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Abstract. We show that there exists a locally compact separable metrizable space
L such that C0(L), the Banach space of all continuous complex-valued functions
vanishing at infinity with the supremum norm, is almost transitive. Due to a result of
Greim and Rajagopalan [3], this implies the existence of a locally compact Hausdorff
space L̃ such that C0(L̃) is transitive, disproving a conjecture of Wood [9]. We totally
owe our construction to a topological characterization due to Sánches [8].
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1. Introduction, main theorem and preliminaries. For a locally compact Hausdorff
space L, C0(L) denotes the Banach space of all continuous complex-valued functions
on L vanishing at infinity, equipped with the supremum norm. A Banach space X is
said to be transitive (resp. almost transitive) if the isometry group G(X) acts transitively
on the unit sphere S(X) ={x ∈ X |‖x‖= 1} (resp. the orbit G(X) · x is dense in S(X)
for each x ∈ S(X)). In [9], Wood conjectured that C0(L) is not transitive for any
locally compact Hausdorff space L unless L is a singleton. In [3], the conjecture was
verified for the Banach space C0(L : R) of all real-valued continuous functions on
L vanishing at infinity. Greim and Rajagopalan proved in [3] that the existence of
a locally compact Hausdorff space L with C0(L) being almost transitive implies the
existence of a locally compact Hausdorff space L̃ such that C0(L̃) is transitive. In [7], the
verification of the conjecture was reduced to the case in which L has the metrizable one-
point compactification αL. Furthermore, Sánches in [8] gave an explicit topological
characterization of the space L with the almost transitive C0(L). Theorem 2 and 3 of
[8] are restated below. Following [8], we say that a locally compact Hausdorff space
L is an Wood space (resp. an almost Wood space) if C0(L) is transitive (resp. almost
transitive).

THEOREM 1.1 ([8, Theorem 2,3]). Let L be a locally compact metrizable space such
that the one-point compactification αL = L ∪ {∞} is metrizable and dim αL = 1. Then L
is an almost Wood space if and only if L satisfies the following condition:

for each pair of sequences {Ei|i = 0, . . . , n} and {Fi|i = 0, . . . , n} of compact subsets
of αL satisfying

(1) αL = ∪n
i=0 Ei = ∪n

i=0 Fi,

(2) the point of infinity ∞ ∈ E0 ∩ F0, and
(3) Ei ∩ Ej = Fi ∩ Fj = ∅ if |i − j| > 1,

there exists a homeomorphism ϕ : αL → αL such that ϕ(∞) = ∞ and
ϕ(Ei) ⊂ Fi−1 ∪ Fi ∪ Fi+1 for each i = 0, . . . , n, where F−1 = Fn+1 = ∅.
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The clear characterization above led us to find out a non-trivial almost Wood
space, and hence, by [3], a non-trivial Wood space.

The almost Wood space L given in this note is (the pseudo-arc)\{a singleton}. The
pseudo-arc P is the topologically unique compact connected metric space satisfying
the following two conditions (a) and (b). A chain of a metric space X is an open cover
C = {C(0), . . . , C(n)} of X such that C(i) ∩ C( j) 
= ∅ if and only if |i − j| ≤ 1. Each
member C(i) of a chain C = {C(0), . . . , C(n)} is called a link. Also we fix a metric on
X and let meshC = maxi=0,...,n diamC(i), where diamC(i) is the diameter of C(i) with
respect to the metric.

(a) For each ε > 0, there exists a chain C such that meshC < ε.

(b) For each pair of points x, y ∈ P, there exists a homeomorphism ϕ : P → P such
that ϕ(x) = y.

The space was constructed by R. H. Bing [1] and E. E. Moise [6]. It has been
playing an important role in continuum theory (in topology) and our result is another
simple application of the topology of the pseudo-arc.

MAIN THEOREM. Let P be the pseudo-arc, p ∈ P and let L = P\{p}. Then C0(L) is
almost transitive.

In the rest of this section, we recall some properties of the pseudo-arc. [5] is an
excellent survey article on the space, from which we quote all results below. First
observe that dim P = 1 by the above condition (a) and the connectedness of P.

DEFINITION 1.2. (1) A function f : {0, 1, . . . , m} → {0, . . . , n} is called a pattern if
|f (i) − f (i + 1)| ≤ 1 for each i = 0, . . . , m − 1.

(2) Let C = {C(0), . . . , C(n)} and D = {D(0), . . . , D(m)} be chains of the pseudo-
arc. The chain D is said to follow a pattern f in the chain C if clD(i) ⊂ C( f (i)) for each
i = 0, . . . , m. Here clD(i) denotes the closure of D(i).

THEOREM 1.3 ([5, p. 108]). For each point p ∈ P and for each ε > 0, there exists a
chain C = {C(0), . . . , C(n)} such that meshC < ε and p ∈ C(0)\∪n

i=1 C(i).

The following is an immediate consequence of [5, p. 108, Theorem[60]], being
applied to j = i0 = 0, for which the hypothesis of the theorem is automatically satisfied.

THEOREM 1.4. Let p be a point of the pseudo-arc P and let C = {C(0), . . . , C(n)}
be a chain of P such that p ∈ C(0). For each pattern f : {0, . . . , m} → {0, . . . , n} with
f (0) = 0, there exists a chain D = {D(0), . . . , D(m)} which follows f and p ∈ D(0).

The following theorem, here stated for the pseudo-arc only, provides us with the
standard method to construct homeomorphisms of the pseudo-arc. The proof of main
theorem given in the next section is a simple application of Theorem 1.5 below to a
specific situation.

For a chain C = {C(0), . . . C(n)} of the pseudo-arc P and for a point p ∈ P, st(p, C)
denotes the collection of links containing p. Note that st(p, C) consists of at most two
links.

THEOREM 1.5 ([5, p. 109]). Let {Ci|i = 0, 1, . . .} and {Di|i = 0, 1, . . .} be two
sequences of chains of the pseudo-arc P such that,

(1) for each i = 0, 1, . . . , Ci and Di has the same number of links, so they are written
as Ci = {Ci(0), . . . Ci(ni)} and Di = {Di(0), . . . Di(ni)},

(2) limi→∞ meshCi = limi→∞ meshDi = 0, and
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(3) for each i, there exists a pattern fi : {0, 1, . . . , ni+1} → {0, . . . ni} such that Ci+1

follows fi in Ci and Di+1 follows fi in Di.
Then there exists a homeomorphism h : P → P such that, if st(p, Ci) ⊂ {Ci( j), Ci( j + 1)},
then h(x) ∈ Di( j) ∪ Di( j + 1), for each j = 0, . . . , ni and for each i = 0, 1, . . . .

REMARK. In [5], a stronger condition
(2′) meshCi < 1/ i and meshDi < 1/ i

is required instead of the condition (2) above. The proof of the theorem easily shows
that the same conclusion holds under the condition (2) above.

COROLLARY 1.6. Under the above notation, assume further that a point p ∈ P satisfies
p ∈ Ci(0) ∩ Di(0) for each i. Then the above homeomorphism h : P → P satisfies h(p) = p.

Proof. Since h( p) ∈ Di(0) ∪ Di(1), we have d( p, h( p)) ≤ mesh Di → 0 as i → ∞.
The conclusion follows immediately.

2. Proof of Main theorem. Recall [8] that C0(L) is almost positive transitive if, for
each pair of non-negative norm-one functions f, g ∈ C0(L) and for each ε > 0, there
exists an isometry T : C0(L) → C0(L) such that ‖Tf − g‖ < ε. Also we say that C0(L)
allows nearly polar decompositions if, for each f ∈ C0(L) and for each ε > 0, there exists
an isometry T : C0(L) → C0(L) such that ‖ f − T(| f |)‖ < ε. It is easy to see that C0(L)
is almost transitive if and only if it is almost positive transitive and allows nearly polar
decompositions (cf. [8, p. 315]).

The following Lemma is implicitly stated in [8, Theorem 2], in which the proof is
omitted. We give a proof here for completeness.

LEMMA 2.1. Let L be a locally compact metrizable space such that the one-point
compactification αL is metrizable with dim αL = 1. Then C0(L) allows nearly polar
decompositions.

Proof. Take an arbitrary f ∈ C0(L) and extend it canonically to the function on
αL by defining f (∞) = 0. Since dim αL = 1, one can show that, for each ε > 0, there
exists a continuous function fε : αL → C such that ‖f − fε‖ < ε and fε(x) 
= 0 for each
x ∈ αL (see [4, Theorem 18], or [2, p. 76, 1.9.B]). Define T : C0(L) → C0(L) by

(Tg)(x) = fε(x)
| fε(x)| · g(x), g ∈ C0(L) and x ∈ L.

Clearly T is an isometry. For an arbitrary x ∈ L, we estimate |(T | f |)(x) − f (x)| as
follows. Here the complex conjugate of f (x) is denoted by f (x).

|(T | f |)(x) − f (x)|2 =
∣∣∣∣ fε(x)
| fε(x)| · | f (x)| − f (x)

∣∣∣∣
2

= 2| f (x)|2 − | f (x)| fε(x)f (x) + fε(x)f (x)
| fε(x)|

= 2| f (x)|
(

| f (x)| − Re
fε(x)f (x)
| fε(x)|

)

≤ 2‖ f ‖
(

(| fε(x)| + ε)| fε(x)| − Refε(x)f (x)
| fε(x)|

)

= 2‖f ‖
(

ε + | fε(x)|2 − Refε(x)f (x)
| fε(x)|

)
.
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Making use of the inequality ‖ f − fε‖ < ε, it is easy to see

| fε(x)|2 − Refε(x)f (x)
| fε(x)| < 2ε.

Thus we have ‖T | f | − f ‖ = supx∈L |(T | f |)(x) − f (x)| ≤ √
6‖ f ‖ε, completing the

proof.

Proof of Main Theorem. Let P be the pseudo-arc and take a point p ∈ P. We
show that L = P\{p} is an almost Wood space. Clearly αL ∼= P, a compact connected
metrizable space and dimP = 1. Thus C0(L) allows nearly polar decompositions by
Lemma 2.1. Hence it suffices to verify the conditions required in Theorem 1.1, yet it is
more convenient to prove directly the almost positive transitivity of C0(L), along with
exactly the same idea as that of [8, Theorem 3].

Take arbitrary pair of non-negative, norm-one functions f, g ∈ C0(L) and extend
them to functions on αL = P by defining f ( p) = g( p) = 0. Then f (αL) = g(αL) = [0, 1].
Fix a positive integer n and let Ii = ( i

n − 1
4n , i + 1

n + 1
4n ) ∩ [0, 1] for i = 0, . . . , n − 1.

Let C0(i) = f −1(Ii) and D0(i) = g−1(Ii) for i = 0, . . . , n − 1. C0 = {C0(0), . . . , C0(n − 1)}
and D0 = {D0(0), . . . , D0(n − 1)} are chains of P. As f ( p) = 0, we have p ∈ C0(0) and
similarly p ∈ D0(0).

Take a small 0 < ε1 < 1/2 so that every subset E of P with diamE < ε1 is contained
in a link of D0. By Theorem 1.3, there exists a chain D1 = {D1(0), . . . , D0(n1)} with
meshD1 < ε1 such that p ∈ D1(0). Note that, for each link D1(i), there exists a link
of D0 containing D1(i). Hence there exists a pattern which D1 follows in D0. Let
f1 : {0, . . . , n1} → {0, . . . , n} be a such pattern. Apply Theorem 1.4 to take a chain
C1 = {C1(0), . . . , C1(n1)} which follows f1 in C0 such that p ∈ C1(0).

Take a small 0 < ε2 < 1/3 so that every subset F of P with diamF < ε2 is contained
in a link of C1. Again by Theorem 1.3, there exists a chain C2 = {C2(0), . . . , C2(n2)}
with meshC2 < ε2 such that p ∈ C2(0). Let f2 : {0, . . . , n2} → {0, . . . , n1} be a pattern
which C2 follows in C1. We make another application of Theorem 1.4 to obtain a
chain D2 = {D2(0), . . . , D2(n2)} which follows f2 in D1 such that p ∈ D2(0). Note that
meshD2 ≤ meshD1 < 1/2.

Continuing this process, we obtain sequences of chains {Ci|i = 0, 1, . . .} and
{Di|i = 0, 1, . . .} together with a sequence { fi : {0, . . . , ni} → {0, . . . , ni−1}|i = 1, 2, . . .}
of patterns (n0 = n) which satisfy the hypothesis of Theorem 1.5. Moreover the
sequences have an additional property: p ∈ ∩∞

i=0Ci(0) ∩ ∩∞
i=0Di(0). By Theorem 1.5

and Corollary 1.6, there exists a homeomorphism ϕ : P → P with ϕ( p) = p such that,
if st(x, C0) ⊂ {C0( j), C0( j + 1)}, then ϕ(x) ∈ D0( j) ∪ D0( j + 1).

Take a point x ∈ C0( j). Then by the definition of C0, f (x) ∈ ( j
n − 1

4n ,
j + 1

n + 1
4n ).

Since ϕ(x) ∈ D0( j) ∪ D0( j + 1), we have similarly g(ϕ(x)) ∈ ( j
n − 1

4n ,
j + 2

n + 1
4n ). Hence

| f (x) − g(ϕ(x))| ≤ 2
n + 1

2n = 5
2n . Since x is an arbitrary point of L, we have ‖ f − Tg‖ ≤

5
2n . For a given ε > 0, we may take n so that 5

2n < ε to complete the proof of the almost
positive transitivity of C0(L).

This completes the proof of Main Theorem.
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4. A. Jiménez-Vargas, J. F. Mena-Jurado and J. C. Navarro-Pascual, Mappings without
fixed or antipodal points. Some geometric applications, Math. Scand. 84 (1999), 179–194.

5. W. Lewis, The Pseudo-arc, in Continuum theory and dynamical system (Arcata CA,
1989), Contemp. Math. 117 (1991), 103–123.

6. E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of
its nondegenerate subcontinua, Trans. Amer. Math. Soc. 63 (1948), 581–594.

7. F. C. Sánches, Transitivity of M-spaces and Wood’s conjecture, Math. Proc. Camb. Phil.
Soc. 124 (1998), 513–520.

8. F. C. Sánches, The covering dimension of Wood spaces, Glasgow Math. J. 44 (2002),
311–316.

9. G. V. Wood, Maximal symmetry in Banach spaces, Proc. Royal Irish Acad. 82A (1982),
177–186.

https://doi.org/10.1017/S0017089504002186 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504002186

