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A GENERALISATION OF THE LOWER RADICAL CLASS

ROBERT MCDOUGALL

In this work we demonstrate that the lower radical class construction on a homo-
morphically closed class of associative rings generates a radical class for any class of
associative rings. We also give a new description of the upper radical class using the
construction on an appropriate generating class.

1. BACKGROUND PRELIMINARIES.

All rings in this work are associative and A denotes the class of all associative rings.
If V is a class of rings with ? C A , then a ring A is a T'-ring if A € V\ an ideal / of A,
denoted / < A, is a P-ideal of A if / € V. For a radical class 7?., the largest 7£-ideal of a
ring A is denoted by 7l(A).

A subring B of a ring A is called an accessible subring of A if there exists a finite
sequence C\,... , Cn of subrings such that

B = d < C2 <. • • < Cn = A.

For a detailed exposition of the introductory concepts of the radical theory of asso-
ciative rings we refer the reader to works by Divinsky [1] or Wiegandt [7].

In brief we mention the Theorem of Anderson, Divinsky and Sulinski (the ADS
Theorem) which states that if / is an ideal of a ring A, then 11(1) is an ideal of A.

1Z is a hereditary radical class if for A € 72. and I <A, I &H.

For any radical class ~R, S(R) — {A 6 A | Tl(A) = 0} is a semisimple class. A ring
A is called strongly 1Z-semisimple for a radical class 72. if every homomorphic image of A
is an 7^-semisimple ring and we denote the class of strongly 72-semisimple rings by S(1l).
The intersection of semisimple classes is semisimple and the intersection of radical classes
is a radical class. A class is called a radical-semisimple class if it is a radical class as well
as a semisimple class.

Any class V satisfying every nonzero ideal of a ring A can be homomorphically
mapped onto a nonzero V-ring is called a regular class. Define the upper radical operator
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U acting on an arbitrary class M. by U{M) = {̂ 4 € A | A has no nonzero homomorphic
image in M) and recall that if M is a regular class then U(M) is a radical class. Further,
when M is regular, the semisimple closure of M, denoted by M, is well defined since
semisimple classes of associative rings are hereditary.

Let A" be a homomorphically closed class. Then the class of rings for which every
nonzero homomorphic image has a nonzero accessible subring in X is a radical class called
the lower radical class determined by X and denoted C(X). C(X) is the smallest radical
class containing X.

Snider [6] showed that under suitable conditions a lattice of radical classes may be
formed. Denote by LAR the lattice of all radical classes and by LAHR the sublattice of
all hereditary radical classes. The meet (A) of two radical classes is the largest radical
class common to both and the join (V) is the smallest radical class containing both. For
radical classes Tli and 72.2 >

n s(n2)).

A lattice L is Brouwerian if for any two elements A, B e L, there exists a largest
element C such that A A C ^ B. All Brouwerian lattices are distributive. In the special
case where B = 0, C is called the pseudocomplement of A.

Puczylowski [5] demonstrated that, for any radical class 11, the class of rings for
which every nonzero accessible subring is an 72.-ring is the largest hereditary radical
subclass of 1Z. We denote this subradical by Tn-

PROPOSITION 1 . [4] Any nonzero, hereditary and homomorphically closed class
of rings X contains a simple ring.

COROLLARY 2 . A nonzero class X contains a hereditary, homomorphically closed
subclass if and only if X contains a simple ring.

The lower radical class determined by a homomorphically closed class X has the
same collection of simple rings as X.

2. T H E B A S E RADICAL CLASS.

This work was motivated by the following example in which a radical class is con-
structed using the lower radical class construction but starting with a nonhomomorphic-
ally closed class.

Let X be any class of associative rings and define X = {A € A | A has a nonzero
homomorphic image in A"}. A" is called the homomorphic cover of X [4].

The class Tix = {A £ A | every nonzero accessible subring of A does not map
homomorphically onto a nonzero A'-ring} is clearly hereditary. Let us now consider the
upper radical class determined by Tix- If A € U(HX), then A has no nonzero homo-
morphic image in Tix and so every nonzero homomorphic image of A has an accessible
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subring which maps homomorphically onto a nonzero A'-ring. That is, every nonzero
homomorphic image of A has a nonzero accessible subring in X.

The description of U{Hx) is similar to the usual lower radical determined by a
homomorphically closed class. Interestingly, for any class X with X ^ A, X is never
homomorphically closed since if A 6 X and B £ X, A © B has a nonzero homomorphic
image in X so that A © B € X but A @ B also has a nonzero homomorphic image which
is not in X. More surprisingly, X may not be contained in the radical class generated.

For suppose X is the class {Z3, Z4}. Clearly, {Z3, Z4} is not homomorphically closed
and Z4 C {Z3, Z4). U(HfZ3 z i ) = {A € A | every nonzero homomorphic image of A has

an accessible subring in {Z3, Z4}} but Z4 $. U{H,Zi 2 . ) since Z4 maps homomorphically

onto Z2 6 %{z3,z4}- Hence {Z3,Z4} is not contained in U{rH{z3zt})-
Now let Cb(X) = {A e A | every nonzero homomorphic image of A has a nonzero

accessible subring in X}. Cb(X) will be the lower radical class determined by X when X
is homomorphically closed. We generalise this result by demonstrating

THEOREM 3 . For any class of rings X, Cb{X) is a radical class.

PROOF: Let X be a class of associative rings and let A € Cb(X) with I<A such that
A/1 ^ 0. Since every nonzero homomorphic image of A has a nonzero accessible subring
in X, then every nonzero homomorphic image of A/1 has a nonzero accessible subring
in X, Cb(X) is homomorphically closed and Cb(X) C £(Cb(X)), the lower radical class
determined by Cb(X).

C(Cb(X)) is homomorphically closed and for A € C(Cb(X)) with I<A and A/I £ 0,
A/I e C(Cb(X)). Therefore A/I has a nonzero accessible subring in Cb(X), say B, and
B has a nonzero accessible subring in X, say B'. Therefore, B' is a nonzero accessible
subring of A/I and A e Cb(X). Hence L(Cb{X)) C Cb{X) and Cb{X) is a radical class. D

We call Cb(X) the base radical class determined by X. Some straightforward exam-
ples illustrate the versatility and variability of the radical class generated. If X — {Z3},
then Cb{X) n X = X since {Z3} is homomorphically closed. Cb(Z3) is the lower radical
class determined by Z3. If X = {Z4}, then Cb(X) C\ X — 0 since Z4 maps homomor-
phically onto Z2 and Zi does not have Z4 as an accessible subring. As noted earlier,
if X = {Z3,Z4}, Cb{X) n ^ / O a n d Cb(X) n X ^ X since Z3 € Cb({Z3,Z4}) and
ZAiCb{{Z3,Z4}).

From this point we shall develop the work in terms of the base radical class Cb(X),
using the lower radical class notation £{X) when the homomorphic closure of A" is certain.

PROPOSITION 4 . For classes X and y:

(i) IfXcy, then Cb(X) C Cb(y).

(ii) A simple ring S € X if and only if S € Cb(X).

(iii) £b{X) = Cb{Cb(X)).
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PROOF: (i) and (ii) are clear. For (Hi), since Cb(X) is a radical class for any class
X, Cb{X) is homomorphically closed and Cb{Cb{X)) = C(Cb(X)) = Cb{X). D

For any class X, let X+h — {A e A | A is the homomorphic image of an ^f-ring}.
Denote the largest homomorphically closed subclass of X by X^ = {A € A | every
homomorphic image of A is in X}.

COROLLARY 5 . For all classes X, C{Xh) C Cb(X) C C(X+h).

PROOF: AS a consequence of Proposition 4(i), for all classes X, C(Xh) = Cb(Xh) C
Cb{X) C Cb(X

+h) = C{X+h). D

PROPOSITION 6 . X is contained in Cb{X) if and only if Cb(X) - C(X+h).

PROOF: We have from Corollary 5 that Cb{X) C £(X+h). If X is contained in
Cb{X), C(X+h) C £b(X) since C(X+h) is the smallest radical class containing X. Con-
versely, if Cb(X) = C{X+h), X is contained in Cb{X) as X is contained in C{X+h). 0

The semisimple class associated with Cb(X) is S(Cb(X)) = {A € A | A has no
nonzero accessible subring in Cb(X)}. If A € S(Cb{X)), then every nonzero accessible
subring of A has a nonzero homomorphic image C such that C has no nonzero accessible
subring in X.

PROPOSITION 7 . If XnS(Cb(X)) = 0 then S(£b{X)) is the largest semisimple

class having zero intersection with X.

P R O O F : Let V be a radical class such that S(V) properly contains S(Cb(X)) and
assume that S(V) is the largest semisimple class with X n S(V) = 0. Further, let
A e S{V)\S(Cb(X)) so that A has an £6(A')-ideal but no P-ideal. There exists then
0 ^ I< A such that / € Cb(X), and consequently / has a nonzero accessible subring in X,
say C. C is a nonzero accessible subring of A. But C € S(P) since (S('P) is hereditary.
Therefore C € XnS{V), a contradiction, and S(Cb(X)) must be the largest semisimple
class having zero intersection with X. D

If X is contained in Cb(X), for example if X is homomorphically closed, then
X nS(Cb(X)) = 0 and S(Cb(X)) is the largest semisimple class having zero intersection
with X. This confirms that for any radical class H, S(1l) is the largest semisimple class
having zero intersection with TZ.

PROPOSITION 8 . If U is an hereditary radical class, then 11 n Cb(S(TZ)) = 0.

PROOF: If 71 is an hereditary radical class, then for A € TZ and C a nonzero acces-
sible subring of A, C € 71. It is clear then that A £ Cb(S(Tl)). D

Large radical classes were introduced by Gardner and Liang [2]. A radical class 71
is large if TZ A T ^ 0 for every radical class T ^ 0. If 72. is hereditary and large in the
lattice of all radical classes, then £b(S(7l)) = 0. It follows that there are no rings B
such that every nonzero homomorphic image of B has a nonzero 7l-semisimple accessible
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subring and hence there are no strongly 7£-semisimple rings. It is clear that whenever
nonzero strongly 7^-semisimple rings exist, for example if H does not contain all simple
rings, then these are contained in the base radical determined by S(TZ).

PROPOSITION 9 . For a class of associative rings X, X n Cb{X) = 0 if and only
if X satisfies

(1*) A G X => there exists a nonzero homomorphic image C of A such that C has no
nonzero accessible subring in X.

The proof is clear. Any class X satisfying (1*) is not homomorphically closed. Also,
since X does not contain a simple ring then X contains no hereditary, homomorphically
closed subclass by Corollary 2.

3. O N CLASSES GENERATING £b(X).

We now give some results about the generating class for Cb{X).

PROPOSITION 1 0 . If there exists a nonzero ring Ax G X such that, for all
A G X, A\ is an accessible subring of A, then Cb(X) = Cb{A{).

P R O O F : Suppose there exists a nonzero ring A\ G X such that, for all A G X, A\
is an accessible subring of A. If A G Cb{X) and I < A with A/I ^ 0, A/1 has a nonzero
accessible subring in X, say C\, and consequently C\ has Ax as a nonzero accessible
subring. Therefore, A/1 has Ai as a nonzero accessible subring and A G Cb(Ai). By
Proposition 4(i), Cb(Ax) C Cb(X), since Ax C X, and hence Cb(X) = C^A^. D

For every ring B in a hereditary, homomorphically closed class X, define B* = {A G
A | A is a nonzero accessible subring of B}. Let A* C. X be a class of rings such that
A' n B' ^ 0 for all £*. >T = 0 if and only if X = 0.

PROPOSITION 1 1 . For X and A' described above, Cb{X) = £b(A
m).

PROOF: For all A G X, A has a nonzero accessible subring in A*. A' C X =>
£&(-4*) C £6( ; r) . Now, as in Proposition 10, for A G Cb(X) and / < i ^ with A/I / 0,
A/1 has a nonzero accessible subring in X, say Ci, and consequently Ci has an A'-r'mg
as a nonzero accessible subring. Therefore, A/I has an j4*-ring as a nonzero accessible
subring and A G £&(>!*). D

Since X is hereditary and homomorphically closed here, then X contains a simple
ring 5 by Proposition 1. (In fact, A* contains all the simple X-rings.) If A" is a class
of rings for which every ring has a simple accessible subring (for example, a class of
subdirectly irreducible rings with idempotent hearts) then these simple accessible subrings
suffice as a generating class for Cb(X). It follows that if X is a class of simple rings, then
X is the smallest class generating Cb(X).
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For any class X, define X" = {A £ A | A has a nonzero accessible subring in X},
called the accessible cover of X. X C X" and X" = 0 if and only if X = 0. The accessible
cover is the dual notion of the homomorphic cover mentioned earlier.

PROPOSITION 1 2 . Let X be a class of associative rings,

(i) A simple ring S e A " if and only ifSeX.

(ii) For any class of rings X, Cb(X") = Cb{X).

(Hi) For any class of rings X, Cb(X) C Cb(X)° C X".

(iv) Cb{X) — Cb(X)" = X" if and only if X" is homomorphically closed.

P R O O F : (i) is clear, (ii): For any class of rings X, X C X" and so Cb(X) C Cb{X<).
If A € £;,(X") and I <A with A/1 ^ 0, then A/1 has a nonzero accessible subring in X"
and consequently A/I has a nonzero accessible subring in X. Therefore A £ Cb(X) and
Cb(X) = Cb{X"). (Hi) follows immediately from the definition of Cb(X) and X". (iv) :
If X" is homomorphically closed, then for A £ X" and I <A with A/1 ^ 0, A/1 has a
nonzero accessible subring in X and so A € Cb(X). The converse is clear. D

PROPOSITION 1 3 . Let Tl be a radical class. TV = A if and only it'll = A.

P R O O F : If TV = A, then every ring A £ A has a nonzero accessible subring in H
and consequently A has a nonzero 7?.-ideal by the ADS Theorem. Therefore S(Tl) = 0
and Tl = A. The converse is clear. D

This confirms that there exists a nonzero 72.-semisimple ring whenever a radical class
Tl is not the class of all rings.

For any radical class Tl, the rings having no nonzero accessible subring in Tl are the
72.-semisimple rings. Let —><S(72.) = {A 6 A | A is not an 7£-semisimple ring}. This is
clearly the accessible cover Tl" and it follows from Proposition 12(ii) that

COROLLARY 1 4 . For all radical classes Tl, £b(-iS(Tl)) = Tl.

EXAMPLE. The prime radical class P can be expressed as the lower radical determined
by the class of zerorings Z. S(/3) is the class of semiprime rings. —><S(/3) = {A £ A \ A
is not a semiprime ring} = {A £ A \ 0{A) ^ 0}. By Corollary 14, Cb{-^S((3)) = 0
( = C(Z) = Cb(Z)). We may then construct 0 from a class properly containing (3 and
from a class properly contained in /?.

More interestingly, for any radical class Tl with semisimple class S(Tl), we have
Tl = Cb(pS{Tl)) = li(S(Tl)) which may be.extended in the following way.

THEOREM 1 5 . For any regular class X, let -•X denote the class of rings that are
not in the semisimple closure of X. Then U(X) — Cb(-^X).

PROOF: For a regular class X, U(X) = U(X). If A £ U(X), then every nonzero
homomorphic image of A is in -^X , A £ £b{->~X) and U(X) C £b(->~X). Ii A £ A(->#),
then A has no nonzero homomorphic image in X (else this image would have no nonzero
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accessible subring in ->X as X is hereditary). Hence A € U{X) = U(X) and £(,(->X) C
U(X). D

We have from [3] that if a radical class TZ is regular, then TZ is pseudocomplemented

by U{1Z) (and hence by Cb(-nl)) in LAR.

To conclude, let ->X = {A € A | A is not an A"-ring}.

PROPOSITION 16. If X is hereditary, U{X) = Cb{-^X).

P R O O F : Suppose a class X is hereditary. Then for all A S X, A has no nonzero
accessible subring in ->X and X n Cb(-<X) = 0. If A € W ^ ) , then every nonzero
homomorphic image of A is contained in -<X and hence A € £(,(-vf). £(,(-!,¥) C U(X)
since £/(<%") is the largest radical class having zero intersection with X. Therefore U(X) —

Ah*). D
If 7^ is a hereditary radical class, then 7?. is pseudocomplemented by £b(-i7Z) in LAR.

£b{-<TZ) is not a pseudocomplement for all radical classes TZ though as the following
illustrates.

PROPOSITION 1 7 . A radical class TZ contains a simple ring if and only if
ChK) # A.

P R O O F : Suppose a radical class TZ contains a simple ring 5. Then S $ Ct,{-<TZ)
and Cb{->1Z) ^ A. If £6(-i7i) ^ A, then there exists a ring with nonzero homomorphic
image A such that A has no nonzero accessible subring in -HZ. Therefore every nonzero
accessible subring of A is an 72.-ring and hence Tn, the largest hereditary subradical class,
is nonzero. 7n contains a simple ring by Proposition 1 and hence 1Z contains a simple
ring. D

It is known that the radical class of divisible torsion rings T>T contain no simple
rings and hence Ct,(->V7~) = A, clearly too large to be a pseudocomplement in LAR.

R E F E R E N C E S

[1] N. Divinsky, Rings and radicals, Mathematical Expositions 14 (University of Toronto
Press, Toronto, Ont., 1965).

[2] B.J. Gardner and Z. Liang, 'Small and large radical classes', Comm. Algebra 20 (1992),
2533-2551.

[3] R.G. McDougall, 'On elements of the lattice of all radical classes, part I: Examples of
pseudocomplements', Comm. Algebra (to appear).

[4] R.G. McDougall, 'The base semisimple class', (submitted), Comm. Algebra.
[5] E. Puczylowski, 'A note on hereditary radicals', Acta Sci. Math. 44 (1982), 133-135.
[6] R.L. Snider, 'Lattices of radicals', Pacific J. Math. 40 (1972), 207-220.
[7] R. Wiegandt, Radical and semisimple classes of rings, Queen's Papers in Pure and Ap-

plied Mathematics 37 (Queens University, Kingston, Ont., 1974).

https://doi.org/10.1017/S000497270003269X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003269X


146 R. McDougall [8]

School of Mathematical and Decision Sciences
Central Queensland University
Rockhampton Qld 4702
Australia
e-mail: r.mcdougall@cqu.edu.au

https://doi.org/10.1017/S000497270003269X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003269X

