 5. 

REMARK. Some of the assertions of Theorem 5 may be extended to the inflection 
points of arbitrary solutions C W of the Bessel equation. We can assert, for example, 
that for cVK > pu, { | Cl/(cl/k)\} and { | Cv{cvk)\ } both decrease, k = n, n + 1, . . . , 
— 1 < v < 0, where now cUK is the smallest zero of Cu(x) which exceeds [iv. The 
reason is that the argument for the corresponding part of Theorem 5 depends only on the 
Bessel differential equation and not on any special properties of the solution Jv(x). 

ACKNOWLEDGMENT. We are grateful to a referee for a very careful reading of an 
earlier version of this paper, leading to the correction of a number of errors. 

ADDED IN PROOF. The problems treated in [10] and [13] have been dealt with re
cently by A. McD. Mercer, The zeros ofaz2J"(z) + bzfv(z) + cJv(z) as functions of order, 
Internat. J. Math, and Math. Sci. No. 1 15(1992). 
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