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SOME TRANSIENT RESULTS ON THE M/SM/i SPECIAL
SEMI-MARKOV MODEL IN RISK AND QUEUEING THEORIES

JACQUES JANSSEN

University Libre de Bruxelles

We consider a usual situation in risk theory for which the arrival process is a
Poisson process and the claim process a positive (/ — X) process inducing a semi-
Markov process. The equivalent in queueing theory is the M/SM/1 model introduced
for the first time by Neuts (1966).

For both models, we give an explicit expression of the probability of non-ruin
on [ o, /] starting with u as initial reserve and of the waiting time distribution of the
last customer arrived before t. "Explicit expression" means in terms of the matrix
of the aggregate claims distributions.

1. THE SPECIAL SEMI-MARKOV MODEL IN RISK THEORY

In a usual situation of the theory of risk, let (An, n ^ 1) be the claim inter-
arrival times process, (Bn, n ^ 1) the claim amounts process. Moreover, we
suppose that m "types" of claims are possible represented by the set:

(1.1) I = {1, 2, . . . , m) (with 1 ^ m < 00).

The process starts just after payment of an initial claim of type Jo = i and
after this payment, the fortune of the company is supposed to be u (u > 0).
The process (]n> n ^ 0) represents the sequence of the successive types of
claims. For the simplicity of notations, we also introduce the random variables
Ao and Bo such that:

(1.2) Ao = Bo = 0 a.s.

If the claim arrivals process is not explosive, let Nt denote the total number
of claims in (0, t) (thus excluded the initial claim) and define:

(1.3) X(t) = 2 Bn (total amount of claims paid on (0, t))

(1.4) Zt = JN(D (type of the last claim occurred before or at t).

If we also suppose that the incomes of the company occur at a constant rate
c (c > 0), then the "fortune" Z(t) of the company at time t is given by

(1.5) Z{t) = u + ct - X{t).

The matrix mxm jf of the "distribution" functions of the aggregate claims
at time t will be, by definition:

(1.6) #(x,t) =
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where

(1.7) Ft}{x, t) = P[X(t) < *, JN(t) = j I Jo = i]

(i,j = 1, ...,m).

Probabilistic assumptions

We assume that the processes introduced satisfy the following assumptions:
1. The claim arrival process is a Poisson process of parameter X.
2. The process {(Jn, Bn), n > o) is a positive (J — X) process (see JANSSEN
(1970)); this means that

(1.8) P[Bn < x,Jn = j\(Jic,Bk),k < « - i ] = QJa_d(x) a.s.

where the m a t r i x ^ , defined by (0, (x) = {Qij(x)) is a matrix of mass functions
such that:

(1.9) i. Qij{x) = o for all x < 0 for all i, j e I

m

(1.10) ii. l,Qij(+ 00) = 1 for all iel.

From the semi-Markov theory (PYKE (1961)), it is well-known that

1° if pf} = Hm Qij(x) and P = (pij), then the process (Jn, n > 0)

— i.e. the process of claim types—is a homogeneous Markov chain
with P as transition matrix.

2° The random variables Bn, n > 0 are not independent, but only con-
ditionally dependent given the Markov chain (Jn, n ^ o)
— often called the "imbedded Markov chain".

3. The processes (An, n S» 0) and ((Jn,Bn), n > 0) are independent.

The main problem

The event "ruin before t" occurs if the trajectory of Z(f) on (o, t) goes under
the time axis before t. More precisely, if <f>ij(u, t) represents the probability of
non-ruin on [o, t], starting with Jo = i and an initial fortune u, and such that
jN(t) = j , we have, by definition:

(1.11) & / M ) = P[Z{?) > 0 , 0 < f < t,JN(t) = j \ J o = i]

or equivalently by (1.5):

(l. 12) <f>ij(u,t) = P [ s u p ( X ( < r ) - C T ) < u , J N ( t ) = j \ J o = i ] .
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If we are not interested by the last type observed before t, we have enough
with

(1.13) fa(u,t) =

and if (pi, .. ., pm) is an initial distribution on Jo, we have to compute

m

(1.14) <f>(u,t) = £ pi(f)i(u,t).
1-1

The problem solved in this paper is to find an explicit expression of the
matrix (j>, defined by

(1.15) +(*,t) = (<ki(*,t))

in terms of the matrix jp.

2. THE ANALOGOUS MODEL IN QUEUEING THEORY: THE M/SM/l MODEL

As quoted by several authors (PRABHU (1961), SEAL (1972), JANSSEN (1977)),
a risk model can easily be interpreted as a queueing model and vice versa. It
suffices to see the process (An, n > 1) as the one of the interarrival times
between two successive customers (i.e. customers (n — i) and n) in a queueing
system with one server and as discipline rule FIFO; then, the process (Bn,
» > 1) represents the successive service times (i.e. Bn is the service time of
the customer number (n~ 1), n ^ 1).

We also suppose that at t = 0, the customer number 0 just begins his service.
Moreover, we have m types of customers and Jn represents the type of cus-
tomer n. Here Nt gives the "number" of the last customer arrived before or
at t. With the same probabilistic assumptions as those of the preceding para-
graph, the main problem considered in the queueing optic is to get an explicit
expression of the distribution of WNU) where Wn (n > 0) represents the
waiting of the nth. customer. More precisely, we must express the matrix W
in terms of jF where it is defined by

(2.1) W(x,t) =

with

(2.2) W t f ( * , * ) = P[WN(t) < x . J i n t ) = j \ J o = » ] .

This model is noted M/SM/l in the queueing literature (Poisson arrivals and
semi-Markov service times) introduced by NEUTS (1966).

3. THE DISTRIBUTION OF AGGREGATE CLAIMS

Introduce the usual notation in semi-Markov theory: for any matrix mxm of

mass functions L, we note by L(w) the w-fold convolution of the matrix L,
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that is

(3-1) L<>) = (U0(x)), L<r>(*) =

(where Uo(x) is the distribution function with a unit mass at o) and for
we have:

(3.2) Lf{x) = 2 J L^{x-y)dLk]{y), n > 1.

k R

If

(3-3) Sn = i Bt
( - 0

it is clear, from (1.8), that

(3-4) Qf\x) = R[Sn < x,Jn = j \ J 0 = i].

From assumption (3), it follows then that:

expression given the matrix of distribution of aggregate claims by means of
the semi-Markov kernel (J^.

Let us remark that the assumption (1) gives:

(3.6) P[X(t+s) < x, JN(t+S) = j I X(s'), JN(s,h s' < s, X(s) = y,

JNW = i] = Fij{x-y,t)

showing that the process ({X(t), JNU)), t > o) is markovian.

4. LOADINGS OF PREMIUMS

To show how the concept of loading of premiums can be introduced in the
special semi-Markov risk model considered here, let us suppose that the
quantities—mean cost of a claim of type i—

(4.1) 7)i = S J xdQij{x), is I
1 1

are finite. Moreover, we suppose that the Markov chain (Jn, n ^ 0) is ergodic
and that (ITi, . . . , Um) represents the unique stationary probability distribu-
tion. Starting with this distribution for Jo, we get, using (3.5):

(4.2) P[X(t) < J f ] = S 2 n < Fi}(x, t)

n - 0 J - l j - 1
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so that the mean of the aggregate claims at time t is given by

0

The term under brackets is the expectation of Sn or, by (3.3)

(4-5) S

As the process (/M, n ^ o) is stationary, we have, for all

(4-6) E(B*) = S n , ,,,.

This gives:

E[X(Q] = 2«-*x ^ f M ( 2
n-o ' * -1

or

(4.8) E[X(t)} = X<?t

with

(4-9) ? = 2 n(7j,.
!-l

It follows that the mean fortune at time t is given by:

(4.10) (c -

which is positive if and only if c = X<p(l + •/]), with •/] > o. The justification
of the loading TJ comes also from the fact that, except some degenerate cases,
there exists a reserve u such that for all i, j , </>tj{u) is positive—where <f>i](u)
= lim </>ij(u, t)—if and only if A<p < c (see JANSSEN (1970)).

t

5. EXPRESSION OF <f>ij(u, t)

The assumptions made—(1), (2), (3)—are such that the method used by
PRABHU (1961) and later by SEAL (1974) is valid. For the facility, let us suppose
that the mass functions Qij(x) have densities qtj(x) on (0, 00); then the PRABHU'S

integral equation becomes the integral system:
in 1

(5.1) Ftj[u + ct,t) = <f>ij{u,t) + S f<f>k]{o,t-T:dxFik(u + CT, T)
4 - 1 0
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where

(5.2) dx Fi/C(u + cz, T) = c —— (u + CT, T) d-v.
OX

The system (5.1) gives the <j>i]{us 1) provided we know the values at u = 0.
These can be computed using (5.1) with u = 0:

(5-3) Fij{ct,l) = c/>ij{o,t) + 2 J^(o, t-t) dxFik{ci, T)

To write this system of Volterra integral equations in a more concise way,
let us introduce the following matrices:

(54)

(5-5) F(*) = (^(rf, 0) =

(5.6) G(*) = c ^ (rf, t)

(5-7) (A * B) (t) = ( S J AiIC(t - v) Bk}(v)dv)
i - l 0

(with A and 5 m#7M matrices)

(5-8) A(s) = (/«?-
0

(Laplace transform for matrices).

The system (5.3) takes the matrix form:

(5.9) F(t) = 4>(*) + G

and using Laplace transforms, we get

(5.10) F(s) = (I + G(s)) $(s)

and consequently:

(5-n) +(s) = (I + G(s))-iF(S)

provided the inverse matrix of I + G(s) exists.

We can now show the main result and for simplicity, we suppose that the
derivatives qy(x) of Qy(x) exist for all i andj .
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Proposition

If the quantity M defined by

(5.12) M = sup {qij(x), i, j el, x 5= 0}

is finite, then

(5.13) 4>(*) = £ (-i)»G<»UF(*)

(5.14) •(«, if) = F(« + rf, *) - G« • £ ( - i)»

where

(5-15) Gw«) = [c — (« + rf,

Proof: From (3.5), we deduce that

(5-6) M
n - 1

where

(5-17) #>(*) = %W

and

(5.18) ?§•)(*) = S / y g - ^ ^ - y ) ? wCy)^, n

From (5.12), (5.18), it is clear that, for all n 5= 1

(5.19) ?H*) < M

so that from (5.16):

(5.20) — - (*, t) < M(i - <s-«) «S M.

From the definition (5.6), we get

cMf M e-*{ ^ =
s

1 From now, this symbol means the w-fold convolution product for the definition (5.7).
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C2M2

Gv{s) = S Gilc (s) Gk}(s) < m ——
s

Gg(s) =

Consequently, the matrix series £ GTO(s) converges for all s > me M.

A well-known consequence of this fact is that the matrix (I + G(s))"1 is
invertible and

(I + G(s))-i = S ( - i ) » G«(s)

of course on (w c M, 00).

Using the matrix version of a theorem of DOETSCH (1974) and (5.11), we

get (5.13)-
The result (5.14) follows then from the relations (5.1) written under the

matrix form and where $(t) is under the form (5.13).

6. RESULTS FOR THE ACTUAL WAITING TIME AT TIME t OF THE M/SM/1

QUEUEING MODEL

The probabilistic assumptions made in the paragraph 1 imply that the process
((/». An, Bn), n ^ o) is a two-dimensional (J — X) process (JANSSEN, 1979)
with kernel (Qij(t, x)) given by:

(6.1) Qij(t,x) = £(*)

where

(0 , ^ < 0

(6.2) £(«) = ]
f > 0.( i-c-«

If we suppose that the matrix P (= <©(+ 00)) is ergodic with a stationary

probability distribution (ELi, . . . , IIm), the dual kernel (Qy{t, x)) of (Q%j{t, x)) is
given by (see JANSSEN (1979)):

(6-3) QV{t, x) = ^ Qt}(t, x)

(6.4) = ^ E(i) QH(x).
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Let us now consider the M/SM/l queueing model whose kernel is given by
(6.4). The asymptotical study has been done for the first time by NEUTS (1966).
Now the transient behaviour of Wij(x, T)—defined by (2.2)—can be easily
deduced from the last paragraph and our duality results (JANSSEN, 1979).
From the proposition 4 of this last reference, we get, for all x > o and all
t > 0:

(6-5) n< j e™ Wijix, dr) = n , J c» ̂ i[x, <h)
0 0

so that

(6.6) # ^

If II<j represents the mxm diagonal matrix whose ith. element on the principal
diagonal is Hi, (6.6) takes the form

(6.7) W(*,T) = n ^ ^ . T ) ^

with

W(*,T) = (#«/(*.*)).

(6.7) with the aid of (5.14) gives an explicit expression of the distribution of
the actual waiting time in a M/SM/l model.

7. COMMENTS

a) For m = 1, the model considered becomes the classical Cramer's model of
risk theory and the M/G/i queueing model for which it is known (see PRABHU
(1961), SEAL (1972)) that:

t

(7-1) #M) = \ j F(x,t)dx.

Using successive integrations by parts, it is possible to show—in this case—
the equivalence of (7.1) and (5.13). It does not seem possible to have an analo-
gous result for m > 1, in particular an extension of the analytically proof of
DE VYLDER (1977) cannot be used as the variables (Bn) are no more exchange-
able.

b) The effect of a suppression of the ke type of claim is theoretically possible
by comparing <f>(u, t) and (f>u(u, t), representing the non-ruin probability with
(m — 1) types of claims, k being excluded.

4*
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c) The main result can be extended to the non-Poisson case if we suppose
that the process (Jn, An) is a semi-Markov process of kernel

(Pv

where

( o , t < o
Ei(t) =

( 1 - e-*<«, t > o

that is a regular continuous Markov process with a finite number of states,
d) The following remarks may be useful for numerical computation.

It is easy to show that

Mntn

(7.2) G<»> * F(t) < m,n 7-

so that approximating </>(t) by the first (N — 1) terms of (5.13), we have for the
absolue value of the error RN^), the following upper bound:

(mMt)N

(7.3) I RN(t) I *S -^~~ e™m-

For m = l, we can say more. Indeed, let us suppose, without loss of gen-
erality, that c = 1 and M < l. For c, that is well-known in risk theory;
if M > 1, it suffices to introduce the random variables (B'n), (A'n) defined by
B'n = M'1 Bn and A'n = M"1 An so that the process (A'n) induces a Poisson
one of parameter X' = M~\. Then, if cf>(u', t') is the probability of non-ruin
for this model: <j>{u, t) = cf>'(Mu, Mt). (7.4)

In this case, we have

(7.5) G<«) * F(t) - G<»+1> * F(t) = G<») * {Uo - G) * F(0

which is a non-negative quantity as G(t) ^ 1 (Uo is the Heaviside function
with a unit mass at 0).

Consequently, the series (5.13) is alternating so that the sign of the error
RNis this of ( - i ) ^ a n d

(7-6) I RN(t) I ^ G W * F(t).

From (7.2), it follows that:

(7-7) I RNV) I < jv! •

https://doi.org/10.1017/S0515036100006607 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006607


M/SM/l SPECIAL SEMI-MARKOV MODEL 51

REFERENCES

D E VYLDER, F. (1977). A new proof for a known result in risk theory. / . of Comp. Ap.
Math., 3, 277-279.

DOETSCH, G. (1974). Introduction to the theory and application of the Laplace transform.
Springer-Verlag, Berlin.

JANSSEN, J. (1970). Sur une generalisation du concept de promenade aleatoire sur la
droite reelle. Ann. Inst. H. PoincarS, B, VI, 249-269.

JANSSEN, J. (1977). The semi-Markov model in risk theory, in Advances in Operations
Research edited by M. Roubens, North-Holland, Amsterdam.

JANSSEN, J. (1979). Some explicit results for semi-Markov in risk theory and in queueing
theory. Operations Research Verfahren 33, 217-231.

PYKE, R. (1961). Markov Renewal Processes: Definitions and preliminary properties.
Ann. Math. Statist. 32, 1231-1242.

PRABHU, N. U. (1961). On the ruin problem of collective risk theory. Ann. Math. Statist.
32, 757-764.

NEUTS, M. F. (1966). The single server queue with Poisson input and semi-Markov
service times. / . Appl. Prob. 3, 202-230.

SEAL, H. L. (1972). Risk theory and the single server queue. Mitt. Verein. Schweiz.
Versich. Math. 72, 171-178.

SEAL, H. L. (1974). The numerical calculation of U(W, t), the probability of non-ruin
in an interval (o, t). Scand. Actu. J. 1974, 121-139.

https://doi.org/10.1017/S0515036100006607 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006607



