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Asymptotic expansion of integrals

occurring in linear wave theory

P. van den Driessche and R.D. Braddock

The asymptotic expansion of an integral of the type

r V(k)exp[it<$>(.k))dk , i s derived in terms of the large parameter
— CO

t . Functions <t>(k) .and vf(k) are assumed analyt ic , and f(k)

may have zeros at a stationary phase point. The usual one

dimensional stationary phase and Airy integral terms are found

as special cases of a more general resu l t . The resul t i s used

to find the leading term of the asymptotic expansion of the

double in tegra l . A par t icular two dimensional <J>(k) relevant to

surface water wave problems is considered in de t a i l , and the

order of magnitude of the integral is shown to depend on the

nature of 'i'(k) at the stationary phase point.

1. Introduction

A type of integral frequently encountered in the solution of linear

wave problems is

(1) £(*) = [ V(lc)exp(it4»(IO)dk ,
J_oo

where k is the wave number, <|>(k) is the phase function and f(k) is

the amplitude function. Interest in applications often centres on the

asymptotic value of L for large values of the time, t .

When k is confined to one dimension the usual method of stationary
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phase can be used, see for example Copson [ 3 ] ; th i s must be modified at

points where the phase function has a double stationary point (Jeffreys and

Jeffreys [7 ] ) . The method of stationary phase can be extended to higher

dimensions, and must be combined with the method of residues when the

amplitude function has s ingular i t ies (Lighthill [J7, 72]; Jones [S]) . I t

also breaks down when the amplitude function is zero at a stationary phase

point .

Double in tegrals similar to ( l ) but with a f in i te domain of

integrat ion have been considered in detai l by Jones and Kline [9 ] , Chako

[2] and De Kok [4 ] ; expl ic i t asymptotic expansions of the in tegral are

derived by evaluating contributions from various in te r ior and boundary

stat ionary points of the phase function.

This paper deals with one and two dimensional integrals of type ( l )

and determines the modifications necessary when the amplitude function

vanishes at a s ta t ionary phase point. The investigation was prompted by a

model for tsunami generation forced by an asymmetric bottom velocity. The

amplitude function i s then zero at the long wave length l imi t , which is a

physically important region.

2. One dimensional integral

Consider the one dimensional integral (l) with (j>(fc) and V{k)

analytic functions of k . Assuming that k = k* is the only stationary

phase point, the major contribution to L for large values of t is

obtained from the neighbourhood of k = k* . Setting u = k - k* ,

% [G

where e is small and positive. Now

OO 00

( 2 ) 4>(M) = <i>0 + I $ uS/s\ , V(u) = I f if/pl ,

s=q p-v

where r, q are integers, r > 0 , q > 2 , and <{) is understood to be

evaluated at the stationary phase point, that i s ,
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s du s

Note that zero terms have been omitted from the expressions in (2); i f the

stationary phase point i s of order q - 1 , then (j), , 4u» . . . , <J> are

a l l zero. Approximating <j> by the f i r s t two non-zero terms yields

p=r & '-z

where F?'q (it) = exp i t <j>0+(|> uq/q\ \\iP/pi .

If q i s even, F* (u) i s odd or even according as p i s odd or

even, and so

oo .oo

(3) L
p

oo .oo

p=m F >o

where m = [ ( r+l) /2] . The odd terms give zero on integrat ion, and the

range of integration for the even terms can be expanded since contributions

from (e, ">) are negligible.

If q i s odd,

(4) L % I exp(it<J. )j(-l)P f iPe
p=r *• •'0

+ j ifexpUtb uq/qljduU /pi .

The part icular cases arising in (3) and CO lead to a consideration of an

integral of the form

jP'q = f t?exp[±itbuq/ql)du ,
'0

= Siwhere b is a positive constant. Set V = ir/ql , whence

jP+,q = ^^p+D/q-1^, C v ^ / q -

which can be evaluated in terms of a gamma function as
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(5) JP
t'

q = (q ! ) (

The resu l t (5) can now be used to write down asymptotic approximations

to the in tegra l s . If q i s even (3) gives

( 6 ) L % 2 ( 4 - 1 ) ! e a p ( i t < | > ) \ if, t < ? - ' ( 2 p ) , V{{2p*\)lq)
p=m e \e-ei-

Notice that if q is even the asymptotic approximations for r odd or

even are of the same order. If q is odd (k) gives

( T ) L
p=r v * '

For large values of t the first term in the series gives the major

contribution to L ; this arises from the first or second non-zero

derivative of ¥ at k = k* . When 41 has a finite number of stationary

points the contributions from each are additive. Note that the above

expressions can be extended to the case in which r and q are not

integers but satisfy r + 1 > -q , an inequality needed in establishing

(5). In such a case the factorial quantities are replaced by gamma

functions.

The order of magnitude of the leading term in some frequently

encountered examples are listed in Table 1 on page 125.
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Conditions on

4> and 4-

r = 0, q = 2

r = 1, q = 2

general r, q = 2

r = 0, q = 3

r = 1, q = 3

Order of

magnitude

l

* " *

3

* • *

1

t 3

2

Reference

usual stationary phase: Copson [3

Jones [«], p. 3̂ 5

Fang and Klosner [5], equation (k&

Airy integral. Jeffreys and

Jeffreys [7]

Braddock and van den Driessche [/]

Table 1. The order of magnitude of dk for l a r g e t ;

and f given by ( 2 ) , m= [(r>+l)/2] .

3. Two dimensional integral*

Consider the two dimensional i n t e g r a l ( l ) with k = (k, I) ; and

4>(k) , 4((k) a n a l y t i c funct ions of k . I t i s assumed t h a t (k*, I*) i s

the only s t a t i o n a r y po in t of <()(k) . Taking u = k - k* , v = I - I* ,

t h i s gives the f i r s t p a r t i a l d e r i v a t i v e s zero a t the o r i g i n , namely

^lO = <J>01 = ° ' a n d i t i s f u r the r assumed t h a t <()20(()02 — 4> 11 ^ 0 , see (8)

below, where

u=O,v=O

Initially the amplitude function is taken to be non-zero at the

stationary phase point, that i s , Vgo * ° • Approximating (j> by the terms

= <f>oo + i

( l ) becomes

L % 4<ooexp(£t(t>Oo) I I exp[±it{4>20*2+24>\iuv+<p02v
2))dudv .

* _oo J - c o

* This s e c t i o n e l a b o r a t e s an idea of L igh th i l l [ M ] ,
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In general <j>n # 0 , and i t is now necessary to rotate the uv axes

through an angle arctan(2<j>! 1/(020-^02)) to eliminate this term from the

exponential. The resulting integrals can then be estimated using the

leading term of (6), giving

(8) L % 2TT4<C

where a = s i g n a t u r e K 1 1 T1 2 •
1<P12 "P22J

If the amplitude function is zero at the stationary point i t can be

expanded in a series about the point and the above argument extended as in

the case of the one dimensional integral. This is developed by Jones and

Kl i ne [9] and by Chako [2] , who also deal with the modifications necessary
2

when 4>20(f'O2 ~ <Pll = 0 • -

phase points are additive.

2
when 4>20(f'O2 ~ $11 = 0 • ^ n addition contributions from other stationary

4. Polar transformation

In some two dimensional cases it is more convenient to transform (l)

into polar coordinates; this is the case for problems dealing with a fluid

of depth h with a free upper surface when the phase function is

(9) <t>(.k, I) = xk/t + yl/t ± (g-|k|tanh(|k|fc))5 ,

which is analytic in E2 - {(0, 0)} . Taking the negative sign in the

exponential and setting a; = rcos9 , y = rsinS , k = |k|cosn ,

1 = |k|sinn , X= | k | f c , p(x) = & 2(#Xtanhx)^ , the integral (l) becomes

( (-2TT

(10)
(•°° (-2TT

= X*(X. n)exp(it4>(x, n
>0 >0

where

(ii) <t>(x, n) = (rxK^)jcos(e-n) - v(x) •

Here the range of integration is the phase plane described by the polar

coordinates (x> n) •

How suppose there is a stationary phase point at (x*, 1*) with

X* 7s 0 such that 4>io = $01 = 0 ; suffixes now refer to derivatives with

respect to the phase plane variables evaluated at (x* > 1*) • In addition
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the above form of (j> implies that <j>n = 0 . Assuming that ¥00 > <()20 a n ^

<f>02 are non-zero, (8) gives

(12) L

Assume now that f has a zero at (x*, 1*) , but at least one of

^2 0> ^02 a r e non-zero; the conditions on <j> are unchanged. The above

argument, retaining terms in (j> up to and including second derivatives,

yields

(13) L % Trx^ l^o^n- i t

+ V (I 4>(,2 I) " l e x p faiBen^) }expi

The terms involving VJO and fOi give odd functions and so zero

contribution to the asymptotic approximation. Notice that there are two

_2
terms in the approximation (13) both of order t , in contrast with the

result of order t~X from (12) when VQQ t 0 . If both t Q and f

are zero the result (13) needs further modification by considering more

terms in the series for V . If n* = 0 , the lower limit of n , the

results of (12) and (13) must be multiplied by \ .

Consider now the phase function <|> given by ( l l ) . When x* * ° an&

r < t(gh)~2 there is one stationary phase point (x*> 1*) satisfying

D* = 6 and Ui = r/{th) . The second solution to <j>oi = 0 , namely

n = 6 + v , is rejected as i t does not satisfy 4> 10 = ° • This is due to

the nature of d\i/dx , which is a positive, s t r ic t ly monotonic decreasing

function on (0, °°) with a maximum value of (g/h)"* at X = 0 . At the

stationary phase point <()20<fl02 = X*VJllJ2 > thus the denominator in (12)

(or (13)J does not vanish for X* ^ 0 . The asymptotic approximations are

thus correct except near the long wave length l imit . Formula (8) is also

invalid here for 4> given by (9) as the denominator terms are undefined at

the origin.

5 . Long wave l e n g t h l i m i t

When X* i s a small positive number, that is at the long wave length
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l i m i t , the approximations obtained previously are invalid. In th is case

approximations can be achieved by f i r s t applying the stationary phase

pr inc ip le to the n in tegra l in (10), yielding

l2 j x W .

The resulting integral is similar to the one considered by Weston [73] for

the in i t i a l part of the received pressure pulse produced by a large

explosion in the atmosphere. Weston expresses the integral in terms of

products of Airy integrals and is thus able to find an asymptotic form.

Here Watson's Lemma is used to yield the leading term of the asymptotic

expansion for (lU).

The phase in (lU) near the stationary point X* is approximately

- 3—iir + t(g/h)zX / 3 ! and the amplitude function is expanded in a series as

p=q r
 f_^ _ W J , I _ I |

At this long wave length r = vght from the stationary phase condition,

thus

(15) I * (8m/j)ixp(-i.i) I yp!(6)(2p-3)/6r((2p+3)/6)
p=q

Thus when ^ (x̂ * > 1*) # 0 th i s has the same order, namely t , as the

main wave, a resul t which agrees with Gazarian C6] and Kajiura [70]. In

agreement with Gazarian the ra t io of amplitudes of the main wave to the

leading wave is / 3 . However when ¥ does vanish at the long wave length

l imi t the order becomes t~ " . Thus when V has a simple zero the
_j, /o —5/3

order is t , and when t has a double zero the order is t . I n

these cases the main wave (order t } has a larger magnitude than the

leading wave.
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