
ON A CONDITION OF J. OHM FOR INTEGRAL 
DOMAINS1 

ROBERT G I L M E R 

1. Introduction. This paper originated mainly from results presented 
in a paper by J. Ohm (13), and, to a lesser degree, from results of Gilmer in 
(3). Ohm's paper is concerned with the validity of the equation (x, y)n = (xn, yn) 
for each pair of elements x, y of an integral domain D with identity. If D is 
a Priifer domain,2 the above equation is valid for all x, y Ç D (7, p. 244). Butts 
and Smith have shown (2) that if (x, y)2 = (x2, y2) for all x, y of the inte
grally closed domain D, then D is a Priifer domain. Ohm, in (13), was con
cerned with the following question: Suppose (x, y)n = (xn, yn) for each 
x, y £ D, an integral domain with identity, and for each positive integer n; 
must D be integrally closed? Example 3.6 of (13) shows that the answer 
to this question is negative. 

We present in this paper results in the area just discussed, some of which 
are generalizations of theorems in (13) and (2). All rings considered in this 
paper are assumed to be commutative and to contain an identity. 

2. Some terminology. Suppose R is a ring. If 5 is a subset of R, (S) 
denotes the ideal of R generated by S. If n is a positive integer, we say R 
has property (n) provided (x, y)n = (xn, yn) for each x, y G R) this is the 
terminology of Ohm in (13). We say R has property (n)* if for x, y £ R, 
xn-\y a n c[ Xyn-i a r e m (xn^ yny j t j s c j e a r that property (n) implies property 
(n)*. We say R has property (n)' if, from xn £ An, it follows that x £ A for 
any element x G R and any ideal A of R. Property (n)r arises naturally in 
(3), where Gilmer proved (Theorem 5) that if A is an ideal of the integrally 
closed domain D having quotient field K and if D is the integral closure of 
D in L, an ^-dimensional extension field of K, then for x G AD H D, xn Ç An. 

If 5 is a unitary overring of R, we say that R has property (n) with respect 
to S provided the system of equations 

£ = aif1 + bi 
(2.1) e = a2? + b2 

f-1 = On-lF + h-l 

Received December 7, 1966. 
^ h e author was supported during the writing of this paper by Alfred P. Sloan Foundation. 
2An integral domain D is Priifer if each finitely generated ideal of D is invertible. Equiva-

lently, Dp is a valuation ring for each prime ideal P of D (9, p. 554). Properties of Priifer 
domains may be found in (1, p. 93; 7; 8; 2). 
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has a solution {ai, 61, . . . , aw_i, 5w_i} in R for any £ G S. Again, this is Ohm's 
terminology. We say t h a t R has property (n)* with respect to S provided, for 
each element £ of S, there exist ai, bi, an_i, 5w_i G i^ such t h a t 

£ = aif" + 61, 

f-1 = On-1? + ^ - 1 . 

If i? has proper ty (n) with respect to S, then R has proper ty (n)* with re
spect to S. T h e converse holds when n = 2 or 3. Ohm showed in (13) t h a t if 
R is a domain having quot ient field S, then R has property (n) if and only 
if R has proper ty (n) with respect to S. In exactly the same way we obtain 
the following lemma. 

LEMMA 2.1. If R is a domain having quotient field S, then R has property 
(n)* if and only if R has property (n)* with respect to S. 

3. T h e e q u a l i t y (xi, x2, . . . , xm)n = (xin, . . . , xm
n). If A is an ideal of 

the ring R, we say A is a cancellation ideal if from ^45 = ^4C, it follows 
t h a t B = C; here B and C denote ideals of R. HA is invertible, A is a can
cellation ideal. Products of cancellation ideals are again cancellation ideals; 
in particular, if A is a cancellation ideal and n is a positive integer, then An 

is a cancellation ideal. 

LEMMA 3.1. If A = (#i, . . . , am) is a finitely generated cancellation ideal of 
the ring R, then for any positive integer n} An = (a/*, . . . , am

n). 

Proof. T h e ideal Amn is generated by all products a^1 . . . am
Cm such t h a t 

c\ + . . . + em = mn, and, in each such product, a t least one et mus t be 
^n. Hence 

Amn = An.A(m-i)n = ( { ^ ^ ^ # ^ \^J=1 Cj = mn\) 

= (ax», . . . , am
n)({a^ . . . a j - | Z7=ifj = (m - 1)»}) 

= (ai», . . . , a » » ) ^ 1 ) w , 

and because A(m~1)n is a cancellation ideal, it follows t ha t An = (ain, . . . , am
n). 

From Lemma 3.1 it follows t h a t if R is a ring in which each finitely generated 
ideal is a cancellation ideal, then R has property (n) for all n. Bu t a ring in 
which each finitely generated ideal is a cancellation ideal is an integral domain, 
and is, in fact, a Prufer domain. This result appeared as Corollary 1 of (4), 
b u t was originally due to H. S. But t s . 

LEMMA 3.2. Let n be a fixed positive integer. In the ring R, (a) and (b) are 
equivalent. 

(a) If {n, . . . , rm\ is any finite subset of R, (rly . . . , rm)n = (rx
n, . . . , rm

n). 
(b) If S is any non-empty subset of R, (S)n = ({sw,| s £ S}). 
Either property implies property (n) holds in R, and if R has property (k) for 

each positive integer k ^ n, then (a) holds in R. 
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Proof. We only prove that if R has property (k) for each positive integer 
k ^ n, then (a) holds in R. The other assertions of the lemma are clear. 
Hence, if {rh . . . , rm} is a finite subset of R, we need only show that 

(ri, • • • , rm)n = (n», . . . , rn"). 

For this purpose, it suffices to show that r^1 . . . rm
6m £ (r^, . . . , rm

n) for any 
finite sequence e\, . . . , em of non-negative integers with sum n. Thus 

fieif2
e2 G (ne^e\ r2

ei+e2) 

since i? has property (e\ + £2). If we have shown that 

r±
ei. . . r/* G (f1

ei+---+^, . . . , r/1+---+cJ'), 

where j < m} then 

ri e i . . . r / ' rJ+ie>'+1 £ (ri*1+---+e; r m
e ' + 1 , . . . r/i+—+«/ ry+1^+1) 

Ç ( r i « i + . . . + « / + i f . . . , r y + 1
e i + - - - + ^ + i ) , 

the last containment following since R has property (ei + . . . + ^+1). By 
induction, it follows that r±ei. . . rm

6m Ç (r^, . . . > 7%/), as required. 

4. Property (n)*. If 5 is a unitary overring of the ring R and if w is a 
positive integer, an element s of S is said to be n-integral over R provided 5 
is a root of a monic polynomial of degree n having coefficients in R. R is 
n-integrally closed in S if each element of Sy ^-integral over R, is in R. In 
case S is the total quotient ring of R, if R is w-integrally closed in S, we simply 
say that R is n-integrally closed. We present in this section a generalization 
(Corollary 4.4) to Corollary 3.10 of (2), using the notion of w-integrally 
closed. 

Remark. If the element 5 is ^-integral over R, then s is w-integral over R 
for any m ^ n. Hence, if R is ^-integrally closed, then R is ^-integrally 
closed for any k S n. 

LEMMA 4.1. If the domain R is n-integrally-closed, then for any multiplicative 
system N in R, RN is n-integrally closed. If {M\} is the set of maximal ideals 
of R and if RMx is n-integrally closed for each X, then R is n-integrally closed. 

Proof. The technique required for the proof of the first assertion is well 
known (cf. 15, p. 262), and the second statement follows from the fact that 
R = HxRMx (16, p. 94). 

LEMMA 4.2. If B is a finitely generated ideal of the domain D and if {M\) 
is the collection of maximal ideals of D, then B is invertible in D if and only 
if BDMx is invertible in DMx for each X. 

Proof. See (11, p. 233). 
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Remark. The assumption that B is finitely generated is necessary for the 
validity of Lemma 4.2. For example, there is an integral domain / such 
that JM is a rank one discrete valuation ring for each maximal ideal M of 
J, and such that J is not a Dedekind domain (12, p. 426; 5, p. 814). If A is 
a non-zero ideal of / , it is true that AJM is invertible for each maximal ideal 
M of / . But there is a non-zero ideal A of / such that A is not invertible 
(15, p. 275). In the particular example given by Nakano of such a / it is, in 
fact, true that the only invertible ideals of J are non-zero principal ideals. In 
the proof of Lemma 4.2, the equality bDMx : BDMx = [(b) : B]DMx depends 
upon the fact that B is finitely generated. 

Remark. Invertible ideals of a quasi-local domain are principal (11, 
p. 233). Hence, Lemma 4.2 can be stated as follows. 

If B is a finitely generated ideal of the domain D and if {Ma} is the collection 
of maximal ideals of D containing B, then B is invertible in D if and only 
if BDMa is principal in DMa for each a. 

THEOREM 4.3. Suppose n is an integer greater than one and D is an n-inte-
grally closed domain. If a and b are non-zero elements of D such that an~lb 
and abn~1 are in (an, bn), then (a, b) is invertible. 

Proof. We first assume that D is quasi-local with maximal ideal M. We 
let an~lb = ran + sbn and abn~l = uan + vbn, where r, s, u, v £ D. Multi
plying the first equation by rn~l/bn, we obtain (ra/b)n — (ra/b)n~l + rn~1s = 0, 
so that ra/b is ^-integral over D, and hence is in D. Since 1 = (ra/b) -\-s (b / a)n~l, 
we conclude that either ra/b or 1 — (ra/b) = sty/a)*1*1 is a unit of D. If 
ra/b is a unit of D, then (a, b) = (a) so that (a, b) is invertible. We assume 
that s(b/a)n~l is a unit of D. 

From the equation abn~l = uan + vbn we conclude, in like manner, that 
vb/a is n-integral over Z), and hence is in D; vb/a or 1 — (vb/a) = u(a/b)n~1 

is a unit of D. If vb/a is a unit, then (a, b) = (b) is invertible. We therefore 
assume that u(a/b)n~1 is a unit of D. In this case, s(b/a)n~l • u(a/b)n~l = su 
is a unit of D\ hence, 5 and u are units of D. The equality 

(b/a)n - s~l(b/a) + rs~l = 0 

then shows that b/a is w-integral over D so that (b/a) £ D and (a, b) = (a) 
is invertible. 

In case D is not quasi-local, we consider any maximal ideal M\ of D. By 
Lemma 4.1, DMx is ^-integrally closed, and an~lb, abn~l Ç (an, bn) imply that 
an~lb, abn~l G (an, bn)DMx. By the proof just given, it is implied that (a, b)DMx 

is invertible. Because M\ is an arbitrary maximal ideal of D, Lemma 4.2 
then shows that (a, b) is an invertible ideal of D. 

In (14, p. 6), Priifer showed that if each non-zero ideal of a domain D 
with a basis of two elements is invertible, then each non-zero finitely generated 
ideal of D is invertible. From this and from Theorem 4.3, Corollary 4.4 then 
follows. 
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COROLLARY 4.4. If the domain D is n-integrally closed and has property (n)*, 
where n is a fixed positive integer > 1 , then D is a Priifer domain. 

COROLLARY 4.5 Let D be a domain, D its integral closure, and n an integer 
> 1 . If a and b are non-zero elements of D such that an~lb and abn~l are in 
(an, bn), then {a, b)D is invertible in D. 

COROLLARY 4.6. If the domain D with quotient field K has property (n)*, 
where n > 1, then any n-integrally closed domain between D and K is Priifer. 
In particular, the integral closure of D is Priifer. 

Proof. Lemma 2.1 shows t h a t if D has proper ty (n)*, then any domain 
between D and K has proper ty (n)*. Hence, Corollary 4.6 follows from 
Corollary 4.4. 

Remark. Corollary 4.4 generalizes Corollary 3.10 of (2). Our next result, 
Theorem 4.7, is a generalization of Proposition 3.9 of (2) and is also a gene
ralization of our Theorem 4.3. 

T H E O R E M 4.7. Let n be an integer > 1, and let R be a ring such that R is n-
integrally closed. If a and b are elements of R such that a is regular and 
an~lb G (an, bn), then (a, b) is invertible. 

Proof. We suppose an~lb = ran + sbn, where r, s £ R. As shown in the 
proof of Theorem 4.3, sb/a is an element of the total quot ient ring of R which 
is w-integral over R. Hence, sb/a = Si £ R. T h u s an~lb = ran + siabn~1, and 
since a is regular in R, an~2b = ran~1 + Sib^1 so t h a t an~2b £ (an~l, bn~l). By 
the remark preceding Lemma 4 .1 , R is (n — 1)-integrally closed. Therefore, 
the same method as was jus t used implies (if n > 3) an~sb £ (an~2, bn~2). 
By induction, it follows t h a t ab £ (a2, b2). A proof by B u t t s and Smith (2) 
then shows t h a t (a, b) is invertible in R. 

PROPOSITION 4.8. If {M\} is the set of maximal ideals of the domain D, then 
D has property (n)* if and only if each DMx has property (n)*. 

Proof. Lemma 2.1 shows t h a t if D has proper ty (n)*, each DMk has pro
per ty (n)*. We suppose each DMx has proper ty (n)*, and we choose £ in K, 
the quot ient field of D. We wish to show t h a t £ and %n~l belong to the D-
submodule N of K generated by %n and 1. T h e set A of e lements d of D such 
t h a t d% Ç TV is an ideal of D. We need to show t h a t A = D, and to do so, it 
suffices to show t h a t A $£ M\ for any X. Thus , for any X, there are elements ux 

and v\ of DMx such t h a t £ = U\£n + v\. There is an element d\ of D — Mx 

such t h a t d\ux and dxvx are in D; hence d\% = {dxu\)^n + (d\V\) Ç N so t h a t 
dx e A - Mx. This shows t h a t £ G N. T h e proof t h a t ^n~1 e N is similar. 

5. T h e propert ies (n)r, (n), (n)*, a n d in tegra l c losure . W e show here 
t h a t for any integer n > 1, a Priifer domain has proper ty (n) ' , and t h a t a 
ring with proper ty (n) r has proper ty (n) . Since a domain with proper ty (n)* 

https://doi.org/10.4153/CJM-1968-095-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-095-2


INTEGRAL DOMAINS 975 

is Prûfer if and only if it is w-integrally closed (Corollary 4.4), a domain with 
property (n)' is also Prûfer if and only if it is n-integrally closed. We show 
(Example 5.7) that a domain having property (n)' for all n > 1 need not 
be Prûfer, and we further investigate relations between the properties men
tioned in the heading of this section. 

li A is an ideal of a domain D, A is called a valuation ideal (16, p. 340) 
if there is a valuation ring V containing D as a subring and an ideal B of V 
such that B D D = A. If A is a valuation ideal, the valuation ring V may 
be taken to lie between D and its quotient field (16, p. 340). 

LEMMA 5.1. If the ideal A of the domain D is an intersection of valuation 
ideals of D, and if x G D is such that xn G An, where n is some positive integer, 
then x G A. 

Proof. By assumption, there is a collection {A\} of valuation ideals of D 
such that A = fïx A\. For any such X, xn G An C A\n, so it suffices to ob
serve that Lemma 5.1 is true when A is a valuation ideal. But this follows 
from Corollary 2.9 of (7). 

Gilmer and Ohm in (7, p. 238) showed that among integral domains D, 
Prûfer domains are characterized by the property that each ideal of D is 
an intersection of valuation ideals. Corollary 5.2 follows from this fact and 
from Lemma 5.1. 

COROLLARY 5.2. If D is a Prûfer domain, D has property in)' for any positive 
integer n. 

Remark. HA is an ideal of a commutative ring R, each element x of An 

belongs to Ax
n for some finitely generated ideal Ax contained in A. Hence, 

in order that R have property (n)', it is sufficient that xn G Bn should imply 
x G B for any element x of R and any finitely generated ideal B of R. 

THEOREM 5.3. If R is a ring having property (n)', then for any non-empty 
subset S of R, (S)n = ({sn\ s G S}). Hence property (n) holds in R. 

Proof. By Lemma 3.2, it suffices to prove Theorem 5.3 when S = {si, . . . , sm} 
is a finite subset of R. We need only show that if i\, . . . , i'm are non-negative 
integers with sum n, then 5 = Siil s2

i2. . . sm
im Ç (s{\ . . . , sm

n). We observe 
that sn = (sfyi. . . (sm

ny™ e (sin, . . . , sm
n)n so that 5 G (sx

n, . . . , sm
n) since 

property (n)' holds in R. 
Propositions 1.6 and 1.7 of (13) provided Ohm with a method for con

structing domains with property (n) for a given integer n > 1. We cite these 
results, and remark that these statements remain valid if property (n) is 
replaced throughout by property (n)*. 

PROPOSITION 1.6. If D' is a valuation ring between the domain D and its 
quotient field, D has property (n) if and only if D has property (n) with re
spect to D'. 
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PROPOSITION 1.7. Let R ç; Rf be rings which have a common ideal A. Then 
R is integrally closed in Rf if and only if R/A is integrally closed in R'/A, and 
R has property (n) with respect to Rr if and only if R/A has property (n) with 
respect to R'/A. 

If V is a valuation ring of the form K + A, where K is a field and A is 
the maximal ideal of V, and if k is a subfield of K, then the domain D = k-\-A 
has property (n) if and only if k has property (n) with respect to K. We 
show that this method for constructing a domain with property (n) always 
yields a domain with property (n)'. We first investigate the class of finitely 
generated ideals of such a domain D. We use the following notation. F is a 
valuation ring of the form K + M, where K is a field and M is the maximal 
ideal of V, v is a valuation associated with the valuation ring V, k is a sub-
field of K, and D = k + M. 

LEMMA 5.4. / / x G D — {0}, xD contains each element y of V such that 
v(y) > v(x). If A is a finitely generated ideal of D, say A = {ai, . . . , an}D, 
and if t = mm{v(ai)\ 1 ^ i ^ n}, then for any element b of A such that v(b) =t, 
A has a basis of the form b, k2b, . . . , kmb for some k2, . . . , km G K — k. If 
b G D — JO}, b not a unit, and if k2l . . . , km G Ky the ideal of D generated 
by {b, k2b, . . . , kmb) is Wb + B, where W is the k-subspace of K generated by 
{1, k2y . . . , km] and B is the ideal of V consisting of all elements y such that 
v(y) > t. 

Proof. If v(y) > v(x), then y/x G M Ç D, therefore y G Mx Ç Dx. Thus, 
if A = {aly . . . , an}D and if / = min{z;(aj)| 1 rg i fg n},then A = {ai, . . . , am\D, 
where t = z>(ai) = • • • = v(am) < v(aj) for m + 1 ^ j ^ n. If b = aly then 
v{ai/b) = 0 for 2 ^ i g m. Hence, at/b = kt + mt for some kt G K, mt G M. 
I t follows that a* = kfi + m ^ for each 2'. But m ^ G Db for 2 ^ i ^ m so 
that 4̂ = {6, &26 + w26, . . . , kmb + mmb)D = [b, k2b, . . . , kmb}D. 

I t is clear that for any b G D with z/(6) 5̂  0, {b, k2b, . . . , kmb\D contains 
Wb + B, and {6, k2b, . . . , ifew6} C M> + b. Hence, if W6 + B is an ideal 
of D, then PF6 + B is the ideal generated by {&, &2fr, . . . , &wfr}. To check 
that Wb + JB is an ideal of D is straightforward. 

LEMMA 5.5. If k has property (n) with respect to K, then for S a subset of K 
linearly independent over k, {sn\ s G S} is linearly independent over k. 

Proof. I t suffices to consider the case when S — {si, s2, . . . , sm} is finite. 
We first note that {1 = h, t2, . . . , tm] is linearly independent over k, where 
tt = St/si for each i between 1 and m. Thus, if YJi^i^ih = 0, where each 
at G k, then 0 = 5 i £ i m f l ^ = £1™ a ^ , so that at = 0 for each i. We show 
that {/iw = 1, t2

n, . . . , /m
w} is linearly independent over k. Because k has 

property (n) with respect to K, it is clear that each tt belongs to the yfe-sub-
space k (ti1, . . . , tm

n) of K spanned by {tu . . . , tm}. S ince fc\tiy . . . , tm) is 
m-dimensional, it follows that k(tlf . . . , tm) = k{tin, . . . , /m

w) and that 
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{tin
y . . . , tm

n) is linearly independent over k. We have already shown that 
this implies that {sin tin, . . . , Sin tm

n] = {sin, . . . , sm
n] is linearly independent 

over k. 

THEOREM 5.6. If k has property (n) with respect to K, then D has property 
(n)'. 

Proof. By the remark preceding Theorem 5.3, it suffices to prove, for B a 
finitely generated ideal of D and an element x of D such that xn G Bn, that 
x G B. If B = D or B = (0), there is nothing to prove. Otherwise, Lemma 5.4 
implies B has a basis of the form {&, &2fr, • • • , kmb] for some finite subset 
{k2, . . . , &w} of K. If W is the &-subspace of K generated by {1, k2, . . . , few}, 
we may choose a basis S of PFsuch that 1 G 5and 5 Ç j l , J 2 &w}. There
fore, we may assume {1, k2, . . . , km\ is linearly independent over k. Since 
& has property (n) with respect to K, D has property (n). Hence Bn = {bn, 
k2

nbn
y . . . , km

nbn}D. We have xn G £*F = (5F)W and F is a valuation ring 
so that x G BV = bV. I t follows that v(x) ^ v(b). If t>(x) > v(b), Lemma 
5.4 shows that x G bD CI 5 . If i/(#) = f(6), then v(x/b) = 0 so that 
x/6 = u + m for some non-zero element u oî K and some element m of If. 
Hence x = ub + mb and x = ub(B). Thus xw s= (z^)w = 0 (Bn) and to show 
that x G 5 , it suffices to show that ^6 G J5. Now, 5 n = {bn, k2

nbn, . . . , kn
nbn\D 

= Wbn + C, where W is the &-subspace of K generated by {1, k2
n

y . . . , km
n\ 

and C is the ideal of V consisting of all elements having y-value greater than 
v(bn). Since unbn G Bn, we have unbn = ybn + c for some y £ W and some 
c G C Hence c = (V* — ;y)frw, implying, since v(c) > z/(&w) and un — y £ K} 

that c = ww — y = 0. Therefore, un G W7; {un,\, k2
n, . . . , &m

w} are linearly 
dependent over k. By Lemma 5.5, {u, 1, &2, . . . , &w} are linearly dependent 
over k. Since {1, k2, . . . , km} are linearly independent over k, we conclude 
that w depends linearly upon {1, k2, . . . , feTO}. Hence 

ub £ kb + k(k2b) + . . . + k(kmb) C J3. 

Example 5.7. In (13), Ohm constructed fields & and K such that & has 
property (n) with respect to K for each positive integer n, but such that k 
is not algebraically closed in K. If V = i£[[X]] is the ring of formal power 
series in X over K, then F is a rank one discrete valuation ring of the form 
K + M, where M is the maximal ideal of V. I t then follows that the domain 
D = k + M has property (n) for each positive integer n> but D is not inte
grally closed, hence is not Priifer. Theorem 5.6 shows that D does, in fact, 
have property (n)' for each positive integer n. 

6. Property (n) for field extensions. Ohm's construction of domains 
having property (n), which we have outlined in § 5, gives rise to the following 
field-theoretic question: Suppose k is a subfield of the field K and n is a 
positive integer. Under what conditions does k have property (n) with re
spect to K? There are a few simple observations we can make in connection 
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with this question. First, k has property (n) with respect to K if and only if 
k has property (n) with respect to k(t) for each / Ç K. Hence, we may restrict 
ourselves to the case when K = k(t) is a simple extension of k, and, clearly, 
K/k must be algebraic if k is to have property (n) with respect to K. By 
definition, k has property (n) with respect to K if and only if for £ G K — k, 
there exist polynomials 

MX) = axX
n -X + h 

/ 2 (X) = a2X
n - X2 + b2 

fnMX) = an-iX
n - Xn-^ + 6n_! 

in fe[X] having J as a root. For £ $ fe, ai ^ 0; therefore [&(£): fe] = n. Hence, 
a necessary condition for k to have property (n) with respect to k(t) is that 
[k(t) : k] ^ n, and equality can hold only when n = 2. 

A general investigation of the question as to when k has property (n) 
with respect to k(t) has allowed us to realize that this question is too large 
for consideration in conjunction with this paper and we shall examine this 
problem separately in a forthcoming paper. We do consider, however, two 
special cases of the question here. The first case, when n = 3 and [k(t):k] = 2, 
is mentioned here, since it is directly related to Corollary 3.4 of (13). In the 
second case, when n — 5 and [k(t) : k] = 2, a good insight into the nature 
of the question is given. 

THEOREM 6.1. If k(t) is an extension field of the field k such that [k(t):k] = 2, 
then k has property "(3)" with respect to k{i) if and only if each root 
of X2 + X + 1 in k(t) belongs to k. 

Proof. Suppose X2 + X + 1 has a root 6 in k(t) such that 6 G k. Then 
X2 + X + 1 is the minimal polynomial of 6 over k. If 6 = vds + u for some 
u, v G k, then 6 (? k implies v 9* 0. Hence, 6 is a root of Xs — aX + b, where 
a = v~l and b = uv~l are in k. Therefore, X8 — aX + b is divisible by 
X2 + X + 1 so that 

X3 - aX + b = (X - d) (X2 + X + 1) = X3 + (1 - d)X2 + (1 - d)X - d 

for some d G k. Hence, d — 1 = 0 = a, a contradiction. It follows that if k 
has property " (3 )" with respect to k(t), then each root of X2 + X + 1 in 
k(t) is in k. 

To prove the converse, it is sufficient to show that if £ G k(t) — k and 
if X2 + aX + b is the minimal polynomial for £ over k, then there are ele
ments c and d of k such that (X - c) (X2 + aX + b) = Xs + eX2 + f and 
(X - d) (X2 + aX + b) = X3 + gX + h for some s,/, g, h £ K. I t is easy 
to check that the condition needed to assert the existence of such an element 
c or d is that b ^ a2. Why is this condition fulfilled? If S is a root of X2-\-aX-\-a2 
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over k, then 6/a is a root of X2 + X + 1. Therefore, if 0 G &(/), then 0/a£ k(t), 
and, hence, 0/a G k and 0 G fe. Thus, if £ G k(t) — k, the minimal polynomial 
for £ over k does not have the form X2 + aX + a2. 

THEOREM 6.2. If k(t) is an extension field of the field k such that [k(t):k] = 2, 
then k has property " (5)" with respect to k(t) if and only if each root of 
X4 + 2X3 + 4X2 + 3X + 1 in k(t) belongs to k. 

Proof. By definition, k has property " (5)" with respect to k(t) if and only if 
for each 0 G k(t) — k, there exist polynomials 

MX) = axX5 - X + 6i, . . . , /4(X) = a4X5 - X4 + 64 

in &[X] having 0 as a root. If X2 + aX + 6 is the minimal polynomial for 0 
over fe, we must therefore be able to find elements y0, ylt y2j y% in k such 
that, in 

(y0 + yiX + y2X
2 + y^X*) (b + aX + X2) = 

u0 + UlX + u2X
2 + ihX* + u,X* + u5X

5, 

any three of {ui, u2j ih, u±} may be zero, while the fourth is one. This is 
equivalent to the assertion that the system 

ayz + y2 = u± 
by* + ay2 + yi = u$ 

by2 + ayi + y0 = u2 

by i + ay0 = u± 

has a solution when any three of u^ u%, u2, u\ are zero and the fourth is one. 
But this is equivalent to invertibility of the matrix 

Ya 1 0 0 ] 
I b a 1 0 

0 b a 1 
|_0 0 b a\ 

which holds if and only if its determinant a4 — 3a2b + b2 ^ 0. Since 
b = -ad - 02 and 

a4 - 3a 2 ( -a0 - 02) + (-ad - 02)2 = 04 + 2a03 + 4a202 + 3a30 + a4, 

the following criterion is valid: k has property " (5)" with respect to k(t) if and 
only if 04 + 2a03 + 4a202 + 3a30 + a4 9* 0 for each element 0 G k(t) - k, 
where a is the coefficient of X in the minimal polynomial for 0 over k. Hence, 
suppose each root of f(X) = X4 + 2X3 + 4X2 + 3X + 1 in k(t) is in k. 
If then 0 Ç k(t) and a G k are such that 

04 + 2a03 + 4a202 + 3a30 + a4 = 0, 
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then if a = 0, 04 = 0 so 0 = 0 and 0 £ k. If a j* 0, then 0/a Ç &(/) and is a root 
of f(X). Thus, by assumption, 6/a € fe so that 0 Ç fe also. I t follows that if 
each root olf(X) in k(t) is in k, then & has property " (5)" with respect tok(t). 

To prove the converse, we examine more closely the polynomial f(X). If 
P is the prime field of k, then fiX) £ PPH- If s is an element of an extension 
field of P such that s2 = Ss - l , t hen / (X) = (X2 + X + s)(X2 + X + 3-s) 
in P(s) [X]. Further, if 0 is a root of X2 + X + s in an extension field of P(s), 
- 1 - 0 is also a root of X2 + X + s and 2 - 5 + (5 - 2s)0 and 
5 - 3 + (2s - 5)0 are roots of X2 + X + 3 - s. I t follows that if 0X = 0 
is one root of fiX) in an extension field of P , then 02 = —1 — 0, 03 = 2 + 
0 + 02 + (5 + 20 + 202)0 = 2 + 60 + 302 + 203, and 04 = - 1 - 03 = 
- 3 - 60 - 302 - 203 are also roots oif(X) in P(0). Hence the field P(6)/P 
is normal. We observe that if £ = 0i03, then 0 = — £ — £3 and if o- = 0i + 04, 
then 0 = - 4 - 5(7 - 3(72 - o-3. I t then follows that P(0i) = P(0i + 04) = 
P(0i03). Therefore, the factorization oif(X) in P[X] for any field P containing 
P is either into linear factors, orf(X) is irreducible, or 

f(X) = (X2 + X + g)(X2 + X + h) for some g, h e F. 

We return to our proof of Theorem 6.2. We suppose there is a root 0 of 
f(X) in kit), not in &. Then k(0) = kit) and the minimal polynomial for 0 
over k has the form X2 + X + g for some g (z k. Hence, the coefficient, a, 
of X in the minimal polynomial for 0 over & is 1 so that 

04 + 2a03 + 4a202 + 3a30 + a4 = f(6) = 0. 

Hence, k does not have property " (5 )" with respect to &(/) according to the 
criterion developed earlier in our proof. 

Remark. In considering conditions under which k has property (n) with 
respect to kit) for values of n greater than 5, more sophisticated techniques 
are required than those employed in the proof of Theorem 6.2, even when 
[kit) : k] — 2. However, it is fairly easy to establish the following: When 
[kit) : k] = 2, then for any integer n ^ 3, there is a monic polynomial 

fniX) Ç P[X], where P is the prime field of k} of degree n — 1, such that 
if each root oifniX) in kit) belongs to k, then k has property (n) with respect 
to kit). Combining this fact with Ohm's Theorem 2.1 in (13), we have the 
following: If the field k has characteristic 2 and contains an algebraic closure 
of its prime field, then k has property (n) with respect kit) for each positive 
integer n, where kit) is any separable quadratic extension of k. 

The polynomials X2 + X + 1 and X4 + 2X* + ±X2 + SX + 1 mentioned 
in Theorems 6. l and 6.2 are not unique. For example, X4— 2X 3 + 4X2— 3 X + 1 
is also suitable when n = 5 since its roots are the additive inverses of the 
roots of X4 + 2X* + AX2 + SX + 1. 

7. Another construction of domains having property (n). We give 
a method of constructing domains having property (n) which are not inte
grally closed; the method is quite different from that used by Ohm in (13). 
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T H E O R E M 7.1. Suppose that V\ and V2 are independent valuation rings having 
a common quotient field L, that K is a common subfield of V± and V2j and that 
Vi = K+Mi, where Mt is the maximal ideal of Vt. Then D = K-\-(Mi f\ M2) 
is a quasi-local domain with quotient field L, and D is not integrally closed. If 
n is a positive integer, D has property (n) if and only if the mapping x —> xn 

of K into K is one-to-one. 

Proof. Gilmer and Heinzer showed (see 6) t h a t D is a quasi-local domain 
with quot ient field L having integral closure V\ C\ V2 D D. (The assumption 
t h a t Vi and F 2 are independent is not needed for this pa r t of the theorem. 
T h e only requirement for the validity of the first s t a tement of the conclusion 
is t h a t Vi £ V2 and V2 g VL) 

T o establish our conclusion concerning property (n), we first suppose t ha t 
x —-> xn is one-to-one. T o show tha t D has property (n) , it suffices to show 
t h a t D has proper ty (n) with respect to V\. Thus , we take £ G V\ — {0} 
and an integer i such t h a t 1 ^ i ^ n — 1. We show tha t there is an element 
a of D such t h a t £z — ag1 £ D. Let ^ be a valuation associated with the 
valuat ion ring Vim We first consider the case when z>i(f) > 0. Then , if 
02(E) > 0, £ e Mx H M2 e D and we may choose a = 0. If v2(£) = -a < 0, 
we choose, by the approximation theorem for independent valuations (16, 
p . 47), an element a of L such t h a t vx{a) > 0 and v2(a - ((T1)""*) > -v2{^n). 
Since v2((lT

l)nr~i) = (n - i)a < na = - * > 2 ( D , it follows t h a t 

02(a) = (n — i)a > 0. 

Hence a £ Mx H M2 Q D. Fur ther , 

v2(e - a?) = 02((r1)*-* - a) + v2(e) > o 
by choice of a, and z/i(£* — ag1) > 0 since 0i(£), v\(a) > 0. I t follows t h a t 
£* — a£n G D, and our proof is complete for vi(£) > 0 and i/2(£) ^ 0. If 
0i(£) > 0 and v2(£) = 0, we may write £ = u + m, where w G i£ — {0} and 
m G M2. By the approximation theorem, there is an element a in L such 
t h a t V!(a - {u-1)*1-1) > 0 and v2(a - (u-1)"-*) > 0. Hence 

a = («-!)»-« + [a - (w-1)"- '] e K+ (M1n M2) = Z>. 

I t follows t h a t 0i(£' - ag1) > 0 since i>i(f) > 0 and vi(a) = 0. Fur ther , if 
a - (u-1)71-1 = h, then 

{< - af1 = (w + m ) ' - [(a-1)* -"' + A](w + w)w = «* - («-1)n-*(w)n = 0 (Af2) 

so t h a t £* — a£w G M2. Consequently, £* — a£n G M1 H M2f and our proof 
is complete in the case when z>i(£) > 0. 

T h e case when ?/i(£) = 0 and v2(£) > 0 is similar to the case jus t con
sidered, and will be omit ted. If z>i(£) = 0 and v2(£) < 0, then ^ ( f - 1 ) = 0 
and 02(£ - 1) > 0, so t h a t our second case implies the existence of a, b G D 
such t h a t ( f - i ) n -* — a{£~l)n = b. Mult iplying by £w, we therefore have: 
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Therefore, we may consider the case when z>i(£) = v2(£) = 0. In this case 
we write £ = U\ + m2 = u2 + m2, where U\, u2 £ K and mt G M{. li Ui = u2, 
then Wi — m2 (E M i O M2 , £ G Z>, and we take a = 0. If ux ^ 2/2, then 
^iw ^ ^2W by our hypothesis . Therefore, a = {u\ — u2

f)/' (u\ — u2
n) G K. 

And modulo Mj, for j = 1 or 2, we have 

ci _ aj« = (Wl« W2* _ Wl< U2n)/(u!n - u2
n) = q t K. 

T h u s ^ - flf - g G M i H M 2 and £' - a? € D as required. We have there
fore shown t h a t if x —» xw is one-to-one, then Z> has proper ty (n) . 

T o complete the proof of the theorem, we suppose t h a t x —> xn is not 
one-to-one and we show t h a t D does no t have proper ty (n) . Hence, there are 
dist inct elements a, b Ç K such t h a t an = bn. There is an element £ of L such 
t h a t z/i(£ — a) and v2(£ — b) are positive. W e write £ = a + mi = & + ra2, 
where mt G ikf*. If / is any element of Z>, and if t = c + m, where c £ K 
and w ^ I i H M2 , £ - t£n = a + can (Mi) and £ - t? = è + cbn (M2). 
Since a + caw - & - c&n = a - & ̂  0, and because Mx C\ K = M2 Pi K = (0), 
it then follows t h a t £ — tg1 Q D for any / Ç Z), so t h a t Z> does not have proper ty 
(n) . 

T h e prime field w2 with two elements has the proper ty t h a t x —> xn is 
one-to-one for any positive integer n. Hence, if D = TT2 + (Mi f\ M2), where 
Mi is the maximal ideal of V\ = (TT2[X])(X) = ^2 + Mi and, where M 2 is 
the maximal ideal of F 2 = (ir2[X])(X+i) = ^2 + M2, we obtain ano ther 
example of a domain having proper ty (n) for each positive integer, bu t 
which is not integrally closed, and hence is not Prufer. 

Fields with the proper ty t h a t x —•» xn is one-to-one for each positive integer 
n are classified by Theorem 7.2. 

T H E O R E M 7.2. The field K is such that the mapping x —* xn of K into K is 
one-to-one for each positive integer n if and only if K has characteristic two and 
the prime field of K is algebraically closed in K. 

Proof. Since l 2 = ( — l ) 2 , if x —> x2 is one-to-one, K mus t have characterist ic 
2. Fur ther , if 6 is an element of K algebraic over w2, then ir2(d) = GF(2W) 
for some positive integer n. In part icular, (B)2n~l = 1 = (1)2W_1 so t h a t 
6 = 1 if x —> x2n~l is one-to-one. I t follows t h a t if x —> xn is one-to-one for 
each positive integer n, then 7r2 is algebraically closed in K. T o prove the 
converse, consider £1, £2 £ K such t h a t £F = £2

r for some positive integer r. 
If ei ther of £1 or £2 is zero, so is the other. If £1 9^ 0 ^ £2, then £i/£2 is a non
zero element of K algebraic over w2 : (^i/^2)

r = 1. Hence £i/£2 = 1, and 
£1 = £2. 

Added in Proof. In connection with the results in §6, J ames W. Brewer has 
recently obtained necessary and sufficient conditions in order t h a t a field k 
should have proper ty (n) , for a rb i t ra ry n, with respect to any finite algebraic 
extension field k(t) of k, Brewer 's results appear in a paper enti t led Ohm's 
property (n) for field extensions which he has submit ted for publication. 
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