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NON-COPRIME QUADRATIC SYSTEMS

W.A. COPPEL

A recent result of Huang and Reyn on quadratic systems is reformulated and given
a clearer proof.

In this work we study plane quadratic systems

x' = P{x,y)= j ^ o«zy
i+k=0

2

y' = Q(x,y)= J2 ****V.
i+k=0

where ' = —, whose second degree terms
at

p2{x, y) = a20x
2 + anxy + aQ2y

2, Q2{x, y) = b20x
2 + bnxy + b02y

2

have a common linear factor. As a handy abbreviation, we shall call such systems
non-coprime.

Hilbert's problem of determining an upper bound for the number of limit cycles
of a polynomial system of given degree is at present intractable even for quadratic
systems. Non-coprime quadratic systems are of interest in this connection since they
are not totally intractable and since, unlike some other classes of quadratic systems
which have been successfully studied, they may have more than one limit cycle. Zilevic
[5, 6] gives examples of non-coprime quadratic systems with exactly two limit cycles,
each surrounding a different critical point. A recent result of Huang and Reyn [4],
which the authors kindly communicated to me, may be interpreted as saying that if
a non-coprime quadratic system has limit cycles surrounding different critical points,
then at least one critical point is surrounded by exactly one limit cycle. We give here a
proof of this interesting result which appears to us to be clearer than the original one.
Our papers [2, 3] may serve as covenient references for those properties of quadratic
systems which we require.
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84 W.A. Coppel [2]

It is shown in [2] that a limit cycle of a quadratic system has a convex interior
and surrounds a unique critical point, which is necessarily a focus. Thus the quadratic
systems in which we are interested have two foci. It is also shown in [2] that a quadratic
system has at most two foci, since any two foci are oppositely oriented. By Theorems
A and B in [3], a quadratic system has at most one limit cycle if it has an invariant
straight line or if the second degree terms are proportional. Thus such systems may be
excluded from our consideration.

LEMMA 1. If a non-coprime quadratic system has a focus or centre, if it has no
invariant straight line, and if its second degree terms are not proportional, then by a
non-singular a/fine transformation and a dilation of the time scale it can be brought to
the form

x = dx — y + £x2 + mxy

y' = x + ax2 + bxy,

where - 2 < d < 2, a ^ 0 and bl - am ^ 0.

PROOF: The hypotheses are invariant under an arbitrary non-singular affine trans-
formation and a dilation of the time scale. Consequently we may assume that an arbi-
trary focus or centre is located at the origin and that the quadratic system is in Ye's
normal form

x' = dx — y + tx2 + mxy + ny2

y' = x + ax2 + bxy.

Then —2 < d < 2 and a ^ 0. If n = 0, then bl — am ^ 0 and there is nothing more
to do. If n ^ 0, then

£x2 + mxy + ny2 = (ax + by)(a'x + b'y).

Put
£ = ax + by, n = y + a£,

where a = -b/(a2 + dab + b2) . Then

where aoi/?io < 0 and /?20 ^ 0. By scaling we can bring this system to the form (1). U

By Theorem C of [3], the quadratic system (1) has at most one hmit cycle if m — 0.
Thus we now restrict attention to the system (1), where
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[3] Non-coprime quadratic systems 85

If in (1) we make the scaling transformation x —> Ax, y —• eXy, t —+ e r , where
A ^ O and e — ± 1 , we obtain a quadratic system of the same form:

x' = edx — y + eXlx2 + Xmxy

y' = x + Xax2 + eXbxy.

A limit cycle of (1) cannot intersect the line x = 1/m, since x' = (d + £m)/m2

on this line. In particular, a limit cycle surrounding the origin must he in the half-
plane 1 — mx > 0. A limit cycle surrounding the origin must also lie in the half-plane
1 + ax + by > 0, since its interior is convex and it intersects the j/-axis above and below
the origin. If the system (1) has a critical point (xoi Vo) ̂  (0, 0), then in addition
a limit cycle surrounding the origin cannot intersect the hne x = Xo, since it cannot
surround (xo, J/o) and since y' is of constant sign for y > yo and for y < yo •

If we change the independent variable by setting — = 1—mx, then (1) is replaced
at

by the Lienard equation

where /(x) = /i(x)/(l — mx)2 , g(x) = xg\{x)/{\ — mx) and

fi(x) = d+(b + 2£)x - (b + £)mx2,
(3)

gi(x) = 1 + (o — m + bd)x + (b£ — am)x .

Thus f1(l/m) = (£ + dm)/m, </i(l/m) = b(£ + dm)/m2 .
The finite critical points of (1), other than the origin, are the points (xo, yo) such

that

(d + £xo)xo — (1 - mxo)yo,

1 + oxo +by0 =0.

It follows that <7i(xo) = 0. At the critical point (xo, yo), the Jacobian PxQy — PyQx

has the value

Do — (d + 2̂ xo + myo)bxo + (1 — mxo)axo

= (b£ - am)x\ - 1

and the divergence Px + Qy has the value
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Hence (1 — mxo)To = fi(xo) and

T0
2 - 4£>0 = [d + {21 - b)x0 + my0}

2 - 4azo(l - mx0).

If we translate the critical point (XQ, yo) to the origin by putting x — XQ + £,
y — y0 -f r], we obtain the system

T}' = axo(

where

a = d + 2£xo + mj/o, 0 = 1— mx0.

If 13 ^ 0 and we put
$ = x, T]-y-6x,

where 6 = bx^ //?, this is transformed into the system

' fly H~ \y — OTTIXQ Ip)X -f- 77i x y

y1 = Dox/0 + 6{t - b/P + a0/bxo)x
2 + {b/0)xy.

If Do > 0 and we further put

x = v0x, y = y, t = vr,

where v = D$ , we obtain a system of the original form (1):

dx . 2

— = dox - y + lox +moxy
CLT

— = x + OQX2 +boxy,
dr

where

do = vToi £o = v [£(1 — mxo) — bmxo], mo = vm,

oo = i/3[(a + " i ) ( l — mxo) + (£ — b + dm)bxo], bo = v2b.

Suppose the system (1) has a focus (x+, j/+) distinct from the origin. Then bt —
am > 0, since (with an obvious notation) D+ > 0, and ax+(l — 7nx+) > 0, since
T\ — 4D+ < 0. Around the focus at the origin paths are described anticlockwise, since
Qx = 1 > 0. Since the two foci are oppositely oriented, at (z+, y+) we must have
Qx — ax+ < 0 and hence 1 — mx+ < 0.
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If b = 0 then 1 + m/a < 0, since x+ = —I/a. It follows that y+ =
(£ — ad)/a(a + m) and that the system (1) has no finite critical points besides the
two foci. Since not only gi(x+) = 0 but also gi(l/m) = 0, it will be convenient in the
case b = 0 to put x_ = 1/m.

If b ̂  0 then the quadratic equation gi(x) = 0 has a root x_ ̂  x+, since D+ > 0.
It follows that the system (1) has exactly one finite critical point (x_, j /_) besides the
two foci. Moreover x+ and x_ have the same sign, since x+x_ = {bt — am)" . Hence
(x_, j /_) is a saddle, since

x+D- + x_D+ - x+[(bl - am)x2_ - 1] + x-[(bl - am)x\ - 1]

= (x--x+) + (x+-x-) = 0,

and \x+\ > \x-\, since

(bi - am)(x\ - x i ) = D+ - D_ > 0.

Suppose now that the system (1) has limit cycles surrounding two different critical
points, which are necessarily the origin and the point (x_|-, y+) . Since the Lienard
equation (2) has no limit cycles in a simply-connected region in which / is of constant
sign, the quadratic equation / i (x ) = 0 has roots £+, £_ such that m£_ < 1 < m£+.
Moreover m(x_ — £_) > 0, since a limit cycle of (1) which surrounds the origin cannot
intersect the line x = x_ .

Since / i (x ) has opposite signs for x = 1/m and x = oo, it follows that

(4) (6 + / ) ( / + dm) > 0.

In particular b + £^ 0. We are going to show that also d ̂  0. The argument is derived
from Chen and Wang [1].

Assume on the contrary that d = 0. Then b + 21 ^ 0, since f\ has distinct roots.
If we put

B{x, y) = |1 - m i r 1 + i 6 / m e i ( 6 l - r o j ) ,

where 7 = (b + 21)/m, then

{BP)X + (BQ)y = [U -am + l^'1 - b){l - mzf^x^B.

Since bl — am > 0, it follows from Dulac's criterion that there is no limit cycle in
the half-plane 1 — mx > 0 if £(m-y~1 — fc) ̂ 0 , and no limit cycle in the half-plane
1 — mx < 0 if £{m'y~1 — b) ^ 0 . Since there are limit cycles in both half-planes, we
have a contradiction.
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It will now be shown that if 6 = 0 or 6(6 + £) < 0, then dim < 0. By changing the
signs of both y and t, if necessary, we may suppose that 6 ^ 0 < 6 + £ . Then I > 0.
Assume, contrary to the claim, that dm > 0. By changing the signs of both x and t,
if necessary, we may suppose that d > 0, m > 0. Then a < 0, since b£ — am > 0. The
system

x' = -y + £x2 + mxy

y — x + ax' + bxy,

obtained from (1) by setting d = 0, has an unstable weak focus at the origin, since
£m — a(b + 2£) > 0. On the other hand, any path of (l)o which intersects a limit cycle
L of (1) surrounding the origin crosses from the exterior of L to the interior, since

(PQ-P)Q = -dx2{l+ax + by)^0 on L.

Consequently, by the Poincare-Bendixson theorem, (l)o has a periodic orbit LQ in the
interior of L. Moreover Lo surrounds the origin, since it lies in the half-plane 1 + ax +
by > 0. Hence, by the argument above, ^ m i " 1 - 6) < 0. Thus m2/(b + It) - b < 0.
Since b + 21 > 0, this is a contradiction.

PROPOSITION 2 . Suppose the quadratic system (1) has limit cycles surround-
ing the origin and another critical point. If 6 = 0, or 6(6 + £) < 0, then exactly one
limit cycle surrounds the origin and its characteristic exponent is non-zero.

PROOF: We restrict attention again to the case 6 ^ 0 < 6 + I. Then £ > 0,
dm < 0 and we may suppose d > 0 > m. Hence a > 0. Since x+ < 1/m, gi(0) > 0
and gi(l/m) ^ 0, by (4), we must have 1/m ^ x_ < 0. Any limit cycle of (2) which
surrounds the origin must he in the strip x_ < x < oo. The unique root £_ > 1/m
of the quadratic equation fi{x) — 0 satisfies not only £_ > x- but also £_ < 0, since

Thus on the interval (a;_, oo) we have g(x) ^ 0 according as x ^ 0 and f{x) ^ 0
according as x ^ £_ . To complete the proof of the proposition it is sufficient to show
that f/g is a decreasing function on the interval (x-, £_) and on the interval (0, oo),
since this will imply that all the hypotheses of Theorem 1 in [3] are satisfied.

Since f/g = fi/xgi, we need only show that M(x) = xgif[ — fi(gi + xg^) is
negative on both intervals. Moreover, since the leading coefficients of / i and <7i are
positive, we may replace / i by (x — £+)(a: — £-) and gi by (x — x+)(x — x_) . Then

M(x) - - ( * - x-)(x - (+)[(x - £_)2 - C-((- ~ *+)] - *(* " *+)(* - *-){*- ~ M
< 0 for x > 0 and for x_ < x < £_. D

We can now deduce without difficulty the main result.
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THEOREM 3 . Suppose a non-coprime quadratic system has limit cycles surround-

ing different critical points.

If the system has more than two finite critical points, then at least one critical point

is surrounded by exactly one hmit cycle and its characteristic exponent is non-zero.

If the system has only two finite critical points, then each is surrounded by exactly

one hmit cycle. Moreover, their characteristic exponents are non-zero and of opposite

signs.

PROOF: We may suppose that the quadratic system has the form (1). Then 6+^ ^
0 and the system has two finite critical points if and only if 6 = 0. If b = 0 or
6(6 + t) < 0 then, by Proposition 2, exactly one limit cycle surrounds the origin and its
characteristic exponent is non-zero. In fact the characteristic exponent has the opposite
sign to d, since the limit cycle and the origin cannot be both stable or both unstable.

By translating the second focus (x+, j/+) to the origin we can bring the sys-
tem again to the form (1), with 6 replaced by 6+ = i/26 and 6(6 + £) replaced by
b+(b++i+) = u4b(b + £)(l-rnx+), where u = £>+1/2. Since 6(6 + ^) > 0 implies
6-(-(6-|- + £+) < 0, this proves the theorem in the case of more than two critical points.
It also shows that, in the case of two critical points, each is surrounded by exactly one
limit cycle and its characteristic exponent is non-zero. Since we must have dim. < 0 and
d+£-\.m+ < 0, the characteristic exponent of the hmit cycle surrounding the origin has
the sign of tm and the characteristic exponent of the limit cycle surrounding (x+, y+)
has the sign of £+m+ . But m+ = vm has the sign of m and £+ = i/2£(l — mx+) has
the opposite sign to t. D
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